It should be noted that throughout the disclosure, where a definition or use of a term in any incorporated document(s) is inconsistent or contrary to the definition of that term provided herein, the definition of that term provided herein applies and the definition of that term in the incorporated document(s) does not apply.
One or more embodiments of the present invention relates to a retainer mechanism and, more particularly, to a retainer mechanism for actively securing a lid (holding and maintaining content) of a container even if the container is overfilled and for passively (and automatically) self-releasing the lid to fully open when and as a result of the container appropriately tilted to a particular orientation for unhindered, unobstructed emptying of the container.
One or more embodiments of the present invention also relate to a retainer mechanism and, more particularly, to a retainer mechanism for actively securing a lid (holding and maintaining content) of a container only if the container lid may fully close over the container and for passively (and automatically) self-releasing the lid to fully open when and as a result of the container appropriately tilted to a particular orientation for unhindered, unobstructed emptying of the container.
Conventional retainer mechanisms that passively (and automatically) self-release (or unlatch) when and as a result of the appropriately tilting to a particular orientation are well known and have been in use for a number of years, a non-limiting example of which is disclosed in U.S. Patent Application Publication 2014/0299602 A1 to Grigooris MANSSOURIAN, the entire disclosures of which is expressly incorporated by reference in its entirety herein. Regrettably, known retainer mechanisms use too many parts, which adds to the overall complexity and cost of manufacturing.
Additionally, known retainer mechanisms require the use of webbing, which is comprised of material that is not reasonably appropriate for the environment within which it is used. That is, depending on the garbage (especially liquid trash or sludge), current webbing material from which the webbings may comprise of may create unsanitary condition, requiring constant cleaning. A further drawback with known retainer mechanisms is the mounting position of the retainer mechanism on the bin, which may interfere with known semi-automatic lift mechanisms.
Another drawback with most known retainer mechanisms is that in all instances, they secure the lid even if the bin is overfull. There are certain instances where it is desired or a requirement that the lid of the bin be fully closed and secured, without allowing the users the option of securing a lid when it is not in full contact with the rim of the bin.
Accordingly, in light of the current state of the art and the drawbacks to current retainer mechanism mentioned above, a need exists for a retainer mechanism that would allow for actively securing a lid (holding and maintaining content) of a container even if the container is overfilled and for passively (and automatically) self-releasing the lid to fully open when and as a result of the retainer mechanism appropriately titled to a particular orientation for unhindered, unobstructed emptying of the container. Further, a need exists for a retainer mechanism that would allow for actively securing a lid (holding and maintaining content) of a container only if the container is not overfilled and for passively (and automatically) self-releasing the lid to fully open when and as a result of the retainer mechanism appropriately titled to a particular orientation for unhindered, unobstructed emptying of the container. Additionally, a need exists for a retainer mechanism that would provide a quick and easy engagement of an adjusting mechanism with a retainer member, with the adjusting mechanism comprised of material that would not require constant cleaning. Further, a need exists for a retainer mechanism that would be adapted to be mounted at a position that would be universally acceptable for use for both full and semi automatic lift mechanisms. Additionally, a need exists for a retainer mechanism that would allow securing of a lid only if the lid is able to fully close in relation to bin.
A non-limiting, exemplary aspect of an embodiment of the present invention provides a device, comprising:
Another non-limiting, exemplary aspect of an embodiment of the present invention provides a retainer mechanism, comprising:
A further non-limiting, exemplary aspect of an embodiment of the present invention provides a device, comprising:
Another non-limiting, exemplary aspect of an embodiment of the present invention provides a device, comprising:
These and other features and aspects of the invention will be apparent to those skilled in the art from the following detailed description of preferred non-limiting exemplary embodiments, taken together with the drawings and the claims that follow.
It is to be understood that the drawings are to be used for the purposes of exemplary illustration only and not as a definition of the limits of the invention. Throughout the disclosure, the word “exemplary” may be used to mean “serving as an example, instance, or illustration,” but the absence of the term “exemplary” does not denote a limiting embodiment. Any embodiment described as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. In the drawings, like reference character(s) present corresponding part(s) throughout.
