Retaining mechanisms for trocar assemblies

Information

  • Patent Grant
  • 11123101
  • Patent Number
    11,123,101
  • Date Filed
    Friday, July 5, 2019
    4 years ago
  • Date Issued
    Tuesday, September 21, 2021
    2 years ago
Abstract
An adapter assembly includes a sleeve, a trocar assembly releasably securable within the sleeve, and a retaining mechanism configured to releasably secure the trocar assembly within the sleeve. The retaining mechanism includes a retaining block, a cam wire moveably positioned relative to the retaining block between a lock position and a release position, a retaining block extension for maintaining the cam wire relative to the retaining block, a button member in operable engagement with the cam wire, and a pair of retaining members. The button member includes a center beam moveable from an unflexed position in engagement with a stop tab of the retaining block extension to prevent movement of the button member to a flexed position out of alignment with the stop tab to permit movement of the button member.
Description
FIELD

The disclosure relates to reusable adapter assemblies for surgical stapling devices. More particularly, the disclosure relates to retaining mechanisms for releasably securing removable trocar assemblies within reusable adapter assemblies.


BACKGROUND

Surgical devices for applying staples, clips, or other fasteners to tissue are well known. Typically, endoscopic stapling devices include an actuation unit, i.e., a handle assembly for actuating the device, a shaft for endoscopic access to a body cavity, and a tool assembly disposed at a distal end of the shaft. In certain of these devices, the shaft includes an adapter assembly having a proximal end securable to the handle assembly and a distal end securable to the tool assembly.


Circular stapling devices typically include a trocar assembly for supporting and positioning an attached anvil assembly in relation to a staple cartridge of the tool assembly. The trocar assembly may be releasably securable within the adapter assembly to permit cleaning, sterilizing, and reuse of the adapter assembly. It would be beneficial to have a retaining mechanism for releasably securing the trocar assembly to the adapter assembly.


SUMMARY

An adapter assembly for connecting a loading unit to a handle assembly includes an outer sleeve, a trocar assembly releasably securable within the outer sleeve, and a retaining mechanism configured to releasably secure the trocar assembly within the outer sleeve. The trocar assembly includes a trocar housing defining first and second openings. The retaining mechanism includes a retaining block, a cam wire moveably positioned relative to the retaining block between a lock position and a release position, a retaining block extension configured to maintain the cam wire relative to the retaining block, a button member in operable engagement with the cam wire, and a pair of retaining members moveable from a first position received within the first and second openings of the trocar assembly when the cam wire is in the lock position and a second position spaced from the trocar assembly when the cam wire is in the release position. The retaining block extension includes a stop tab. The button member includes a center beam moveable from an unflexed position in engagement with the stop tab of the retaining block extension to prevent movement of the button member to a flexed position out of alignment with the stop tab to permit movement of the button member.


In embodiments, the button member is pivotable relative to the retaining block from a non-depressed position when the center beam is in the unflexed position and a depressed position when the center beam is in the flexed position. Depression of the button member may cause the cam wire to move from the lock position to the release position.


The center beam may include a rib configured for operable engagement by a user. The button member may define a relief on either side of the center beam to permit movement of the center beam between the unflexed and flexed positions. The button member may define a midline. The stop member may be aligned with the midline. The center beam may be aligned with the midline when in the unflexed position and is misaligned with the midline when in the flexed position. The retaining block may define a central opening for receiving the trocar assembly. Each of the first and second retaining members may include a wedge-shaped free end.


Another adapter assembly for connecting a loading unit to a handle assembly includes an outer sleeve, a trocar assembly releasably securable within the outer sleeve, and a retaining mechanism configured to releasably secure the trocar assembly within the outer sleeve. The trocar assembly includes a trocar housing defining first and second openings. The retaining mechanism includes a retaining block, a cam wire moveably positioned relative to the retaining block between a lock position and a release position, an upper retaining block extension configured to maintain the cam wire relative to the retaining, a button member for moving the cam wire between the lock and release positions, a pair of retaining members moveable from a first position received within the first and second openings of the trocar assembly when the cam wire is in the lock position and a second position spaced from the trocar assembly when the cam wire is in the release position, a lower retaining block extension disposed opposite the upper retaining block extension, and a sliding button moveable between a first position in engagement with the cam wire to a second position spaced from the cam wire. Movement of the sliding button member relative to the lower retaining block permits movement of the cam wire from the lock position to the release position.


In embodiments, the cam wire includes first and second free ends and the sliding button member includes first and second stop members configured to engage the free ends of the cam wire to prevent movement of the cam wire to the release position. The sliding button member may be biased to the first position by a biasing member. The biasing member may be a coil spring. The sliding button member may be configured for operable engagement by a user. The button member may be pivotable relative to the upper retaining block extension.


The adapter assembly may include a collar assembly received about the outer sleeve. Movement of the collar assembly from a first position to a second positon moves the button member from the non-depressed position to the depressed position. The collar assembly may move proximally from the first position to the second position. Alternatively, the collar assembly is rotated about the outer sleeve when moved from the first position to the second position. The collar assembly may be biased to the first position by a coil spring. The outer sleeve may include a pin for engagement with the collar assembly to limit movement of the collar assembly.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and, together with a general description of the disclosure given above, and the detailed description of the embodiments given below, serve to explain the principles of the disclosure, wherein:



FIG. 1 is a perspective view of a surgical stapling device including an handle assembly and an adapter assembly according to an exemplary embodiment of the disclosure;



FIG. 2 is a perspective view of the adapter assembly shown in FIG. 1 with a removable trocar assembly extending from a distal portion of the adapter assembly;



FIG. 3 is a perspective view of the distal portion of the adapter assembly and the removable trocar assembly shown in FIG. 1, with the removable trocar removed from within the adapter assembly;



FIG. 4 is an exploded view of the indicated area of detail shown in FIG. 3;



FIG. 5 is a perspective view of the distal portion of the adapter assembly shown in FIG. 2, with an outer sleeve removed to expose a retaining mechanism;



FIG. 6 is a side perspective view of the retaining mechanism shown in FIG. 5, with components separated;



FIG. 7 is a cross-sectional end view the adapter assembly shown in FIG. 2 taken along line 7-7 shown in FIG. 3, with the retainer mechanism in a lock position;



FIG. 8 is a top view of a portion of the adapter assembly including a button member of the retainer mechanism shown in FIG. 5, with a center beam in a first or unflexed condition;



FIG. 9 is the top view shown in FIG. 8 with the center beam of the button member in a second of flexed condition;



FIG. 10 is the cross-sectional end view of the adapter assembly shown in FIG. 7, with the retainer mechanism in a release position;



FIG. 11 is a first perspective view of a distal portion of an adapter assembly according to another embodiment of the disclosure;



FIG. 12 is a second perspective view of the distal portion of the adapter assembly shown in FIG. 11;



FIG. 13 is a perspective view of the distal portion of the adapter assembly shown in FIG. 11, with an outer sleeve removed to expose a retaining mechanism;



FIG. 14 is a side perspective view of the retaining mechanism shown in FIG. 13, with components separated, and a cam wire, an upper retaining member, and a button member removed;



FIG. 15 is a perspective view of a lower retaining block extension of the retaining mechanism shown in FIG. 13;



FIG. 16 is a cross-sectional end view of the adapter assembly shown in FIG. 11 taken along line 16-16 of FIG. 11;



FIG. 17 is the perspective view of the distal portion of the adapter assembly shown in FIG. 13, with a sliding button member of the retaining mechanism shown in FIG. 13 in a proximal position;



FIG. 18 is a side view of the retaining mechanism shown in FIG. 17, with the sliding button member in the proximal position and the button member in a depressed condition;



FIG. 19 is a distal portion of an adapter assembly according to another exemplary embodiment of the disclosure including a collar assembly;



FIG. 20 is another perspective side view of a portion of the distal portion of the adapter assembly shown in FIG. 19;



FIG. 21 is a perspective side view of the collar assembly shown in FIG. 19;



FIG. 22 is a cross-sectional side view of the adapter assembly taken along line 22-22 of FIG. 19, with the collar assembly in a distal position;



FIG. 23 is the cross-sectional side view shown in FIG. 22, with the collar assembly in a proximal position;



FIG. 24 is a perspective side view of an adapter assembly according to yet another exemplary embodiment of the disclosure including a collar assembly and a biasing member for maintaining the collar assembly in a proximal position; and



FIG. 25 is a cross-sectional end view of an adapter assembly according to another exemplary embodiment of the disclosure including a collar assembly.





