Retention anchor with suture tie down for surgical access devices

Information

  • Patent Grant
  • 11786233
  • Patent Number
    11,786,233
  • Date Filed
    Friday, March 27, 2020
    4 years ago
  • Date Issued
    Tuesday, October 17, 2023
    a year ago
Abstract
A surgical access assembly includes a cannula including an elongated shaft and a retention anchor movably positionable along the elongated shaft. The retention anchor includes an annular body and a fixation body. The annular body includes a proximally-facing surface, a distally-facing surface, an inner side surface defining an opening therethrough, and an outer side surface. The fixation body includes a disc secured to the distally-facing surface of the annular body and wings extending radially outwardly from the disc beyond the outer side surface of the annular body. The disc defines an opening therethrough and the elongated shaft extends through the openings in the annular body and the fixation body.
Description
FIELD

The present disclosure relates generally to surgical access devices. In particular, the present disclosure relates to retention anchors with a suture tie down for fixing surgical access devices in tissue.


BACKGROUND

In minimally invasive surgical procedures, including endoscopic and laparoscopic surgeries, a surgical access device permits the introduction of a variety of surgical instruments into a body cavity or opening. A surgical access device (e.g., a cannula or an access port) is introduced through an opening in tissue (e.g., a naturally occurring orifice or an incision) to provide access to an underlying surgical site in the body. The opening is typically made using an obturator having a blunt or sharp tip that may be inserted through a passageway of the surgical access device. For example, a cannula has a tube of rigid material with a thin wall construction, through which an obturator may be passed. The obturator is utilized to penetrate a body wall, such as an abdominal wall, or to introduce the surgical access device through the body wall, and is then removed to permit introduction of surgical instruments through the surgical access device to perform the surgical procedure.


Minimally invasive surgical procedures, including both endoscopic and laparoscopic procedures, permit surgery to be performed on organs, tissues, and vessels far removed from an opening within the tissue. In laparoscopic procedures, the abdominal cavity is insufflated with an insufflation gas, e.g., CO2, to create a pneumoperitoneum thereby providing access to the underlying organs. A laparoscopic instrument is introduced through a cannula into the abdominal cavity to perform one or more surgical tasks. The cannula may incorporate a seal to establish a substantially fluid tight seal about the laparoscopic instrument to preserve the integrity of the pneumoperitoneum. The cannula, which is subjected to the pressurized environment, e.g., the pneumoperitoneum, may include an anchor mechanism to prevent the cannula from backing out of the opening in the abdominal wall, for example, during withdrawal of the laparoscopic instrument from the cannula. The cannula may also include a retention mechanism to prevent the cannula for being over-inserted into the abdominal wall, for example, during insertion of the laparoscopic instrument into the cannula.


SUMMARY

This disclosure generally relates to a retention anchor for securing a surgical access device within tissue. The retention anchor provides a counter force during insertion and/or articulation of surgical instruments through the surgical access device. In aspects in which the surgical access device includes an anchor mechanism, the retention anchor is utilized in conjunction with the anchor mechanism to limit longitudinal movement of the surgical access device relative to the tissue (e.g., retropulsion and over-insertion) during, for example, receipt, manipulation, and/or withdrawal of surgical instruments therethrough.


The retention anchor includes an annular body, a fixation body, and optionally, a compressible collar. The annular body provides a holding force on a surgical access device, the fixation body secures the retention anchor to the tissue through which the surgical access device is disposed, and the compressible collar assists with sealing the opening into the tissue and minimizing port site trauma.


In one aspect, the disclosure provides a surgical access assembly including a cannula having an elongated shaft and a retention anchor movably positioned along the elongated shaft. The retention anchor includes an annular body and a fixation body. The annular body includes a proximally-facing surface, a distally-facing surface, an inner side surface defining an opening therethrough, and an outer side surface. The fixation body includes a disc secured to the distally-facing surface of the annular body and wings extending radially outwardly from the disc beyond the outer side surface of the annular body. The disc defines an opening therethrough and the elongated shaft extends through the openings in the annular body and the fixation body.


The inner side surface of the annular body may frictionally engage the elongated shaft of the cannula. The inner side surface may include ridges.