The detailed description set forth below in connection with the appended drawings is intended as a description of presently preferred embodiments of the invention and is not intended to represent the only forms in which the present invention may be constructed and or utilized.
It is to be appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention that are, for brevity, described in the context of a single embodiment may also be provided separately or in any suitable sub-combination or as suitable in any other described embodiment of the invention. Stated otherwise, although the invention is described below in terms of various exemplary embodiments and implementations, it should be understood that the various features and aspects described in one or more of the individual embodiments are not limited in their applicability to the particular embodiment with which they are described, but instead can be applied, alone or in various combinations, to one or more of the other embodiments of the invention.
Further, unless otherwise noted and distinguished specifically, throughout the disclosure, the use of specific terms such as a bin, trash bin, container, receptacle, can, trashcan (residential or commercial), etc. should be interpreted as synonymous, as interchangeable, meant as illustrative, and for convenience of example, only.
One or more embodiments of the present invention provides a device for actively securing or tightly holding down a lid of a bin even if the bin is overfilled (for compacting the content) and for passively (and automatically) self-releasing or self-unlatching the lid to fully open when and as a result of the device appropriately tilted to a particular orientation for unhindered, unobstructed emptying of the bin. One or more embodiments of the present invention may be used to compact content of an overfilled bin, securing content of the bin even if the lid of the bin is not fully closed due to bin overfill.
Further, one or more embodiments of the present invention provides a device for actively securing a lid (holding and maintaining content) of a container only if the container is not overfilled and for passively (and automatically) self-releasing the lid to fully open when and as a result of the retainer mechanism appropriately titled to a particular orientation for unhindered, unobstructed emptying of the container. That is, one or more embodiments of the present invention provide a device for securing of a lid only if the lid is able to fully close in relation to bin.
Additionally, one or more embodiments of the present invention provides a device for a quick and easy engagement of an adjusting mechanism with a retainer member, with the adjusting mechanism comprised of material that would not require constant cleaning.
Further, one or more embodiments of the present invention provides a device that is adapted to be mounted at a position on a container/lid combination that may be universally acceptable for use for both full and semi automatic lift mechanisms.
In general, the disclosed embodiments of the present invention are lightweight, and easily install on most containers without requiring any special equipment. Disclosed embodiments of the present invention are comprised of mechanism with minimal parts and simple movements, easily usable by most. One or more embodiments of the present invention or parts thereof may be retrofitted with any existing container or be manufactured as part of container itself. For example, a mounting support (detailed below) may be molded with the bin or lid of the bin (or adapted to be integral with bin or the lid of the bin), with a lever and other components affixed or mounted onto the mounting support.
Lid 106 may easily be secured and tightly held down in relation to bin 104 when adjusting member 112 is associated with the retainer member 110. That is, in this non-limiting, exemplary embodiment, even if bin 104 is overfilled with content 108 as illustrated, lid 106 may still be easily secured and tightly held down in relation to bin 104 by associating adjusting member 112 with retainer member 110 (which would in fact, aid in further compacting content 108 of bin 104). Accordingly, retainer member 110 holds and securely maintains adjusting member 112 at a fixed position along a length of adjusting member 112, which, in turn, holds and securely maintains lid 106 in relation to bin 104. The adjustable features or aspects of adjusting member 112 in relation to retainer member 110 enables retainer mechanism 102 to maintain the hold position of lid 106 even if bin 104 is overfilled. In other words, retainer member 110 holds and securely maintains adjusting member 112 at a fixed position along a length of adjusting member 112, which, in turn, holds and securely maintains lid 106 in relation to an opening 150 of the overfilled bin 104, further compacting and securing content of bin 104 as the adjusting member 112 is tightened in relation to retainer member 110. It should be noted that adjusting member 112 may comprise of any flexible material, non-limiting examples of which may include a strap or the like that may comprise of made of materials such as polyester, polyurethane, leather, rubber, plastic, nylon, polyethylene, polypropylene, Acrylonitrile butadiene styrene (ABS), Polyvinyl chloride (PVC), Polyethylene terephthalate (PET), Polyoxyrnethylene (POM), also known as ACETAL, Polycarbonate, Polystyrene, thermoplastic elastomers, etc.