DETAILED DESCRIPTION

Embodiments of the disclosed adapter assembly including a retaining mechanism for securing a removable trocar assembly therein will now be described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. As is common in the art, the term “proximal” refers to that part or component closer to the user or operator, i.e. surgeon or clinician, while the term “distal” refers to that part or component further away from the user.


Referring initially to FIG. 1, an adapter assembly according to an embodiment of the disclosure, shown generally as adapter assembly 100, is a component of a surgical stapling device 10. The surgical stapling device 10 further includes a powered handle assembly 20 for actuating a loading unit 30, and an anvil assembly 40 supported relative to the loading unit 30. The loading unit 30 and the anvil assembly 40 form a tool assembly of the surgical stapling device 10. Although shown and described with reference to surgical stapling device 10, aspects of the disclosure may be modified for use with manual surgical stapling devices having various configurations, and with powered surgical stapling devices having alternative configurations. For a detailed description of exemplary surgical stapling devices, please refer to U.S. Pat. Nos. 9,023,014 and 9,055,943. With reference to FIG. 2, the adapter assembly 100 includes a proximal portion 102 configured for operable connection to the handle assembly 20 (FIG. 1) and a distal portion 104 configured for operable connection to the loading unit 30 (FIG. 1) and to the anvil assembly 40 (FIG. 1). Although shown and described as forming an integral unit, it is envisioned that the proximal and distal portions 102, 104 may be formed as separate units that are releasably securable to one another.


The adapter assembly 100 will only be described to the extent necessary to fully disclose the aspects of the disclosure. For a detailed description of an exemplary adapter assembly, please refer to U.S. Pat. No. 10,226,254 (“the '254 patent”).


With additional reference to FIGS. 3 and 4, the adapter assembly 100 includes an outer sleeve 106, and a connector housing 108 secured to a distal end of the outer sleeve 106. The connector housing 108 is configured to releasably secure a loading unit, e.g., the loading unit 30 (FIG. 1), to the adapter assembly 100. The outer sleeve 106 defines a flush port 105 (FIG. 3) and an opening 107 through which a button member 170 of a trocar retaining mechanism 130 is operably disposed. As will be described in further detail below, the outer sleeve 106 further includes an asymmetric cutout 107a (FIG. 4) in communication with the opening 107.


With additional reference to FIG. 5, the adapter assembly 100 further includes a trocar assembly 120 (FIG. 3), and a retaining mechanism 130 releasably securing the trocar assembly 120 relative to the outer sleeve 106 (FIG. 3) of the adapter assembly 100. The trocar assembly 120 will only be described to the extent necessary to fully describe the aspects of the disclosure. For a detailed description of the structure and function of an exemplary trocar assembly, please refer to the '254 patent. With particular reference to FIG. 3, the trocar assembly 120 of the adapter assembly 100 (FIG. 2) includes a trocar housing 122, a trocar member 124 slidably disposed within the trocar housing 122, and a drive screw 126 operably received within the trocar member 124 for axially moving the trocar member 124 relative to the trocar housing 122. The trocar housing 122 defines first and second locking openings 123a, 123b (FIG. 7) for receiving respective locking portions 182a, 182b of first and second retainer members 180a, 180b (FIG. 6) of a retaining mechanism 130 of the adapter assembly 100.


Turning briefly to FIG. 7, the retaining mechanism 130 of the adapter assembly 100 is disposed between first and second drive members 110a, 110b, 112a, 112b of respective inner and outer drive assemblies 110, 112. The first and second drive assemblies 110, 112 are operably connected to first and second drive shafts (not shown) in a proximal portion 102 of the adapter assembly 100 for effecting operation of a loading unit, e.g., the loading unit 30 (FIG. 1), to perform first and second functions. More particularly, the first and second drive members 110a, 110b, 112a, 112b of the respective first and second drive assemblies 110, 112 are configured for longitudinal movement within the distal portion 104 of the adapter assembly 100. In embodiments, advancement of the first drive assembly 110 effects tissue stapling, and advancement of the second drive assembly 112 effects tissue cutting.


The first and second drive assemblies 110, 112 will only be described to the extent necessary to fully disclose the aspects of the disclosure. For a detailed description of exemplary drive assemblies, please refer to the '254 patent. With reference now to FIGS. 5 and 6, the retaining mechanism 130 of the adapter assembly 100 includes a retaining block 140, a cam wire 150 (FIG. 6) supported by the retaining block 140, a retaining block extension 160 for maintaining the cam wire 150 relative to the retaining block 140, a button member 170 in operable engagement with the cam wire 150 and pivotally supported relative to the retaining block 140, and first and second retainer members 180a, 180b (FIG. 6) supported by the cam wire 150 within the retaining block 140.


With particular reference to FIG. 6, the retaining block 140 of the retaining mechanism 130 defines a central opening 141 for receiving the trocar assembly 120 (FIG. 3), first and second opposed cylindrical openings 143a, 143b in communication with the central opening 141 for receiving the respective first and second retainer members 180a, 180b, and a channel or slot 145 extending about a perimeter of the retaining block 140 and through the first and second cylindrical openings 143a, 143b in the retaining block 140 for receiving the cam wire 150. The first and second retainer members 180a, 180b of the retaining mechanism 130 are supported within the first and second cylindrical openings 143a, 143b of the retaining block 140 by the cam wire 150 and are configured to be received within first and second locking openings 123a, 123b of the trocar housing 122 of the trocar assembly 120 when the trocar assembly 120 is fully received within the distal portion 104 (FIG. 2) of the adapter assembly 100.


The cam wire 150 of the retaining mechanism 130 includes a substantially U-shaped member having a backspan 152, and first and second legs 154a, 154b extending from the backspan 152. The backspan 152 includes a button engagement portion 152a and a pair of shoulders portions 152b on either side of the button engagement portion 152a. Each of the first and second legs 154a, 154b includes an opposed angled section 156a, 156b. The cam wire 150 is received within the channel 145 of the retaining block 140. As will be described in further detail below, the cam wire 150 is moveable between a first or lock position (FIG. 8) when the button member 170 is in an initial or non-depressed position, and a second or release position when the button member 170 is depressed.


With continued reference to FIG. 6, the retaining block extension 160 includes a substantially rectangular frame 162 defining an opening 161 and a pair semi-cylindrical recesses 163. First and second pivot portions 174 (only one shown) of the button member 170 are pivotally supported within the semi-cylindrical recesses 163 in the frame 162 and a body portion 172 of the button member is disposed within the opening 161 in the frame 162. The frame 162 includes a pair of stop surfaces 162a (FIG. 7) for engaging the shoulder portions 152b of the backspan 152 of the cam wire 150, and a stop member, e.g., a stop tab 164, along a midline “m” of the frame 162 for inhibiting depression of the button member 170.


The button member 170 of the retaining mechanism 130 of the adapter assembly 100 (FIG. 2) includes the body portion 172 configured for operable engagement by a user, and the pair of pivot portions 174 configured for reception within the pair of semi-cylindrical recesses 163 of the retaining block extension 160. The button member 170 is configured to engage the engagement portion 152a of the backspan 152 of the cam wire 150. In embodiments, the backspan 152 of the cam wire 150 is secured to the button member 170. For example, and as shown, the body portion 172 of the button member 170 defines a cavity 171 (FIG. 7A) in with the engagement portion 152a of the back span 152 is retained through friction fit. Alternatively, the backspan 152 is secured within the cavity 171 with mechanical fasteners, bonding, welding, adhesives, or in any other suitable manner. The retaining mechanism 130 may include a biasing member, e.g., leaf springs 178 (FIG. 6) for biasing the cam wire 150 outwardly to the first position, and/or the button member 170 outwardly to the non-depressed position (FIG. 7).


The button member 170 of the trocar retaining mechanism 130 further includes a center beam 176, and defines a relief 175 on either side of the center beam 176. The center beam 176 includes a rib 176a, or is otherwise configured for engagement by a user. The center beam 176 and reliefs 175 are configured such that the center beam 176 may be flexed away from a midline “M” of the button member 170. More particularly, the center beam 176 of the button member 170 is configured to align with the stop tab 164 of the retaining block extension 160 when the center beam 176 is in an initial or unflexed condition. In this manner, the center beam 176 of the button member 170 prevents the button member 170 from being depressed. As will be described in further detail below, flexing of the center beam 176 away from the midline “M” of the button member 170 moves the center beam 176 out of alignment with the stop tab 164 of the retaining block extension 160, thereby permitting depression of the button member 170. The reliefs 175 in the button member 170 may also facilitate flushing and cleaning of the adapter assembly 100 (FIG. 2)


The first and second retaining members 180a, 180b of the retaining mechanism 130 form substantially cylindrical bodies 182a, 182b and are supported on the angled portions 156a, 156b of the respective first and second legs 154a, 154b of the cam wire 150. In embodiments, the first and second retaining members 180a, 180b form a wedge-shaped configuration to be received within wedge-shaped first and second locking openings 123a, 123b in the trocar housing 122 of the trocar assembly 120. The first and second retaining members 180a, 180b may include an inclined inner surface (not shown) to facilitate receipt of the trocar assembly 120 through the retaining block 140.