Each wing of the fixation body may include a notch defined in a proximal facing surface thereof and/or a flange disposed at a terminal end thereof. A distal surface of the fixation body may be planar.


The retention anchor may further include a compressible collar secured to a distal surface of the fixation body. The compressible collar may have an expanded configuration and a compressed configuration. The compressible collar may extend radially outwardly of the first annular body and be concentric therewith. Each wing of the fixation body may include a notch defined in a proximal facing surface thereof, and the compressible collar may be disposed radially inwardly of the notches.


In another aspect, the disclosure provides a retention anchor for a surgical access device including an annular body and a fixation body. The annular body includes a proximally-facing surface, a distally-facing surface, an inner side surface defining an opening therethrough, and an outer side surface. The fixation body includes a disc secured to the distally-facing surface of the annular body and wings extending radially outwardly from the disc beyond the outer side surface of the annular body. The disc defines an opening therethrough and the elongated shaft extends through the openings in the annular body and the fixation body.


The details of one or more aspects of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the techniques described in this disclosure will be apparent from the description and drawings, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a surgical access assembly including a cannula and a retention anchor in accordance with an aspect of the disclosure;



FIG. 2 is cross-sectional view of the surgical access assembly of FIG. 1, taken along section line 2-2 of FIG. 1;



FIG. 3 is a perspective view of the retention anchor of FIG. 1;



FIG. 4 is a side view of the retention anchor of FIG. 3;



FIG. 5 is a perspective view of the retention anchor of FIG. 1, further including a compressible collar;



FIG. 6 is a side view of the retention anchor of FIG. 5; and



FIG. 7 is a side view of the surgical access assembly of FIG. 1, including the retention anchor of FIG. 5, shown secured to tissue.





DETAILED DESCRIPTION

Aspects of the disclosure are described hereinbelow with reference to the accompanying drawings; however, it is to be understood that the disclosed aspects are merely exemplary of the disclosure and may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the disclosure in virtually any appropriately detailed structure.


Like reference numerals refer to similar or identical elements throughout the description of the figures. Throughout this description, the term “proximal” refers to a portion of a structure, or component thereof, that is closer to a user, and the term “distal” refers to a portion of the structure, or component thereof, that is farther from the user.



FIG. 1 illustrates a surgical access assembly 1 including a surgical access device or cannula 10 and a retention anchor 20. The cannula 10 generally includes an elongated shaft 12 supporting an instrument housing 14 on a proximal or first end portion 12a thereof and an expandable anchor 16 (e.g., an inflatable anchor, such as a balloon, or a contractable anchor, such as a collapsible flange) on a distal or second end portion 12b thereof. The expandable anchor 16 secures the cannula 10 against an inner surface of tissue, such as an abdominal wall (see e.g., FIG. 7).


The retention anchor 20 is supported on the elongated shaft 12 of the cannula 10. The retention anchor 20 is releasably engageable with the elongated shaft 12, and slidable therealong to adjust the position of the retention anchor 20 on the elongated shaft 12. The retention anchor 20 secures the cannula 10 against an outer surface of the tissue (see e.g., FIG. 7) and stabilizes the cannula 10 relative to the tissue.


Generally, the cannula 10 is employed during surgery (e.g., laparoscopic surgery) to access a surgical site and may, in various aspects, provide for the sealed access of surgical instruments into an insufflated body cavity, such as an abdominal cavity. The instrument housing 14 of the cannula 10 may include an insufflation port 15 that provides insufflation fluid (e.g., gases) into the body cavity, seals and/or valves (not shown) that allows surgical instrument to be inserted into the body cavity while preventing the escape of the insufflation fluid therefrom, and an anchor inflation port 17 which is in fluid communication with the expandable anchor 16 to expand and/or contract the expandable anchor 16.