In general, retainer member 110 is comprised of substantially rounded smooth edges, and its dimensions may be varied. Material used for retainer member 110 may be comprised of any metallic material, plastic or others so long as the material has substantial structural integrity in terms of strength, durability, etc. so that retainer member 110 can withstand holding forces when adjusting member 112 is pulled through retainer member 110 to tightly hold lid 106 in relation to bin 104. It should be noted the parts or components constituting retainer member 110 may each comprise of different material so long as they exhibit minimal flexure.
Retainer member 110 passively releases adjusting member 112 when retainer member 110 is tilted to a specific orientation (or direction) only, which, in turn, frees lid 106 to an open position. If bin 104 is tilted outside the specific orientation (e.g., backward, side ways, or falls side ways), retainer member 110 maintains its engagement or “grip” with adjusting member 112, securely holding and maintaining adjusting member 112 at a fixed or hold position to maintain lid 106 in a closed or hold position.
Adjusting member 112 is passed through retainer member 110, which maintains adjusting member 112 at a desired position (e.g., length, tightness, etc.). When bin 104 is picked up and tilted to the appropriate orientation to be emptied, a lever assembly 206 of retainer member 110 passively moves to a release position, and allows the release of adjusting member 112 to allow lid 106 to “fling” open. In other words, retainer member 110 includes a lever assembly 206, which is passively moved (due to gravity) when retainer member 110 is tilted to a specific orientation to passively release adjusting member 112. Accordingly and as further detailed below, retainer member lever assembly 206 is actively moved to one of hold or release positions to hold or release adjusting member 112, and is passively moved to release adjusting member 112 when retainer member 110 is tilted to a specific orientation. If bin 104 is tilted to any other orientation (e.g., side or back tilted verses the correct forward tilted), retainer member 110 will not passively release adjusting member 112, which will maintain lid 106 in a hold position, keeping content 108 inside bin 104.
As illustrated in
It should be noted that lever assembly 206 dangles and moves freely due to the pull of the gravity onto an assembled weight-mass 222 and therefore, may be actively held in the illustrated disengagement or release position by users or passively moved to the disengagement or release position when and as a result of retainer mechanism 102 appropriately titling to a particular orientation. Depending on the degree of tightness desired, pulling onto free end 122 of adjusting member 112 from the extraction side 210 of retainer member 110 would lower (pull in) lid 106 to a further closed position and if bin 104 is overfilled with content 108 as illustrated, lid 106 would simply compact the content 108.
As best illustrated in
As best illustrated in
As best illustrated in
In the exemplary embodiments shown in
As illustrated, retainer member 110 of retainer mechanism 102 has insertion side 208 that receives free end 122 of adjusting member 112 in the direction of the indicated arrow 120, and extraction side 210 from which adjusting member 112 is pulled in the direction of arrow 120, and extracted or pulled out to tighten the hold position of lid 106 of bin 104. In general, adjusting member 112 is maneuvered at insertion side 208 and inserted to pass underneath lever assembly 206, while lever assembly 206 is in the disengaged or release position (
As illustrated in
Weight assembly 212 includes a weighted mass 222 encapsulated by an optional protective cover 224, with weighted mass 222 and cover 224 fastened by a fastener 226 to a first distal end (or weighted end) 228 of lever 220. Cover 224 protects weight-mass 222 against elements (e.g., moisture, water, excessive heat/cold, dirt, debris, etc.). It should be noted that weight mass 222 is optional, but if not used, lever 220 must be comprised of a heavy metal to generate appropriate force or energy momentum with which the lever may move from hold to release position. Optionally, distal end 228 may include an annular groove or recess 230, which is commensurately configured to receive a periphery edge 232 of cover 224, and a fastener opening 234 to receive and secure weight assembly 212 to distal end 228 of lever 206. It should be noted that although fastener 226 is illustrated as a simple rivet, most other types of fasteners may be used instead.