The first and second retaining members 180a, 180b each define a stepped opening 181a, 181b through which the respective angled portion 156a, 156b of the cam wire 150 is received. The cam wire 150 and the stepped openings 181a, 181b of the respective first and second retaining members 180a, 180b are configured such that when the cam wire 150 is in the first position, the first and second retaining members 180a, 180b extend from within the retaining block 140 into the central passage 141. In this manner, when a trocar assembly 120 is fully seated within the distal portion 104 (FIG. 2) of the adapter assembly 100, the first and second retaining members 180a, 180b are received within the respective first and second locking openings 123a, 123b (FIG. 7) of the trocar housing 122 of the trocar assembly 120. Conversely, when the cam wire 150 is in the second or release position, the first and second retainer members 180a, 180b are retracted from within the central opening 141 of the retaining block 140 to permit insertion and/or removal of the trocar assembly 120 from the distal portion 104 of the adapter assembly 100.


With reference now to FIGS. 7 and 8, the retaining mechanism 130 of the adapter assembly 100 is shown in a first or lock configuration, with the trocar assembly 120 securely received within the distal portion 104 of the adapter assembly 100. In the lock configuration, the cam wire 150 of the retaining mechanism 130, which is secured to the button member 170, is biased to the first position by the leaf springs 178 (FIG. 6). In the first position, the shoulder portions 152b of the backspan 152 of the cam wire 150 engage the stop surface 162a of the retaining block extension 160. As noted above, when the cam wire 150 is in the first position and the trocar assembly 120 is fully seated within the distal portion 104 (FIG. 2) of the adapter assembly 100, the first and second retainer members 180a, 180b are received within the respective first and second locking openings 123a, 123b in the trocar housing 122 of the trocar assembly 120.


The center beam 176 of the button member 170 of the retaining mechanism 130 is shown in the first or unflexed position. In the unflexed position, the center beam 176 aligns with the midline “M” of the button member 170. When aligned with the midline “M”, the center beam 176 engages the stop tab 164 of the retaining block extension 160 which is also aligned with the midline “M” of the button member 170, thereby preventing the button member 170 from being depressed.


Turning to FIG. 9, following use of the adapter assembly 100, or to otherwise remove the trocar assembly 120 from the distal portion 104 of the adapter assembly 100, the rib 176a of the center beam 176 of the button member 170 of the retaining mechanism 130 is moved off-center, or away from the midline “M” of the button member 170, to the flexed position, as indicated by arrow “A”, to move the center beam 176 of the button member 170 out of alignment with the stop tab 164 of the retaining block extension 160. As noted above, when the center beam 176 of the button member 170 is misaligned with the stop tab 164 of the retaining block extension 160, the stop tab 164 no longer obstructs or inhibits the button member 170 from being depressed.


With reference to FIG. 10, with the center beam 176 of the button member 170 is in the flexed position, the button member 170 is able to be depressed, as indicated by arrows “B”. Depression of the button member 170 causes the cam wire 150 to move from its first position (FIG. 7) to its second position, as indicated by arrows “C”. As the cam wire 150 moves to the second position, engagement of the angled portions 156a, 156b of the first and second legs 154a, 154b, respectively, with the respective first and second retainer members 180a, 180b cause the first and second retainer members 180a, 180b to move radially outward, as indicated by arrows “D”. Radial outward movement of the first and second retaining members 180a, 180b withdraws the first and second retaining members 180a, 180b from within the respective first and second locking openings 123a, 123b of the trocar housing 122 of the trocar assembly 120 to permit removal of the trocar assembly 120 from within the distal portion 104 of the adapter assembly 100 (FIG. 2).



FIGS. 11-18 illustrate another embodiment of a retaining mechanism according to the disclosure shown generally as retaining mechanism 230 (FIG. 13). The retaining mechanism 230 is substantially similar to the retaining mechanism 130 described hereinabove and will only be described in detail with regards to the differences therebetween. The retaining mechanism 230 releasably secures a trocar assembly 220 within a distal portion 204 of an adapter assembly 200. The trocar assembly 220 includes a trocar housing 222 (FIG. 16) defining first and second locking openings 223a, 223b for receiving retaining members 280a, 280b (FIG. 16), respectively, of the retaining mechanism 230.


With particular reference to FIGS. 13 and 14, the retaining mechanism 230 of the access assembly 200 includes a retaining block 240 (FIG. 13), a cam wire 250 (FIG. 16) moveably positioned relative to the retaining block 240, an upper retaining block extension 260 securing the cam wire 250 relative to the retaining block 240, a button member 270 pivotally supported by the upper retaining block 260 and in operable engagement with the cam wire 250, first and second retaining members 280a, 280b in operable engagement with the cam wire 250 and moveably disposed within the retaining block 230, a lower retaining block extension 290 disposed opposite the upper retaining block 260 in engagement with the retaining block 240, and a sliding button member 296 slidably supported on the lower retaining block extension 290.


The retaining block 240, cam wire 250, and first and second retaining members 280a, 280b of the retaining mechanism 230 of the access assembly 200 are substantially similar to the retaining block 140, cam wire 150, and first and second retaining members 180a, 180b described above. The upper retaining block extension 260 and the button member 270 are also substantially similar to the retaining block extension 160 and the button member 170. The button member 270 of the retaining mechanism 230 is accessible through a first opening 207 (FIG. 11) in an outer sleeve 206 of the adapter assembly 200. The sliding button member 296 is accessible through a second opening 207b (FIG. 12) in the outer sleeve 206.



FIGS. 14 and 15 illustrate the lower retaining block extension 290 of the retaining mechanism 230 which includes a substantially rectangular frame 292 defining an opening 291 for receiving the sliding button member 296. A pair of cutouts 293 in the frame 292 support a pair of stop members 298a of the sliding button member 296. The lower retaining block extension 290 is received within the outer sleeve 206 (FIG. 16) of the adapter assembly in engagement with the retaining block 240 and opposite the upper retaining block extension 260.


The sliding button member 296 of the retaining mechanism 290 includes a body portion 298 configured for operable engagement by a user, and the pair of stop members 298a extending outwardly from the body portion 298. The stop members 298a ride within the cutouts 293 of the lower retaining block extension 290. The sliding button member 296 is moveable between a first or distal position (FIG. 13) in which the stop members 298a of the sliding button member 296 are aligned with free ends 258a, 258b (FIG. 16) of legs 254a, 254b, respectively, of the cam wire 250 and a second or proximal position (FIG. 17) in which the stop members 298a are spaced from the free ends 258a, 258b of the legs 254a, 254b, respectively, of the cam wire 250.


A cylindrical recess 297 (FIG. 15) in an end of the sliding button member 296 of the retaining assembly 230 is configured to receive a biasing member, e.g., a coil spring 299 (FIG. 14) for biasing the sliding button member 296 in a first direction, e.g., distally, as shown, to the distal position. The sliding button member 296 is accessible through the second opening 207b (FIG. 12) in the outer sleeve 206 of the adapter assembly 200.



FIG. 16 illustrates the retaining mechanism 230 in a first or lock position with the cam wire 250 in a first position and the sliding button member 296 in the distal position. The sliding button member 296 is maintained in the distal position by the coil spring 299. As described above, when the sliding button member 296 of the retaining mechanism 230 is in the proximal position, the stop members 298a of the sliding button member 298 are aligned with the free ends 258a, 258b of the legs 254a, 254b, respectively, of the cam wire 250 to prevent movement of the cam wire 250 to the second position.