The cannula 10 is usable with an obturator (not shown). The obturator generally includes an elongated body supporting a tip on a distal end thereof. The tip can have a bladed or non-bladed (e.g., blunt) penetrating distal end that can be used to incise or separate tissue of a body wall so that the cannula 10 can be introduced therethrough. The cannula 10 and the obturator may be capable of being selectively connected together. For example, the obturator may be inserted into and through the cannula 10 until a handle housing of the obturator engages, e.g., selectively locks into, the instrument housing 14 of the cannula 10. In this initial position, the cannula 10 and the obturator, which together form a trocar assembly, are employed to tunnel through a body wall, e.g., an abdominal wall, either by making a new passage through the body wall or by passing through an existing opening through the body wall. Once the trocar assembly has tunneled through the body wall, the obturator is removed, leaving the cannula 10 in place, e.g., in an incision created by the trocar assembly.


For a detailed description of the structure and function of exemplary surgical access devices suitable for use with a retention anchor of the present disclosure, reference may be made to U.S. Pat. Nos. 7,691,089; 8,926,508; and 10,299,778, the entire contents of each of which are hereby incorporated by reference herein.


Turning now to FIGS. 2-4, the retention anchor 20 includes an annular body 22 having a first or proximally-facing surface 24, a second or distally-facing surface 26, an outer side surface 28, and an inner side surface 30. The outer and inner side surfaces 28, 30 extend between and interconnect the first and second surfaces 24, 26. The inner side surface 30 defines an opening 23 extending longitudinally through the annular body 22 that is sized and shaped to accommodate the elongated shaft 12 of the cannula 10 in a friction fit manner.


The inner side surface 30 of the annular body 22 includes ridges 32 to enhance the grip of the annular body 22 about the elongated shaft 12 of the cannula 10 and to limit movement of the retention anchor 20 relative to the cannula 10. It should be understood that in addition or as an alternative to the ridges 32, the inner side surface 30 of the annular body 22 may include protrusions, bumps, projections, or other textured finishes to aid in frictionally retaining the retention anchor 20 on the elongated shaft 12 of the cannula 10 while allowing movement of the annular body 22 relative to the elongated shaft 12.


The retention anchor 20 includes a fixation body 34 affixed to the annular body 22 (e.g., by overmolding, solvent bonding, using adhesives, etc). The fixation body 34 includes a disc 36 and wings 38 extending outwardly from the disc 36 and terminating at flanges 40. A distal surface 34a of the fixation body 34, which is defined by portions of the disc 36, the wings 38, and the flanges 40, is planar for positioning against tissue.


The disc 36 is secured to the second surface 26 of the annular body 22 (e.g., using mechanical attachment features, such as tabs or pins, chemical attachment features, such as adhesives, or attachment methods, such as welding or overmolding). It is envisioned that the disc 36 may be disposed within the annular body 22 (e.g., the annular body 22 may be molded around disc 36).


The disc 36 includes an opening 37 defined therethrough that is aligned with the opening 23 of the annular body 22 to accommodate passage of the elongated shaft 12 of the cannula 10 therethrough. The disc 36 has an outer terminal edge 36a that is disposed radially inwardly of the outer side surface 28 of the annular body 22 such that a diameter “D1” of the annular body 22 is greater than a diameter “D2” of the disc 36. It should be understood that the outer terminal edge 36a of the disc 36 may be coincident with the outer side surface 28 of the annular body 22, or may extend radially outwardly of the outer side surface 28. The disc 36 is thin compared to the annular body 22 and has a thickness “T2” that is less than a thickness “T1” of the annular body 22. The disc 36 is of sufficient thickness “T2” to support the wings 38.


The wings 38 extend from opposed sides of the disc 36. While two wings 38 are shown, it is envisioned that the fixation body 34 may include more than two wings 38 (e.g., three wings or four wings or more) disposed radially around the disc 36 in substantially equally spaced relation relative to each other. Each wing 38 has a proximal facing surface 38a including a notch 39 defined therein. The notches 39 are sized and shaped to accommodate sutures 2 (FIG. 7) therein. While a single notch 39 is shown in each wing 38, it is envisioned that each wing 38 may include a plurality of notches 39 (e.g., two notches or three notches or more) to accommodate, e.g., more than one suture and/or various suture sizes.