Second distal end 240 includes at least one protruded portion 238 that includes a pivot point 320 (defined by opening 322) to pivotally couple lever 220 with mounting support 202. Pivot point 320 may include hinge pin 242 that passes through opening 322 of hinge barrel (that also defines the protruded portion 238) and is coupled to second pair of holes 264 and 266 on lateral supports 252 and 254 of mounting-support 202.
As further illustrated in
Cam portion 238 has a relief portion (generally straight or flat) 244 and a hold or latching portion (generally curved) 246. As detailed below, mounting support 202 includes alignment supports (or extraction side limiters) 282 and 284 that generally supports an apex 248 of curved portion 246 of protruded or cam portion 238 of lever 220 aligned in appropriate relative position in a sliding contact with a top surface (un-serrated side) 142 of adjusting member 112 to impart pressure thereon and move adjusting member 112 in to a tight engagement with engagement section 214 of mounting support 202 by providing maximum pressure on top surface 142 of adjusting member 112.
Base 250 of mounting support 202 includes a pair of mounting extensions 260 and 262 that include an attachment hole 256 for mechanically connecting mounting support 202 onto bin 104 or lid 106 of bin 104. Attachment holes 256 on the mounting extensions 260 and 262 enable the use of fasteners to couple mounting support 202 onto bin 104 or lid 106 of bin 104. The position of attachment holes 256 may be varied. For example, base 250 of mounting support 202 may have mounting extensions at insertion and extraction sides 208 and 210 instead of the illustrated lateral mounting extensions 260 and 262 with attachment holes 256. In other words, attachment holes 256 need not be positioned laterally, but may be positioned (with a wider base) along insertion/extraction sides 208 and 210 of mounting support 202. It should be noted that the number of attachment holes 256 should not be limited to only two, but may be greater than two.
It should be noted that the mounting method or mechanism may include or use magnets, glue, spring clip or others to fasten onto bin 104 or lid 106 of bin 104 instead of using fasteners. Other mechanism for connecting mounting support 202 onto bin 104 or lid 106 of bin 104 is contemplated, including, for example, the bin or the lid and the mounting support having complementary interlocking features that interlock without the use of fasteners (e.g., recess/projection connections). As a non-limiting, specific example, the mounting support may be secured without the use of fasteners and instead, secured by a snap action into a preformed receptacle of the bin or lid.
Mounting support 202 further includes lateral supports 252 and 254 for supporting lever assembly 206. Lateral supports 252 and 254 include a pair of openings 264 and 266 that establish a pivot point 320 for lever assembly 206, with openings 264 and 266 aligned with opening 322 of lever 220 to receive fastener 242. Lateral supports 252 and 254 have a first side 270 and 272 (inner facing sides that face channel 218) that includes recesses 274 and 276 that define first limiters 278 and 280 at insertion side 218 of mounting support 202 and second limiters 282 and 284 at extraction side 210 of mounting support 202. Lateral supports 252 and 254 have a second sides 292 and 294 (outer facing sides in relation to channel 218) that have a generally constant height 306 from insertion side 208 to extraction side, with first sides 270 and 272 of lateral supports 252 and 254 having a height 302 that varies (decreases) in span from insertion side 208 to extraction side 210 commensurate with the inclined 205 (ascending) of channel-base 216 (detailed below). It should be noted that channel base 216 at insertion side 208 is at the lowest elevation of the ascending channel base 216 in addition to being curved, both of which aspects or feature function as “chamfered end” to facilitate ease of insertion and release of adjusting member 112.