FIGS. 17 and 18 illustrate the method for removal of the trocar assembly 230 from the adaptor assembly 200. When the trocar assembly 230 is removed from the distal portion 204 of the adapter assembly 200, the sliding button member 296 is moved proximally, against the bias of the coil spring 299, as indicated by arrows “E”. Proximal movement of the sliding button member 296 moves the stop members 298a of the sliding button member 296 out of engagement with the free ends 258a, 258b (FIG. 16) of the legs 254a, 254b, respectively, of the cam wire 250. With the stop members 298a of the sliding button member 296 no longer preventing movement of the cam wire 250 to the second position, the button member 270 may be depressed, as indicated by arrow “F” to cause the cam wire 250 to move to the second position, as indicated by arrows “G”. As discussed in detail above with respect to retaining mechanism 130, as the cam wire 250 moves to the second position, the retaining members 280a, 280b (FIG. 16) move radially outward from within first and second locking openings 223a, 223b of a trocar housing 232 of the trocar assembly 230 to release the trocar assembly 230 from within the distal portion 204 of the adapter assembly 200, and permit removal of the trocar assembly 230 from within the adapter assembly 200.



FIGS. 19-25 illustrate a release mechanism according to another exemplary embodiment of the disclosure. The release mechanism is shown generally as collar assembly 390. The collar assembly 390 is configured to depress a button member 370 of a trocar retaining mechanism 320. More particularly, collar assembly 390 includes an annular member 392 receivable about a distal portion 304 of an adapter assembly 300. The annular member 392 includes a cam lug 394 extending from an inner surface of the annular member 392 and having an inclined surface 394. The cam lug 394 is configured to engage and depress the button member 370 during proximal movement of the collar assembly 390 relative to the outer sleeve 306 of the adapter assembly 300.


The annular member 392 defines a pair of flush ports 391 (FIG. 21), and a slot 393 for receiving a pin 307 extending from an outer sleeve 306 of the adapter assembly 300. The flush ports 391 align with a flush port 305 on the outer sleeve 306 of the adapter assembly 300. The pin 307 limits travel of the collar assembly 390 relative to the adapter assembly 300.


With particular reference to FIG. 22, the collar assembly 390 is shown in a first or distal position. In the distal position, the cam lug 394 is spaced from the button member 370. In this manner, the button member 370 is in a first or undepressed position. When the collar assembly 390 is in the distal position, the annular member 392 covers the button member 370 to prevent accidental depression of the button member 370. In embodiments, the collar assembly 390 may be maintained in the distal position by a biasing member, e.g., coil spring 399 (FIG. 24), received about the outer sleeve 306 of the adapter assembly 300 proximal of the collar assembly 390. It is envisioned that the collar assembly 390 may be biased distally using a pneumatic cylinder, or in any other suitable manner.



FIG. 23 illustrates the collar assembly 390 as it is moved proximally as indicated by arrows “H”. When the collar assembly 390 is moved proximally, as indicated by arrows “H”, the inclined surface 394a of the cam lug 394 of the collar assembly 390 engages the button member 370, causing the button member 370 to be depressed, as indicated by arrow “I”. As the button member 370 is depressed, the cam wire 350 is moved to a second position to cause the release of trocar assembly 320 as described above with reference to retaining mechanism 130 and trocar assembly 120. As noted above, the pin 307 (FIG. 24) extending from the outer sleeve 306 of the adapter assembly 300 limits travel of the collar assembly 390.


With reference to FIG. 25, in an alternative embodiment, a collar assembly 490 is configured to be rotated relative to the outer sleeve 406 of the adapter assembly 400 to effect depression of a button member 470 of the retaining assembly 430. The collar assembly 490 includes an annular member 492 and a cam lug 494 extending from an inner surface of the annular member 492. The cam lug 494 is configured to engage the button member 470 and defines a slot 493 for receiving a pin 407. The pin 407 extends from the outer sleeve 406 for limiting movement of the collar assembly 490.


During use, the collar assembly 490 is rotated about the outer sleeve 406 of the adapter assembly 400, as indicated by arrow “J”. When the cam lug 496 of the collar assembly 490 engages the button member 496, the button member 496 is depressed, causing a wire cam 450 to move to a second or release position, thereby unlocking a trocar assembly 420 received within the adapter assembly 400.


Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments. It is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the disclosure. As well, one skilled in the art will appreciate further features and advantages of the disclosure based on the above-described embodiments. Accordingly, the disclosure is not to be limited by what has been particularly shown and described.