Each flange 40 extends proximally and laterally from the respective wing 38. The flanges 40 are sized and shaped (e.g., dome or semi-circular in shape) to retain the sutures 2 (FIG. 7) on the respective wing 38, for example, should the sutures 2 become disengaged from the notches 39. In some aspects, the wings 38 may not include the notches 39, and the sutures 2 are retained on the wings 38 via the flanges 40.


Turning now to FIGS. 5 and 6, the retention anchor 20 further includes a compressible collar 42 affixed to the distal surface 34a of the fixation body 34. The compressible collar 42 may be secured to the fixation body 34 using fixation features such as those described above with regard to securing the disc 36 of the fixation body 34 to the annular body 22. The compressible collar 42 is capable of undergoing a change in shape between a first, expanded configuration, as shown in FIGS. 5 and 6, and a second, compressed configuration, as shown in FIG. 7.


The compressible collar 42 includes an opening (not explicitly shown) defined therethrough that is aligned with the openings 23, 37 (FIG. 2) of the annular body 22 and the fixation body 24 for reception and passage of the elongated shaft 12 of the cannula 10 therethrough. The compressible collar 42 includes an outer side surface 42a that is aligned with or disposed radially inwardly of the notches 39 defined in the wings 38 of the fixation body 34. A diameter “D3” of the compressible collar 42 is greater than the diameter “D1” of the annular body 22 and the compressible collar 42 is concentric with the annular body 22 such that the compressible collar 42 extends radially outwardly of the annular body 22. It is envisioned that the diameter “D3” of the compressible collar 42 may be the same as or less than the diameter “D1” of the annular body 22. A thickness “T3” of the compressible collar 42 is greater than the thickness “T1” of the annular body 22 when the compressible collar 42 is in the expanded configuration (FIG. 5), and the thickness “T3” is smaller or substantially the same as the thickness “T1” when the compressible collar 42 is in the compressed configuration (FIG. 7).


The annular body 22 is formed from a flexible material, such as a rubber or other suitable polymer (e.g., elastomers). The substrate 34 is formed from a material more rigid than the annular body 22, such as a plastic. The compressible collar 42 is formed from a compressible material, such as a foam, cotton or other suitable textile.



FIG. 7 illustrates the surgical access assembly 1 disposed within tissue “T,” e.g., an abdominal wall. The retention anchor 20 is secured to the cannula 10 prior to introducing the cannula 10 into the tissue “T” (e.g., the retention anchor 20 may be pre-installed on the cannula 10 during manufacture or may be placed on the cannula 10 prior to use in the operating room). The elongated shaft 12 of the cannula 10 is received through the tissue “T” (e.g., by utilizing an obturator (not shown) to facilitate entry of the cannula 10 through the tissue “T”), and the expandable anchor 16 is inflated within a body cavity “C” to prevent the cannula 10 from being withdrawn through the tissue “T.”


The retention anchor 20 is slid distally along the elongated shaft 12 of the cannula 10 until the retention anchor 20 abuts or presses on the tissue “T.” Specifically, as the retention anchor 20 is slid distally, the compressible collar 42, disposed in the expanded configuration (FIG. 5), contacts the tissue “T” and is compressed to the compressed configuration. Alternatively, in aspects where the retention anchor 20 does not include the compressible collar 42 (see e.g., FIG. 3), the retention anchor 20 is slid distally until the fixation body 34 contacts the tissue “T.”


Sutures 2 which may be placed at the port site for closing the tissue “T” or as stay sutures, are passed around the wings 38 of the fixation body 34 and through the notches 39 of the wings 38. The tissue “T” is thus sandwiched between the expandable anchor 16 and the retention anchor 20, and secured to the retention anchor 20, to prevent the cannula 10 from being withdrawn from or over-inserted into the tissue “T.” In this manner, the surgical access assembly 1 is secured to the tissue “T” and longitudinal movement of the cannula 10 relative to the tissue “T” is prevented or minimized throughout insertion, withdrawal, and/or manipulation of a surgical instrument “S” or a specimen through the cannula 10.