Second limiter 282 and 284 are alignment supports that generally limit the motion of lever assembly 206 at hold position while supporting an apex 248 of a protruded portion 238 of lever assembly 206 aligned in appropriate relative position in a sliding contact with top surface 142 of adjusting member 112 to impart pressure thereon and move adjusting member 112 into a tight engagement with serrations 258 engagement section 214 of mounting support 202, with cam portion 238 providing maximum pressure on top surface 142 of adjusting member 112. It should be noted that apex 248 is generally directly underneath or below opening 322 (pivot point 320) of lever assembly 206 (as illustrated by arrows 203 in
Recesses 274 and 276 at inner sides 270 and 272 of lateral supports 252 and 254 have sufficient depth 296 to support and facilitate mounting of lever assembly 206 onto mounting support 202, with contour of recesses 274 and 276 generally following a profile (or counter) of cam portion 238 of distal end 240 of lever assembly 206. Recesses 274 and 276 accommodate a width 286 of protruded portion 238 of distal end 240 of lever assembly 206 (which is wider than a width 288 of channel-base 216), while limiting width 288 of channel-base 216 at a span that appropriately guides insertion of adjusting member 112 to prevent lateral motion of adjusting member 112 during insertion and removal. Accordingly, cam portion 238 of lever assembly 206 is made sufficiently wide for added strength, which is accommodated by recesses 274 and 276. Further, recesses 274 and 276 enable width 288 of channel-base 216 to be of sufficiently narrow span to receive and release adjusting member 112 without much lateral motion, further facilitating unhindered or unobstructed insertion and release of adjusting member 112. If adjusting member 112 is moved or force inserted into and released out of channel 218 of retainer member 110 at an angle (misaligned), serrations 146 of adjusting member 112 (
First sides 270 and 272 of lateral supports 252 and 254 may be made flat without any recesses to accommodate lever assembly 106 if channel-base width 288 is made wider, but adjusting member 112 used must be wider or otherwise, the serrations 146 and 258 may eventually be damaged over time (as per above). In the non-limiting, exemplary embodiment where no recesses 274 and 276 are provided, embossments or flanges may be positioned at first sides 270 and 272 of lateral supports 252 and 254 to function as limiters to limit a range of motion of lever assembly 206 (as detailed above). Nonetheless, distance between inner sides 270 and 272 of lateral supports 252 and 254 is therefore made sufficiently small to insert/release adjusting member 112 without much lateral motion, with recesses 274 and 276 providing greater width 290 for channel 218 above channel-base 216 to accommodate a wider cam portion 238 of lever assembly 206 for added strength for the lever assembly 206.
It should be noted that recesses 274 and 276 (which are mirror images and identical and located on inner side 270 and 272 of the lateral supports 252 and 254) do not take away from the overall strength of lateral supports 252 and 254 because a width 298 of lateral supports 252 and 254 may be extended (made wider or thicker) at or from outer sides 292 and 294 (outside of channel 218) as much as needed to compensate for any potential or possible strength that may be lost due to excavated parts that constitute recesses 274 and 276 (if any). Therefore, lateral supports 252 and 254 may be made as thick as desired at or from outer sides 292 and 294, while maintaining all other features (example, channel-base width 288) as described above.
Recesses 274 and 276 respectively define limiters 278 and 280 at insertion side 208 and limiters 282 and 284 at extraction sides 210 of lateral supports 252 and 254, which limit a range of motion of lever assembly 206 from a fully open (release) position to a fully latched (or hold) position. The hold position of lever assembly 206 is at a first angle (e.g., generally parallel base 250 of retainer member 110), and release or open position is generally a rotation to a second angle (generally passed, but near perpendicular to base 250 of retainer member 110). Accordingly (and as best illustrated in
Insertion side limiters 278 and 280 prevent lever assembly 206 from rotating too far (e.g., as shown by dashed line 324 in
Extraction side limiters 282 and 284 operate to prevent lever assembly 206 from interfering with adjusting member 112 when being removed. That is, extraction side limiters 282 and 284 limit range of motion of lever assembly 206 to a generally parallel orientation with base 250, preventing lever assembly 206 from having a hold position that is too far back (as best illustrated by dashed line 320 in
As further illustrated in
Lateral projections (or side-rails) 310 enable lateral smooth surfaces 148 and 160 (
Engagement section 214 of channel 218 is near extraction side 210 of retainer member 110, at a higher elevation compared with recess portion 308. It should be noted that a less preferred embodiment would be to have the entire channel-base 216 comprised of engagement section 214 where serrations 258 extend from insertion side 208 to extraction side 210. However, providing serrations 258 throughout channel base 216 would interfere with ease of insertion of adjusting member 112 (due to serrations 146 of adjusting member 112) and further, such an arrangement would also hinder release of adjusting member 112. That is, as adjusting member 112 is released, serrations 146 of adjusting member 112 would continue to engage serrations 258 of channel-base 216 from extraction side 210 to insertion side 208 as adjusting member 112 is released. By limiting engagement section 214 to the specified location, area, and size necessary, it allows for a smooth, and unhindered release and exit of adjusting member 112 while latching adjusting member 112 at hold position when lever assembly 206 is at hold position.