Claims
  • 1. An adapter assembly for connecting a loading unit to a handle assembly, the adapter assembly comprising: an outer sleeve;a trocar assembly releasably securable within the outer sleeve, the trocar assembly including a trocar housing defining first and second openings; anda retaining mechanism configured to releasably secure the trocar assembly within the outer sleeve, the retaining mechanism including a retaining block, a cam wire moveably positioned relative to the retaining block between a lock position and a release position, a retaining block extension configured to maintain the cam wire relative to the retaining block, a button member in operable engagement with the cam wire, and a pair of retaining members moveable from a first position received within the first and second openings of the trocar assembly when the cam wire is in the lock position and a second position spaced from the trocar assembly when the cam wire is in the release position, the retaining block extension including a stop tab, wherein the button member includes a center beam moveable from an unflexed position in engagement with the stop tab of the retaining block extension to prevent movement of the button member to a flexed position out of alignment with the stop tab to permit movement of the button member.
  • 2. The adapter assembly of claim 1, wherein the button member is pivotable relative to the retaining block from a non-depressed position when the center beam is in the unflexed position and a depressed position when the center beam is in the flexed position.
  • 3. The adapter assembly of claim 2, wherein depression of the button member causes the cam wire to move from the lock position to the release position.
  • 4. The adapter assembly of claim 2, wherein the center beam includes a rib configured for operable engagement by a user.
  • 5. The adapter assembly of claim 2, wherein the button member defines a relief on either side of the center beam to permit movement of the center beam between the unflexed and flexed positions.
  • 6. The adapter assembly of claim 2, wherein the button member defines a midline, the stop tab being aligned with the midline.
  • 7. The adapter assembly of claim 6, wherein the center beam is aligned with the midline when in the unflexed position and is misaligned with the midline when in the flexed position.
  • 8. The adapter assembly of claim 1, wherein the retaining block defines a central opening for receiving the trocar assembly.
  • 9. The adapter assembly of claim 1, wherein each retaining member of the pair of retaining members include a wedge-shaped free end.
  • 10. The adapter assembly of claim 1, wherein the retaining block defines a central opening for receiving the trocar assembly.
  • 11. An adapter assembly for connecting a loading unit to a handle assembly, the adapter assembly comprising: an outer sleeve; anda retaining mechanism configured to releasably secure a trocar assembly within the outer sleeve, the retaining mechanism including a retaining block defining a longitudinal passage for receipt of the trocar assembly, a cam wire moveably positioned relative to the retaining block between a lock position and a release position, a retaining block extension configured to maintain the cam wire relative to the retaining block, a button member in operable engagement with the cam wire, and at least one retaining member moveable from a first position extending into the longitudinal passage when the cam wire is in the lock position and a second position clear of the longitudinal passage when the cam wire is in the release position, the retaining block extension including a stop member, wherein the button member includes a flexible portion moveable from an unflexed position in engagement with the stop member of the retaining block extension to prevent movement of the button member to a flexed position out of alignment with the stop member to permit movement of the button member.
  • 12. The adapter assembly of claim 11, wherein the button member is pivotable relative to the retaining block from a non-depressed position when the flexible portion is in the unflexed position to a depressed position when the center beam is in the flexed position.
  • 13. The adapter assembly of claim 12, wherein depression of the button member causes the cam wire to move from the lock position to the release position.
  • 14. The adapter assembly of claim 12, wherein the flexible portion includes a rib configured for operable engagement by a user.
  • 15. The adapter assembly of claim 12, wherein the button member defines a relief on either side of the flexible portion to permit movement of the flexible portion between the unflexed and flexed positions.
  • 16. The adapter assembly of claim 12, wherein the button member defines a midline, the stop member being aligned with the midline.
  • 17. The adapter assembly of claim 16, wherein the flexible portion is aligned with the midline when in the unflexed position and the flexible portion is misaligned with the midline when in the flexed position.
  • 18. The adapter assembly of claim 11, wherein the retaining block defines a central opening for receiving the trocar assembly.
  • 19. The adapter assembly of claim 11, wherein each retaining member of the pair of retaining members include a wedge-shaped free end.
  • 20. An adapter assembly for connecting a loading unit to a handle assembly, the adapter assembly comprising: an outer sleeve; anda retaining mechanism configured to releasably secure a trocar assembly within the outer sleeve, the retaining mechanism including a retaining block, a cam wire moveably positioned relative to the retaining block between a lock position and a release position, a retaining block extension configured to maintain the cam wire relative to the retaining block, a button member in operable engagement with the cam wire, and a pair of retaining members moveable from a first position engageable with the trocar assembly when the trocar assembly is received within the outer sleeve and the cam wire is in the lock position, and a second position spaced from the trocar assembly when the trocar assembly is received within the sleeve and the cam wire is in the release position, the retaining block extension including a stop member, wherein the button member includes a center beam moveable from an unflexed position in engagement with the stop member of the retaining block extension to prevent movement of the button member to a flexed position out of alignment with the stop member to permit movement of the button member.
US Referenced Citations (857)
Number Name Date Kind
2777340 Hettwer et al. Jan 1957 A
2957353 Babacz Oct 1960 A
3111328 Di Rito et al. Nov 1963 A
3193165 Akhalaya et al. Jul 1965 A
3388847 Kasulin et al. Jun 1968 A
3552626 Astafiev et al. Jan 1971 A
3638652 Kelley Feb 1972 A
3695058 Keith, Jr. Oct 1972 A
3734515 Dudek May 1973 A
3759336 Marcovitz et al. Sep 1973 A
3771526 Rudie Nov 1973 A
4162399 Hudson Jul 1979 A
4198982 Fortner et al. Apr 1980 A
4207898 Becht Jun 1980 A
4289133 Rothfuss Sep 1981 A
4304236 Conta et al. Dec 1981 A
4319576 Rothfuss Mar 1982 A
4350160 Kolesov et al. Sep 1982 A
4351466 Noiles Sep 1982 A
4379457 Gravener et al. Apr 1983 A
4473077 Noiles et al. Sep 1984 A
4476863 Kanshin et al. Oct 1984 A
4485817 Swiggett Dec 1984 A
4488523 Shichman Dec 1984 A
4505272 Utyamyshev et al. Mar 1985 A
4505414 Filipi Mar 1985 A
4520817 Green Jun 1985 A
4550870 Krumme et al. Nov 1985 A
4573468 Conta et al. Mar 1986 A
4576167 Noiles Mar 1986 A
4592354 Rothfuss Jun 1986 A
4603693 Conta et al. Aug 1986 A
4606343 Conta et al. Aug 1986 A
4632290 Green et al. Dec 1986 A
4646745 Noiles Mar 1987 A
4665917 Clanton et al. May 1987 A
4667673 Li May 1987 A
4671445 Barker et al. Jun 1987 A
4700703 Resnick et al. Oct 1987 A
4703887 Clanton et al. Nov 1987 A
4705038 Sjostrom et al. Nov 1987 A
4708141 Inoue et al. Nov 1987 A
4717063 Ebihara Jan 1988 A
4722685 de Estrada et al. Feb 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4776506 Green Oct 1988 A
4817847 Redtenbacher et al. Apr 1989 A
4823807 Russell et al. Apr 1989 A
4873977 Avant et al. Oct 1989 A
4874181 Hsu Oct 1989 A
4893662 Gervasi Jan 1990 A
4903697 Resnick et al. Feb 1990 A
4907591 Vasconcellos et al. Mar 1990 A
4917114 Green et al. Apr 1990 A
4957499 Lipatov et al. Sep 1990 A
4962877 Hervas Oct 1990 A
5005749 Aranyi Apr 1991 A
5042707 Taheri Aug 1991 A
5047039 Avant et al. Sep 1991 A
5104025 Main et al. Apr 1992 A
5119983 Green et al. Jun 1992 A
5122156 Granger et al. Jun 1992 A
5129118 Walmesley Jul 1992 A
5129570 Schulze et al. Jul 1992 A
5139513 Segato Aug 1992 A
5152744 Krause et al. Oct 1992 A
5158222 Green et al. Oct 1992 A