Following the surgical procedure, the expandable anchor 16 is deflated and the sutures 2 are cut to permit the withdrawal of the cannula 10 from the tissue “T.” After the sutures 2 are disengaged from the retention anchor 20, the sutures 2 are removed or are used to close the tissue “T.” The retention anchor 20 may remain secured to and disposed about the elongated shaft 12 of the cannula 10 during withdrawal of the cannula 10, or may be moved (e.g., slid proximally along the elongated shaft 12).


It should be understood that the surgical access assembly 1 is suitable for use in a variety of surgical procedures. For example, while the surgical access assembly 1 is shown with the expandable anchor 16 positioned within a body cavity “C” (e.g., within a peritoneum), the surgical access assembly 1 may be utilized in other ways, such as between layers of tissue “T” (e.g., extraperitoneally, such as in hernia procedures). In such procedures, the expandable anchor 16 is positioned between layers of the tissue “T” to dissect or separate the tissue “T,” and the retention anchor 20 maintains the longitudinal position of the cannula 10 even if the cannula 10 is disposed at an angle with respect to the most proximal layer of the tissue “T” (e.g., not necessarily perpendicular to the tissue “T”).


While aspects of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. It is to be understood, therefore, that the disclosure is not limited to the precise aspects described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of the disclosure. Therefore, the above description should not be construed as limiting, but merely as exemplifications of aspects of the disclosure. Thus, the scope of the disclosure should be determined by the appended claims and their legal equivalents, rather than by the examples given