Locations of serrations 258 also align with position of engagement of cam portion 246 with adjusting member 112, which is below pivot point 320. That is, apex 248 of cam portion 246 of lever 220 is aligned in appropriate relative position in a sliding contact with top surface 142 of adjusting member 112 (on top of or above the serrations 258 of engagement section 214) to impart pressure thereon and move serrations 146 of adjusting member 112 in to a tight engagement with serrations 258 of engagement section 214 of mounting support 202 by providing maximum pressure on top surface 142 of adjusting member 112.
Channel base 216 of mounting support 202 of retainer member 110 is sloped at an angle to facilitate insertion of adjusting member 112. Further, if retainer member 110 is connected with bin 104, the slopping channel base 216 is generally at an angle to commensurately offset an angular incline of a slanted side of bin 104 with which the retainer member is coupled, which may maintain lever assembly at a hold position. Accordingly, when installed on lid 106 of bin 104, insertion side 208 of retainer member 110 is installed oriented near an edge of free end of lid 106, near rim 152 of opening 150 at side 116. Further, when installed on bin 104, insertion side 208 of retainer member 110 is installed oriented near rim 152 of opening 150 at side 116. This way, engagement section 214 (serration 258 of channel-base 216) is always oriented away from the edge of the free end of lid 106 or rim 152 of opening 150 of side 116 of bin 104, with ascending slope rising away from the edge of the free end of lid 106 or side 116 rim 152 of opening 150 of bin 104. It should be noted that installing retainer member 110 on lid 106 of bin 104 or at near a top of bin 104 as illustrated positions retainer mechanism 102 away from interfering with operations of the fully automatic or semi-automatic lift mechanism.
In this non-limiting, exemplary embodiment, retainer mechanism 400 includes a mounting support 402 with channel-base 404 that is not sloped (but it is elevated to a height of 406 compared to mounting extensions 260 and 262, and is generally flat). As with retainer mechanism 102, in this embodiment also, adjusting member 112 is retained within the mounting support 402 due to mating of serrated surfaces 146 of adjusting member 112 with serration 258 of channel-base 404. As with retainer mechanism 102, in this embodiment also, insertion side 208 of channel-base 404 is curved, defining a “chamfered side” 401 thereof for easy extraction and removal of adjusting member 112.
In this non-limiting, exemplary embodiment, mounting support 402 has been illustratively shown to have a non-limiting, exemplary saw tooth type serrations 258 for example, instead of corrugated type disclosed in
For saw-tooth type configuration (
As illustrated in
As illustrated in
In this non-limiting, exemplary embodiment, latch member 506 is combined with lever assembly 508 of retainer mechanism 500, providing somewhat similar functionality with the retainer mechanism 500 shown in
As illustrated, catch member 510 receives and detachably latches a latching end 604 of lever assembly 602 without the need of a separate latch member 506. Further lever assembly 602 includes pivot point 606 (e.g., hinge barrel opening 608) that moveably couples lever assembly 602 with second set of hinge knuckles 526 of intermediary member 504 by a fastener (e.g., a rivet 610), enabling lever assembly 602 to rotate at pivot point 606. When lever assembly 602 is latched onto catching portion 552 of catch member 510, hinge barrel opening 608 is received within relief 554, which enables pivot point 606 to pass the vertical alignment (by an angle β), which prevents unintentional dislodging of lever assembly 602 from catching portion 552. Without relief 554, a slight upward pressure on lever assembly 602 (e.g., by opening of lid 106) would unlatch lever assembly 602 from catch member 510.