5188638 Tzakis Feb 1993 A
5193731 Aranyi Mar 1993 A
5197648 Gingold Mar 1993 A
5197649 Bessler et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5221036 Takase Jun 1993 A
5222963 Brinkerhoff et al. Jun 1993 A
5253793 Green et al. Oct 1993 A
5261920 Main et al. Nov 1993 A
5271543 Grant et al. Dec 1993 A
5271544 Fox et al. Dec 1993 A
5275322 Brinkerhoff et al. Jan 1994 A
5282810 Allen et al. Feb 1994 A
5285944 Green et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5292053 Bilotti et al. Mar 1994 A
5301061 Nakada et al. Apr 1994 A
5309927 Welch May 1994 A
5312023 Green et al. May 1994 A
5312024 Grant et al. May 1994 A
5314435 Green et al. May 1994 A
5314436 Wilk May 1994 A
5326013 Green et al. Jul 1994 A
5330486 Wilk Jul 1994 A
5333773 Main et al. Aug 1994 A
5344059 Green et al. Sep 1994 A
5346115 Perouse et al. Sep 1994 A
5348259 Blanco et al. Sep 1994 A
5350104 Main et al. Sep 1994 A
5350355 Sklar Sep 1994 A
5355897 Pietrafitta et al. Oct 1994 A
5360154 Green Nov 1994 A
5368215 Green et al. Nov 1994 A
5383874 Jackson et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5392979 Green et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5395033 Byrne et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5403333 Kaster et al. Apr 1995 A
5404870 Brinkerhoff et al. Apr 1995 A
5411508 Bessler et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5425738 Gustafson et al. Jun 1995 A
5427087 Ito et al. Jun 1995 A
5433721 Hooven et al. Jul 1995 A
5437684 Calabrese et al. Aug 1995 A
5439156 Grant et al. Aug 1995 A
5443198 Viola et al. Aug 1995 A
5447514 Gerry et al. Sep 1995 A
5454825 Van Leeuwen et al. Oct 1995 A
5464415 Chen Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5470006 Rodak Nov 1995 A
5474223 Viola et al. Dec 1995 A
5476379 Disel Dec 1995 A
5487499 Sorrentino et al. Jan 1996 A
5497934 Brady et al. Mar 1996 A
5503635 Sauer et al. Apr 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5522534 Viola et al. Jun 1996 A
5526822 Burbank et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
5533661 Main et al. Jul 1996 A
5535934 Boiarski et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5562239 Boiarski et al. Oct 1996 A
5588579 Schnut et al. Dec 1996 A
5609285 Grant et al. Mar 1997 A
5626587 Bishop et al. May 1997 A
5626591 Kockerling et al. May 1997 A
5632432 Schulze et al. May 1997 A
5632433 Grant et al. May 1997 A
5639008 Gallagher et al. Jun 1997 A
5641111 Ahrens et al. Jun 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5653374 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5662662 Bishop et al. Sep 1997 A
5667517 Hooven Sep 1997 A
5669918 Balazs et al. Sep 1997 A
5685474 Seeber Nov 1997 A
5693042 Boiarski et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5709335 Heck Jan 1998 A
5713505 Huitema Feb 1998 A
5715987 Kelley et al. Feb 1998 A
5718360 Green et al. Feb 1998 A
5720755 Dakov Feb 1998 A
5732872 Bolduc et al. Mar 1998 A
5749896 Cook May 1998 A
5758814 Gallagher et al. Jun 1998 A
5762603 Thompson Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5792573 Pitzen et al. Aug 1998 A
5797536 Smith et al. Aug 1998 A
5799857 Robertson et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5820009 Melling et al. Oct 1998 A
5833698 Hinchliffe et al. Nov 1998 A
5836503 Ehrenfels et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5855312 Toledano Jan 1999 A
5860581 Robertson et al. Jan 1999 A
5863159 Lasko Jan 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5881943 Heck Mar 1999 A
5908427 McKean et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5947363 Bolduc et al. Sep 1999 A
5951576 Wakabayashi Sep 1999 A
5954259 Viola et al. Sep 1999 A
5957363 Heck Sep 1999 A
5964774 McKean et al. Oct 1999 A
5993454 Longo Nov 1999 A
5993468 Rygaard Nov 1999 A
6010054 Johnson et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6024748 Manzo et al. Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6050472 Shibata Apr 2000 A
6053390 Green et al. Apr 2000 A
6068636 Chen May 2000 A
6083241 Longo et al. Jul 2000 A
6090123 Culp et al. Jul 2000 A
6102271 Longo et al. Aug 2000 A
6117148 Ravo et al. Sep 2000 A
6119913 Adams et al. Sep 2000 A
6126058 Adams et al. Oct 2000 A
6126651 Mayer Oct 2000 A
6129547 Cise et al. Oct 2000 A
6142933 Longo et al. Nov 2000 A
6149667 Hovland et al. Nov 2000 A
6176413 Heck et al. Jan 2001 B1
6179195 Adams et al. Jan 2001 B1
6193129 Bittner et al. Feb 2001 B1
6203553 Robertson et al. Mar 2001 B1
6209773 Bolduc et al. Apr 2001 B1
6239732 Cusey May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6241140 Adams et al. Jun 2001 B1
6253984 Heck et al. Jul 2001 B1
6258107 Balazs et al. Jul 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6269997 Balazs et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6279809 Nicolo Aug 2001 B1
6302311 Adams et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6321855 Barnes Nov 2001 B1
6329778 Culp et al. Dec 2001 B1
6338737 Toledano Jan 2002 B1
6343731 Adams et al. Feb 2002 B1
6348061 Whitman Feb 2002 B1
6368324 Dinger Apr 2002 B1
6371909 Hoeg et al. Apr 2002 B1
6387105 Gifford, III et al. May 2002 B1
6398795 McAlister et al. Jun 2002 B1
6402008 Lucas Jun 2002 B1
6434507 Clayton et al. Aug 2002 B1
6439446 Perry et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6450390 Heck et al. Sep 2002 B2
6461372 Jensen et al. Oct 2002 B1
6478210 Adams et al. Nov 2002 B2
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6494877 Odell et al. Dec 2002 B2
6503259 Huxel et al. Jan 2003 B2
6517566 Hovland et al. Feb 2003 B1
6520398 Nicolo Feb 2003 B2
6533157 Whitman Mar 2003 B1
6537280 Dinger et al. Mar 2003 B2
6551334 Blatter et al. Apr 2003 B2
6578751 Hartwick Jun 2003 B2
6585144 Adams et al. Jul 2003 B2
6588643 Bolduc et al. Jul 2003 B2
6592596 Geitz Jul 2003 B1
6601749 Sullivan et al. Aug 2003 B2
6605078 Adams Aug 2003 B2
6605098 Nobis et al. Aug 2003 B2
6610066 Dinger et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6626921 Blatter et al. Sep 2003 B2
6629630 Adams Oct 2003 B2
6631837 Heck Oct 2003 B1
6632227 Adams Oct 2003 B2
6632237 Ben-David et al. Oct 2003 B2
6645218 Cassidy et al. Nov 2003 B1
6652542 Blatter et al. Nov 2003 B2
6654999 Stoddard et al. Dec 2003 B2
6659327 Heck et al. Dec 2003 B2
6676671 Robertson et al. Jan 2004 B2
6681979 Whitman Jan 2004 B2
6685079 Sharma et al. Feb 2004 B2
6695198 Adams et al. Feb 2004 B2
6695199 Whitman Feb 2004 B2
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6716222 McAlister et al. Apr 2004 B2
6716233 Whitman Apr 2004 B1
6726697 Nicholas et al. Apr 2004 B2
6742692 Hartwick Jun 2004 B2
6743244 Blatter et al. Jun 2004 B2
6763993 Bolduc et al. Jul 2004 B2
6769590 Vresh et al. Aug 2004 B2
6769594 Orban, III Aug 2004 B2
6783533 Green et al. Aug 2004 B2
6792390 Burnside et al. Sep 2004 B1
6793652 Whitman et al. Sep 2004 B1
6817508 Racenet et al. Nov 2004 B1
6820791 Adams Nov 2004 B2
6821282 Perry et al. Nov 2004 B2
6827246 Sullivan et al. Dec 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6840423 Adams et al. Jan 2005 B2
6843403 Whitman Jan 2005 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6852122 Rush Feb 2005 B2
6860892 Tanaka et al. Mar 2005 B1
6866178 Adams et al. Mar 2005 B2
6872214 Sonnenschein et al. Mar 2005 B2
6874669 Adams et al. Apr 2005 B2
6884250 Monassevitch et al. Apr 2005 B2
6899538 Matoba May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6905504 Vargas Jun 2005 B1
6938814 Sharma et al. Sep 2005 B2
6942675 Vargas Sep 2005 B1
6945444 Gresham et al. Sep 2005 B2
6953138 Dworak et al. Oct 2005 B1
6957758 Aranyi Oct 2005 B2
6959851 Heinrich Nov 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6981979 Nicolo Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
RE39152 Aust et al. Jun 2006 E
7055731 Shelton, IV et al. Jun 2006 B2
7059331 Adams et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7059510 Orban, III Jun 2006 B2
7077856 Whitman Jul 2006 B2
7080769 Vresh et al. Jul 2006 B2
7086267 Dworak et al. Aug 2006 B2
7111769 Wales et al. Sep 2006 B2
7114642 Whitman Oct 2006 B2
7118528 Piskun Oct 2006 B1
7122029 Koop et al. Oct 2006 B2
7122044 Bolduc et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7140528 Shelton, IV Nov 2006 B2
7141049 Stern et al. Nov 2006 B2
7141055 Abrams et al. Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7168604 Milliman et al. Jan 2007 B2
7172104 Scirica et al. Feb 2007 B2
7179267 Nolan et al. Feb 2007 B2
7182239 Myers Feb 2007 B1
7195142 Orban, III Mar 2007 B2
7207168 Doepker et al. Apr 2007 B2
7220237 Gannoe et al. May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7234624 Gresham et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
7238021 Johnson Jul 2007 B1
7246734 Shelton, IV Jul 2007 B2
7252660 Kunz Aug 2007 B2
RE39841 Bilotti et al. Sep 2007 E
7285125 Viola Oct 2007 B2