Claims
  • 1. A surgical access assembly comprising: a cannula including an elongated shaft; anda retention anchor movably positionable along the elongated shaft, the retention anchor including:an annular body including a proximally-facing surface, a distally-facing surface, an inner side surface defining an opening through the annular body, and an outer side surface; anda fixation body including a disc having a proximal surface, a distal surface, and an outer terminal edge extending between the proximal surface and the distal surface, the proximal surface of the disc secured in touching contact to the distally-facing surface of the annular body, the fixation body including wings extending radially outwardly from the outer terminal edge of the disc beyond the outer side surface of the annular body, the disc defining an opening through the fixation body, the elongated shaft extending through the openings in the annular body and the fixation body.
  • 2. The surgical access assembly of claim 1, wherein the inner side surface of the annular body frictionally engages the elongated shaft of the cannula.
  • 3. The surgical access assembly of claim 2, wherein the inner side surface of the annular body includes ridges.
  • 4. The surgical access assembly of claim 1, wherein each of the wings of the fixation body includes a notch defined in a proximal facing surface of the wing.
  • 5. The surgical access assembly of claim 1, wherein each of the wings includes a flange disposed at a terminal end of the wing.
  • 6. The surgical access assembly of claim 5, wherein a distal surface of the fixation body is planar and defined by portions of the disc, the wings, and the flanges.
  • 7. The surgical access assembly of claim 1, wherein a distal surface of the fixation body is planar and defined by the distal surface of the disc and distal surfaces of the wings.
  • 8. The surgical access assembly of claim 1, further including a compressible collar secured to a distal surface of the fixation body, the compressible collar having an expanded configuration and a compressed configuration.
  • 9. The surgical access assembly of claim 8, wherein the compressible collar extends radially outwardly of the annular body and is concentric with the annular body.
  • 10. The surgical access assembly of claim 8, wherein each of the wings of the fixation body includes a notch defined in a proximal facing surface of the wing, and the compressible collar is disposed radially inwardly of the notches.
  • 11. The surgical access assembly of claim 1, wherein the fixation body is formed from a material that is more rigid than a material of the annular body.
  • 12. The surgical access assembly of claim 1, wherein the outer terminal edge of the disc is disposed radially inwardly of the outer side surface of the annular body, and a thickness of the disc is less than a thickness of the annular body.
  • 13. A retention anchor for a surgical access device, comprising: an annular body including a proximally-facing surface, a distally-facing surface, an inner side surface defining an opening through the annular body, and an outer side surface; anda fixation body including a disc having a proximal surface, a distal surface, and an outer terminal edge extending between the proximal surface and the distal surface, the proximal surface of the disc secured in direct abutting relationship to the distally-facing surface of the annular body the fixation body including wings extending radially outwardly from the outer terminal edge of the disc beyond the outer side surface of the annular body, the disc defining an opening through the fixation body, the elongated shaft extending through the openings in the annular body and the fixation body.
  • 14. The retention anchor of claim 13, wherein the inner side surface of the annular body includes ridges.
  • 15. The retention anchor of claim 13, wherein each of the wings of the fixation body includes a notch defined in a proximal facing surface of the wing.
  • 16. The retention anchor of claim 13, wherein each of the wings includes a flange disposed at a terminal end of the wing.
  • 17. The retention anchor of claim 13, wherein a distal surface of the fixation body is planar and defined by the distal surface of the disc and distal surfaces of the wings.
  • 18. The retention anchor of claim 13, further including a compressible collar secured to a distal surface of the fixation body, the compressible collar having an expanded configuration and a compressed configuration.
  • 19. The retention anchor of claim 18, wherein the compressible collar extends radially outwardly of the annular body and is concentric with the annular body.