It should be noted that the preferred embodiment (retainer mechanism 500 shown in
Although the invention has been described in considerable detail in language specific to structural features and or method acts, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as exemplary preferred forms of implementing the claimed invention. Stated otherwise, it is to be understood that the phraseology and terminology employed herein, as well as the abstract, are for the purpose of description and should not be regarded as limiting. Further, the specification is not confined to the disclosed embodiments. Therefore, while exemplary illustrative embodiments of the invention have been described, numerous variations and alternative embodiments will occur to those skilled in the art. Such variations and alternate embodiments are contemplated, and can be made without departing from the spirit and scope of the invention.
It should further be noted that throughout the entire disclosure, the labels such as left, right, front, back, top, bottom, forward, reverse, clockwise, counter clockwise, up, down, or other similar terms such as upper, lower, aft, fore, vertical, horizontal, oblique, proximal, distal, parallel, perpendicular, transverse, longitudinal, etc. have been used for convenience purposes only and are not intended to imply any particular fixed direction or orientation. Instead, they are used to reflect relative locations and/or directions/orientations between various portions of an object.
In addition, reference to “first,” “second,” “third,” and etc. members throughout the disclosure (and in particular, claims) is not used to show a serial or numerical limitation but instead is used to distinguish or identify the various members of the group.
In addition, any element in a claim that does not explicitly state “means for” performing a specified function, or “step for” performing a specific function, is not to be interpreted as a “means” or “step” clause as specified in 35 U.S.C. Section 112, Paragraph 6. In particular, the use of “step of,” “act of,” “operation of,” or “operational act of” in the claims herein is not intended to invoke the provisions of 35 U.S.C. 112, Paragraph 6.
This application claims the benefit of priority of U.S. Utility Provisional Patent Application No. 62/127,224, filed 2 Mar. 2015, the entire disclosure of which is expressly incorporated by reference in its entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
74367 | Hurd | Feb 1868 | A |
203817 | Brock | May 1878 | A |
1639870 | Valsvig | Aug 1927 | A |
2531503 | Dick | Nov 1950 | A |
3662435 | Allsop | May 1972 | A |
3893725 | Coulter | Jul 1975 | A |
3980202 | Monyak et al. | Sep 1976 | A |
4136422 | Ivanov | Jan 1979 | A |
4182530 | Hodge | Jan 1980 | A |
4229862 | Kubelka | Oct 1980 | A |
4326320 | Riedel | Apr 1982 | A |
4371092 | Teague | Feb 1983 | A |
4395801 | Gabrielli | Aug 1983 | A |
4413851 | Ritter | Nov 1983 | A |
4453290 | Riedel | Jun 1984 | A |
4547980 | Olivieri | Oct 1985 | A |
4549770 | Kurtti | Oct 1985 | A |
4639978 | Boden | Feb 1987 | A |
4660889 | Anthony | Apr 1987 | A |
4683620 | Valsecchi | Aug 1987 | A |
4796337 | Marxer | Jan 1989 | A |
4869697 | Ackert | Sep 1989 | A |
4942647 | Wallner | Jul 1990 | A |
4955501 | Hodge | Sep 1990 | A |
4976371 | Wise | Dec 1990 | A |