7303106 Milliman et al. Dec 2007 B2
7303107 Milliman et al. Dec 2007 B2
7309341 Ortiz et al. Dec 2007 B2
7322994 Nicholas et al. Jan 2008 B2
7325713 Aranyi Feb 2008 B2
7328828 Ortiz et al. Feb 2008 B2
7334718 McAlister et al. Feb 2008 B2
7335212 Edoga et al. Feb 2008 B2
7364060 Milliman Apr 2008 B2
7364061 Swayze et al. Apr 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7398908 Holsten et al. Jul 2008 B2
7399305 Csiky et al. Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7401722 Hur Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7407075 Holsten et al. Aug 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7410086 Ortiz et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7422137 Manzo Sep 2008 B2
7422138 Bilotti et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7431191 Milliman Oct 2008 B2
7438718 Milliman et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7455676 Holsten et al. Nov 2008 B2
7455682 Viola Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7481347 Roy Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7494038 Milliman Feb 2009 B2
7506791 Omaits et al. Mar 2009 B2
7516877 Aranyi Apr 2009 B2
7527185 Harari et al. May 2009 B2
7537602 Whitman May 2009 B2
7546939 Adams et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7547312 Bauman et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7556186 Milliman Jul 2009 B2
7559451 Sharma et al. Jul 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7585306 Abbott et al. Sep 2009 B2
7588174 Holsten et al. Sep 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7600663 Green Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7635385 Milliman et al. Dec 2009 B2
7637409 Marczyk Dec 2009 B2
7641093 Doll et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7686201 Csiky Mar 2010 B2
7694864 Okada Apr 2010 B2
7699204 Viola Apr 2010 B2
7699835 Lee et al. Apr 2010 B2
7708181 Cole et al. May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7721932 Cole et al. May 2010 B2
7726539 Holsten et al. Jun 2010 B2
7738971 Swayze Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7743958 Orban, III Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7758613 Whitman Jul 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7770776 Chen et al. Aug 2010 B2
7771440 Ortiz et al. Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7793812 Moore et al. Sep 2010 B2
7793813 Bettuchi Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7822458 Webster, III et al. Oct 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837080 Schwemberger Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7845534 Viola et al. Dec 2010 B2
7845536 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7845538 Whitman Dec 2010 B2
7857185 Swayze Dec 2010 B2
7857187 Milliman Dec 2010 B2
7870989 Viola et al. Jan 2011 B2
7886951 Hessler Feb 2011 B2
7896215 Adams et al. Mar 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7900806 Chen et al. Mar 2011 B2
7905897 Whitman et al. Mar 2011 B2
7909039 Hur Mar 2011 B2
7909219 Cole et al. Mar 2011 B2
7909222 Cole et al. Mar 2011 B2
7909223 Cole et al. Mar 2011 B2
7913892 Cole et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7918377 Measamer et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922062 Cole et al. Apr 2011 B2
7922719 Ralph et al. Apr 2011 B2
7922743 Heinrich et al. Apr 2011 B2
7931183 Orban, III Apr 2011 B2
7938307 Bettuchi May 2011 B2
7942302 Roby et al. May 2011 B2
7947034 Whitman May 2011 B2
7951071 Whitman et al. May 2011 B2
7951166 Orban, III et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7967181 Viola et al. Jun 2011 B2
7975895 Milliman Jul 2011 B2
7992758 Whitman et al. Aug 2011 B2
8002795 Beetel Aug 2011 B2
8006701 Bilotti et al. Aug 2011 B2
8006889 Adams et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8011554 Milliman Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Colson et al. Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8016858 Whitman Sep 2011 B2
8020741 Cole et al. Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8028885 Smith et al. Oct 2011 B2
8038046 Smith et al. Oct 2011 B2
8043207 Adams Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
8066169 Viola Nov 2011 B2
8070035 Holsten et al. Dec 2011 B2
8070037 Csiky Dec 2011 B2
8096458 Hessler Jan 2012 B2
8109426 Milliman et al. Feb 2012 B2
8109427 Orban, III Feb 2012 B2
8113406 Holsten et al. Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8114118 Knodel et al. Feb 2012 B2
8123103 Milliman Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8128645 Sonnenschein et al. Mar 2012 B2
8132703 Milliman et al. Mar 2012 B2
8132705 Viola et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8146790 Milliman Apr 2012 B2
8146791 Bettuchi et al. Apr 2012 B2
8152516 Harvey et al. Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8181838 Milliman et al. May 2012 B2
8182494 Yencho et al. May 2012 B1
8186555 Shelton, IV et al. May 2012 B2
8186587 Zmood et al. May 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8201720 Hessler Jun 2012 B2
8203782 Brueck et al. Jun 2012 B2
8211130 Viola Jul 2012 B2
8220367 Hsu Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225981 Criscuolo et al. Jul 2012 B2
8231041 Marczyk et al. Jul 2012 B2
8231042 Hessler et al. Jul 2012 B2
8235273 Olson et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8267301 Milliman et al. Sep 2012 B2
8272552 Holsten et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8276802 Kostrzewski Oct 2012 B2
8281975 Criscuolo et al. Oct 2012 B2
8286845 Perry et al. Oct 2012 B2
8292150 Bryant Oct 2012 B2
8292888 Whitman Oct 2012 B2
8308045 Bettuchi et al. Nov 2012 B2
8312885 Bettuchi et al. Nov 2012 B2
8313014 Bettuchi Nov 2012 B2
8317073 Milliman et al. Nov 2012 B2
8317074 Ortiz et al. Nov 2012 B2
8322590 Patel et al. Dec 2012 B2
8328060 Jankowski et al. Dec 2012 B2
8328062 Viola Dec 2012 B2
8328063 Milliman et al. Dec 2012 B2
8342379 Whitman et al. Jan 2013 B2
8343185 Milliman et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8348855 Hillely et al. Jan 2013 B2
8353438 Baxter, III et al. Jan 2013 B2
8353439 Baxter, III et al. Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8353930 Heinrich et al. Jan 2013 B2
8357144 Whitman et al. Jan 2013 B2
8360295 Milliman et al. Jan 2013 B2
8365633 Simaan et al. Feb 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8365974 Milliman Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8372057 Cude et al. Feb 2013 B2
8391957 Carlson et al. Mar 2013 B2
8403926 Nobis et al. Mar 2013 B2
8403942 Milliman et al. Mar 2013 B2
8408441 Wenchell et al. Apr 2013 B2
8413870 Pastorelli et al. Apr 2013 B2
8413872 Patel Apr 2013 B2
8418904 Wenchell et al. Apr 2013 B2
8418905 Milliman Apr 2013 B2
8418909 Kostrzewski Apr 2013 B2
8424535 Hessler et al. Apr 2013 B2
8424739 Racenet et al. Apr 2013 B2
8424741 McGuckin, Jr. et al. Apr 2013 B2
8430291 Heinrich et al. Apr 2013 B2
8430292 Patel et al. Apr 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8453911 Milliman et al. Jun 2013 B2
8454585 Whitman Jun 2013 B2
8485414 Criscuolo et al. Jul 2013 B2
8490853 Criscuolo et al. Jul 2013 B2
8505802 Viola et al. Aug 2013 B2
8511533 Viola et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8523043 Ullrich et al. Sep 2013 B2
8551076 Duval et al. Oct 2013 B2
8551138 Orban, III et al. Oct 2013 B2
8561871 Rajappa et al. Oct 2013 B2
8561874 Scirica Oct 2013 B2
8567655 Nalagatla et al. Oct 2013 B2
8579178 Holsten et al. Nov 2013 B2
8590763 Milliman Nov 2013 B2
8590764 Hartwick et al. Nov 2013 B2
8602287 Yates et al. Dec 2013 B2
8608047 Holsten et al. Dec 2013 B2
8616428 Milliman et al. Dec 2013 B2
8616429 Viola Dec 2013 B2
8622275 Baxter, III et al. Jan 2014 B2
8623000 Humayun et al. Jan 2014 B2
8627995 Smith et al. Jan 2014 B2
8631993 Kostrzewski Jan 2014 B2
8632463 Drinan et al. Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8640940 Ohdaira Feb 2014 B2
8647258 Aranyi et al. Feb 2014 B2
8652121 Quick et al. Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8662370 Takei Mar 2014 B2
8663258 Bettuchi et al. Mar 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8672931 Goldboss et al. Mar 2014 B2
8678264 Racenet et al. Mar 2014 B2
8684248 Milliman Apr 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8684251 Rebuffat et al. Apr 2014 B2
8684252 Patel et al. Apr 2014 B2
8696552 Whitman Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8715306 Faller et al. May 2014 B2
8733611 Milliman May 2014 B2
8758391 Swayze et al. Jun 2014 B2
8806973 Ross et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8851355 Aranyi et al. Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8888762 Whitman Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8905289 Patel et al. Dec 2014 B2
8919630 Milliman Dec 2014 B2
8931680 Milliman Jan 2015 B2
8950646 Viola Feb 2015 B2
8960519 Whitman et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
9016545 Aranyi et al. Apr 2015 B2
9023014 Chowaniec et al. May 2015 B2
9033868 Whitman et al. May 2015 B2
9055943 Zemlok et al. Jun 2015 B2
9072515 Hall et al. Jul 2015 B2
9113847 Whitman et al. Aug 2015 B2
9113875 Viola et al. Aug 2015 B2
9113876 Zemlok et al. Aug 2015 B2
9113899 Garrison et al. Aug 2015 B2
20010031975 Whitman et al. Oct 2001 A1
20030038938 Jung et al. Feb 2003 A1
20030111507 Nunez Jun 2003 A1
20040111012 Whitman Jun 2004 A1
20040133189 Sakurai Jul 2004 A1
20040153124 Whitman Aug 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20040193146 Lee et al. Sep 2004 A1
20050051597 Toledano Mar 2005 A1
20050107813 Gilete Garcia May 2005 A1
20050125027 Knodel et al. Jun 2005 A1
20050131442 Yachia et al. Jun 2005 A1
20060000869 Fontayne Jan 2006 A1
20060011698 Okada et al. Jan 2006 A1
20060142656 Malackowski et al. Jun 2006 A1
20060142744 Boutoussov Jun 2006 A1
20060201989 Ojeda Sep 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060278680 Viola et al. Dec 2006 A1
20060284730 Schmid et al. Dec 2006 A1
20070023477 Whitman et al. Feb 2007 A1
20070027473 Vresh et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070060952 Roby et al. Mar 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070152014 Gillum et al. Jul 2007 A1
20070175947 Ortiz et al. Aug 2007 A1
20070175949 Shelton et al. Aug 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070270784 Smith et al. Nov 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080058801 Taylor et al. Mar 2008 A1
20080109012 Falco et al. May 2008 A1
20080110958 McKenna et al. May 2008 A1
20080147089 Loh et al. Jun 2008 A1
20080185419 Smith et al. Aug 2008 A1
20080188841 Tomasello et al. Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080208195 Shores et al. Aug 2008 A1
20080251561 Eades et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255607 Zemlok Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20090012533 Barbagli et al. Jan 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090138006 Bales et al. May 2009 A1
20090171147 Lee et al. Jul 2009 A1
20090182193 Whitman et al. Jul 2009 A1
20090209990 Yates et al. Aug 2009 A1
20090236392 Cole et al. Sep 2009 A1
20090236398 Cole et al. Sep 2009 A1
20090236401 Cole et al. Sep 2009 A1
20090254094 Knapp et al. Oct 2009 A1
20090299141 Downey et al. Dec 2009 A1
20100019016 Edoga et al. Jan 2010 A1
20100023022 Zeiner et al. Jan 2010 A1
20100051668 Milliman et al. Mar 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100084453 Hu Apr 2010 A1
20100147923 D'Agostino et al. Jun 2010 A1
20100163598 Belzer Jul 2010 A1
20100224668 Fontayne et al. Sep 2010 A1
20100225073 Porter et al. Sep 2010 A1
20100230465 Smith et al. Sep 2010 A1
20100258611 Smith et al. Oct 2010 A1
20100264195 Bettuchi Oct 2010 A1
20100327041 Milliman et al. Dec 2010 A1
20110011916 Levine Jan 2011 A1
20110077673 Grubac et al. Mar 2011 A1
20110114697 Baxter, III et al. May 2011 A1
20110114700 Baxter, III et al. May 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110139851 McCuen Jun 2011 A1
20110144640 Heinrich et al. Jun 2011 A1
20110147432 Heinrich et al. Jun 2011 A1
20110155783 Rajappa et al. Jun 2011 A1
20110174099 Ross et al. Jul 2011 A1
20110184245 Xia et al. Jul 2011 A1
20110192882 Hess et al. Aug 2011 A1
20110204119 McCuen Aug 2011 A1
20110218522 Whitman Sep 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110295242 Spivey et al. Dec 2011 A1
20110295269 Swensgard et al. Dec 2011 A1
20120000962 Racenet et al. Jan 2012 A1
20120089131 Zemlok et al. Apr 2012 A1
20120143002 Aranyi et al. Jun 2012 A1
20120145755 Kahn Jun 2012 A1
20120172924 Allen, IV Jul 2012 A1
20120193395 Pastorelli et al. Aug 2012 A1
20120193398 Williams et al. Aug 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120232339 Csiky Sep 2012 A1
20120253329 Zemlok et al. Oct 2012 A1
20120273548 Ma et al. Nov 2012 A1
20120310220 Malkowski et al. Dec 2012 A1
20120323226 Chowaniec et al. Dec 2012 A1
20120325888 Qiao et al. Dec 2012 A1
20130015232 Smith et al. Jan 2013 A1
20130018361 Bryant Jan 2013 A1
20130020372 Jankowski et al. Jan 2013 A1
20130020373 Smith et al. Jan 2013 A1
20130032628 Li et al. Feb 2013 A1
20130056516 Viola Mar 2013 A1
20130060258 Giacomantonio Mar 2013 A1
20130105544 Mozdzierz et al. May 2013 A1
20130105546 Milliman et al. May 2013 A1
20130105551 Zingman May 2013 A1
20130126580 Smith et al. May 2013 A1
20130153630 Miller et al. Jun 2013 A1
20130153631 Vasudevan et al. Jun 2013 A1
20130153633 Casasanta, Jr. et al. Jun 2013 A1
20130153634 Carter et al. Jun 2013 A1
20130153638 Carter et al. Jun 2013 A1
20130153639 Hodgkinson et al. Jun 2013 A1
20130175315 Milliman Jul 2013 A1
20130175318 Felder et al. Jul 2013 A1
20130175319 Felder et al. Jul 2013 A1
20130175320 Mandakolathur Vasudevan et al. Jul 2013 A1
20130181035 Milliman Jul 2013 A1
20130181036 Olson et al. Jul 2013 A1
20130186930 Wenchell et al. Jul 2013 A1
20130193185 Patel Aug 2013 A1
20130193187 Milliman Aug 2013 A1
20130193190 Carter et al. Aug 2013 A1
20130193191 Stevenson et al. Aug 2013 A1
20130193192 Casasanta, Jr. et al. Aug 2013 A1
20130200131 Racenet et al. Aug 2013 A1
20130206816 Penna Aug 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130214027 Hessler et al. Aug 2013 A1
20130214028 Patel et al. Aug 2013 A1
20130228609 Kostrzewski Sep 2013 A1
20130240597 Milliman et al. Sep 2013 A1
20130240600 Bettuchi Sep 2013 A1
20130248581 Smith et al. Sep 2013 A1
20130274722 Kostrzewski et al. Oct 2013 A1
20130277411 Hodgkinson et al. Oct 2013 A1
20130277412 Gresham et al. Oct 2013 A1
20130282052 Aranyi et al. Oct 2013 A1
20130284792 Ma Oct 2013 A1
20130292449 Bettuchi et al. Nov 2013 A1
20130292451 Viola et al. Nov 2013 A1
20130299553 Mozdzierz Nov 2013 A1
20130299554 Mozdzierz Nov 2013 A1
20130306701 Olson Nov 2013 A1
20130306707 Viola et al. Nov 2013 A1
20130313304 Shelton, IV et al. Nov 2013 A1
20130317486 Nicholas et al. Nov 2013 A1
20130319706 Nicholas et al. Dec 2013 A1
20130324978 Nicholas et al. Dec 2013 A1
20130324979 Nicholas et al. Dec 2013 A1
20130334281 Williams Dec 2013 A1
20140008413 Williams Jan 2014 A1
20140012236 Williams et al. Jan 2014 A1
20140012237 Pribanic et al. Jan 2014 A1
20140012289 Snow et al. Jan 2014 A1
20140012317 Orban et al. Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140110455 Ingmanson et al. Apr 2014 A1
20140166728 Swayze et al. Jun 2014 A1
20140207125 Applegate et al. Jul 2014 A1
20140207182 Zergiebel et al. Jul 2014 A1
20140207185 Goble et al. Jul 2014 A1
20140236173 Scirica et al. Aug 2014 A1
20140236174 Williams et al. Aug 2014 A1
20140276932 Williams et al. Sep 2014 A1
20140299647 Scirica et al. Oct 2014 A1
20140303668 Nicholas et al. Oct 2014 A1
20140358129 Zergiebel et al. Dec 2014 A1
20140361068 Aranyi et al. Dec 2014 A1
20140365235 DeBoer et al. Dec 2014 A1
20140373652 Zergiebel et al. Dec 2014 A1
20150014392 Williams et al. Jan 2015 A1
20150048144 Whitman Feb 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150080912 Sapre Mar 2015 A1
20150112381 Richard Apr 2015 A1
20150122870 Zemlok et al. May 2015 A1
20150133224 Whitman et al. May 2015 A1
20150133957 Kostrzewski May 2015 A1
20150150547 Ingmanson et al. Jun 2015 A1
20150150574 Richard et al. Jun 2015 A1
20150157320 Zergiebel et al. Jun 2015 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150164502 Richard et al. Jun 2015 A1
20150201931 Zergiebel et al. Jul 2015 A1
20160361057 Williams Dec 2016 A1
Foreign Referenced Citations (42)
Number Date Country
908529 Aug 1972 CA
2451558 Jan 2003 CA
2824590 Apr 2014 CA
102247182 Nov 2011 CN
1057729 May 1959 DE
3301713 Jul 1984 DE
102008053842 May 2010 DE
0152382 Aug 1985 EP
0173451 Mar 1986 EP
0282157 Mar 1986 EP
0190022 Aug 1986 EP
0503689 Sep 1992 EP
0705571 Apr 1996 EP
1354560 Oct 2003 EP
1769754 Apr 2007 EP
2055243 May 2009 EP
2316345 May 2011 EP
2333509 Jun 2011 EP
2524656 Nov 2012 EP
2524658 Nov 2012 EP
3078335 Oct 2016 EP
3146905 Mar 2017 EP
3412226 Dec 2018 EP
2333509 Feb 2010 ES
1136020 May 1957 FR
1461464 Feb 1966 FR
1588250 Apr 1970 FR
2443239 Jul 1980 FR
1185292 Mar 1970 GB
2016991 Sep 1979 GB
2070499 Sep 1981 GB
08038488 Feb 1996 JP
2005125075 May 2005 JP
7711347 Apr 1979 NL
1509052 Sep 1989 SU
8706448 Nov 1987 WO
8900406 Jan 1989 WO
9006085 Jun 1990 WO
0154594 Aug 2001 WO
2008107918 Sep 2008 WO
2011108840 Sep 2011 WO
2012040984 Apr 2012 WO
Non-Patent Literature Citations (2)
Entry
European Search Report dated Nov. 27, 2020, issued in corresponding EP Appln. No. 20183904, 12 pages.
European Search Report dated Mar. 1, 2021, corresponding to counterpart European Application No. 20183904.0; 11 pages.
Related Publications (1)
Number Date Country
20210000500 A1 Jan 2021 US