5102001 | Teague et al. | Apr 1992 | A |
5118000 | Howell et al. | Jun 1992 | A |
5297692 | Kronmiller | Mar 1994 | A |
5373959 | Haasewinkel | Dec 1994 | A |
5416952 | Dodge | May 1995 | A |
5572747 | Cheng | Nov 1996 | A |
5599050 | Tinsley | Feb 1997 | A |
5606779 | Lu | Mar 1997 | A |
5642555 | Lin | Jul 1997 | A |
5669122 | Benoit | Sep 1997 | A |
5738395 | Probst | Apr 1998 | A |
5745959 | Dodge | May 1998 | A |
5745963 | Graziano | May 1998 | A |
5772264 | Bettenhausen | Jun 1998 | A |
5779259 | Lin | Jul 1998 | A |
5832569 | Berg | Nov 1998 | A |
5852852 | Rigal | Dec 1998 | A |
5887318 | Nicoletti | Mar 1999 | A |
5909850 | Cavasin | Jun 1999 | A |
5920963 | Chou | Jul 1999 | A |
5927744 | Knapschafer | Jul 1999 | A |
6175994 | Nicoletti | Jan 2001 | B1 |
6290093 | Obriot | Sep 2001 | B1 |
6374464 | Lai | Apr 2002 | B1 |
6381810 | Hsieh | May 2002 | B2 |
6543096 | Settelmayer | Apr 2003 | B2 |
6554297 | Phillips | Apr 2003 | B2 |
6560825 | MacIejczyk | May 2003 | B2 |
6666485 | Moret | Dec 2003 | B1 |
6694644 | Haupt | Feb 2004 | B2 |
6748630 | Livingston | Jun 2004 | B2 |
6802550 | Griggs, Jr. | Oct 2004 | B1 |
6868587 | Rard | Mar 2005 | B2 |
6880717 | O'Conor | Apr 2005 | B1 |
6902080 | Busch | Jun 2005 | B2 |
6902081 | Walker | Jun 2005 | B2 |
7117569 | Bledsoe | Oct 2006 | B2 |
7334301 | Huang | Feb 2008 | B2 |
7343650 | Baldwin | Mar 2008 | B2 |
7506413 | Dingman | Mar 2009 | B2 |
7506902 | Sheng | Mar 2009 | B2 |
7712191 | Huang | May 2010 | B2 |
7877845 | Signori | Feb 2011 | B2 |
D634912 | Pouliot et al. | Mar 2011 | S |
8096065 | Marechal | Jan 2012 | B2 |
8327507 | Eisinger | Dec 2012 | B2 |
8459487 | Sharma | Jun 2013 | B2 |
8689364 | Rowland | Apr 2014 | B2 |
8763209 | Kavarsky | Jul 2014 | B2 |
8763210 | Vincent | Jul 2014 | B2 |
8763211 | Yu | Jul 2014 | B1 |
8869354 | Horimoto | Oct 2014 | B2 |
8935833 | Kaneko | Jan 2015 | B2 |
9010824 | Hayes | Apr 2015 | B2 |
9145244 | Nakajima | Sep 2015 | B2 |
9332798 | Gafforio | May 2016 | B2 |
9346429 | Sutherland | May 2016 | B2 |
9351539 | Briggs | May 2016 | B2 |
9376255 | Banik | Jun 2016 | B2 |
9856079 | Manssourian | Jan 2018 | B2 |
D809241 | Thayer | Feb 2018 | S |
20010022013 | Hsieh | Sep 2001 | A1 |
20020189056 | Gallina | Dec 2002 | A1 |
20030005556 | Gallina | Jan 2003 | A1 |
20030019080 | Anthony | Jan 2003 | A1 |
20030019081 | Livingston | Jan 2003 | A1 |
20040163216 | Simonson | Aug 2004 | A1 |
20070089945 | Martignago | Apr 2007 | A1 |
20070226958 | Clifton, Jr. | Oct 2007 | A1 |
20080010786 | Huang | Jan 2008 | A1 |
20080134480 | Shiue | Jun 2008 | A1 |
20080169289 | Dawn | Jul 2008 | A1 |
20090050627 | Shinault | Feb 2009 | A1 |
20090151508 | Signori | Jun 2009 | A1 |
20100102575 | Ferkovich et al. | Apr 2010 | A1 |
20100162539 | Rancon | Jul 2010 | A1 |
20110197406 | Couzyn | Aug 2011 | A1 |
20110209314 | Miller | Sep 2011 | A1 |
20120297591 | Bozzetto | Nov 2012 | A1 |
20140299602 | Manssourian | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
3028233 | Feb 1982 | DE |
Entry |
---|
U.S. Appl. No. 14/247,094, filed Apr. 7, 2014; File HIstory up to Feb. 14, 2017. |
Final Office Action and File History From Case U.S. Appl. No. 14/247,094, filed Aug. 10, 2017. |
Number | Date | Country | |
---|---|---|---|
20160257491 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
62127224 | Mar 2015 | US |