  • 20. The retention anchor of claim 18, wherein each of the wings of the fixation body includes a notch defined in a proximal facing surface of the wing, and the compressible collar is disposed radially inwardly of the notches.
US Referenced Citations (177)
Number Name Date Kind
397060 Knapp Jan 1889 A
512456 Sadikova Jan 1894 A
1213005 Pillsbury Jan 1917 A
2912981 Keough Nov 1959 A
2936760 Gains May 1960 A
3039468 Price Jun 1962 A
3050066 Koehn Aug 1962 A
3253594 Matthews et al. May 1966 A
3397699 Kohl Aug 1968 A
3545443 Ansari et al. Dec 1970 A
3713447 Adair Jan 1973 A
3774596 Cook Nov 1973 A
3800788 White Apr 1974 A
3882852 Sinnreich May 1975 A
3896816 Mattler Jul 1975 A
3961632 Moossun Jun 1976 A
RE29207 Bolduc et al. May 1977 E
4083369 Sinnreich Apr 1978 A
4217889 Radovan et al. Aug 1980 A
4243050 Littleford Jan 1981 A
4276874 Wolvek et al. Jul 1981 A
4312353 Shahbabian Jan 1982 A
4327709 Hanson et al. May 1982 A
4345606 Littleford Aug 1982 A
4411654 Boarini et al. Oct 1983 A
4416267 Garren et al. Nov 1983 A
4490137 Moukheibir Dec 1984 A
4496345 Hasson Jan 1985 A
4574806 McCarthy Mar 1986 A
4581025 Timmermans Apr 1986 A
4596554 Dastgeer Jun 1986 A
4596559 Fleischhacker Jun 1986 A
4608965 Anspach, Jr. et al. Sep 1986 A
4644936 Schiff Feb 1987 A
4654030 Moll et al. Mar 1987 A
4685447 Iversen et al. Aug 1987 A
4701163 Parks Oct 1987 A
4738666 Fuqua Apr 1988 A
4769038 Bendavid et al. Sep 1988 A
4772266 Groshong Sep 1988 A
4779611 Grooters et al. Oct 1988 A
4784133 Mackin Nov 1988 A
4793348 Palmaz Dec 1988 A
4798205 Bonomo et al. Jan 1989 A
4800901 Rosenberg Jan 1989 A
4802479 Haber et al. Feb 1989 A
4813429 Eshel et al. Mar 1989 A
4840613 Balbierz Jun 1989 A
4854316 Davis Aug 1989 A
4861334 Nawaz Aug 1989 A
4865593 Ogawa et al. Sep 1989 A
4869717 Adair Sep 1989 A
4888000 McQuilkin et al. Dec 1989 A
4897082 Erskine Jan 1990 A
4899747 Garren et al. Feb 1990 A
4917668 Haindl Apr 1990 A
4931042 Holmes et al. Jun 1990 A
4955895 Sugiyama et al. Sep 1990 A
5002557 Hasson Mar 1991 A
5009643 Reich et al. Apr 1991 A
5030206 Lander Jul 1991 A
5030227 Rosenbluth et al. Jul 1991 A
5074871 Groshong Dec 1991 A
5098392 Fleischhacker et al. Mar 1992 A
5104383 Shichman Apr 1992 A
5116318 Hillstead May 1992 A
5116357 Eberbach May 1992 A
5122122 Allgood Jun 1992 A
5122155 Eberbach Jun 1992 A
5137512 Burns et al. Aug 1992 A
5141494 Danforth et al. Aug 1992 A
5141515 Eberbach Aug 1992 A
5147302 Euteneuer et al. Sep 1992 A
5147316 Castillenti Sep 1992 A
5147374 Fernandez Sep 1992 A
5158545 Trudell et al. Oct 1992 A
5159925 Neuwirth et al. Nov 1992 A
5163949 Bonutti Nov 1992 A
5176692 Wilk et al. Jan 1993 A
5176697 Hasson et al. Jan 1993 A
5183463 Debbas Feb 1993 A
5188596 Condon et al. Feb 1993 A
5188630 Christoudias Feb 1993 A
5195507 Bilweis Mar 1993 A
5201742 Hasson Apr 1993 A
5201754 Crittenden et al. Apr 1993 A
5209725 Roth May 1993 A
5215526 Deniega et al. Jun 1993 A
5222970 Reeves Jun 1993 A
5226890 Ianniruberto et al. Jul 1993 A
5232446 Arney Aug 1993 A
5232451 Freitas et al. Aug 1993 A
5234454 Bangs Aug 1993 A
5250025 Sosnowski et al. Oct 1993 A
5258026 Johnson et al. Nov 1993 A
5269753 Wilk Dec 1993 A
5290249 Foster et al. Mar 1994 A
5308327 Heaven et al. May 1994 A
5309896 Moll et al. May 1994 A
5314443 Rudnick May 1994 A
5318012 Wilk Jun 1994 A
5330497 Freitas et al. Jul 1994 A
5342307 Euteneuer et al. Aug 1994 A
5346504 Ortiz et al. Sep 1994 A
5359995 Sewell, Jr. Nov 1994 A
5361752 Moll et al. Nov 1994 A
5370134 Chin et al. Dec 1994 A
5383889 Warner et al. Jan 1995 A
5397311 Walker et al. Mar 1995 A
5402772 Moll et al. Apr 1995 A
5407433 Loomas Apr 1995 A
5431173 Chin et al. Jul 1995 A
5445615 Yoon Aug 1995 A
5468248 Chin et al. Nov 1995 A
5514091 Yoon May 1996 A
5514153 Bonutti May 1996 A
5540658 Evans et al. Jul 1996 A
5540711 Kieturakis et al. Jul 1996 A
5607441 Sierocuk et al. Mar 1997 A
5607443 Kieturakis et al. Mar 1997 A
5632761 Smith et al. May 1997 A
5656013 Yoon Aug 1997 A
5667479 Kieturakis Sep 1997 A
5667520 Bonutti Sep 1997 A
5704372 Moll et al. Jan 1998 A
5707382 Sierocuk et al. Jan 1998 A
5713869 Morejon Feb 1998 A
5722986 Smith et al. Mar 1998 A
5728119 Smith et al. Mar 1998 A
5730748 Fogarty et al. Mar 1998 A
5730756 Kieturakis et al. Mar 1998 A
5738628 Sierocuk et al. Apr 1998 A
5755693 Walker et al. May 1998 A
5762604 Kieturakis Jun 1998 A
5772680 Kieturakis et al. Jun 1998 A
5779728 Lunsford et al. Jul 1998 A
5792112 Hart Aug 1998 A
5797947 Mollenauer Aug 1998 A
5803901 Chin et al. Sep 1998 A
5810867 Zarbatany et al. Sep 1998 A
5814021 Balbierz Sep 1998 A
5814060 Fogarty et al. Sep 1998 A
5836913 Orth et al. Nov 1998 A
5836961 Kieturakis et al. Nov 1998 A
5865802 Yoon et al. Feb 1999 A
5893866 Hermann et al. Apr 1999 A
5925058 Smith et al. Jul 1999 A
6361543 Chin et al. Mar 2002 B1
6368337 Kieturakis et al. Apr 2002 B1
6375665 Nash et al. Apr 2002 B1
6379372 Dehdashtian et al. Apr 2002 B1
6432121 Jervis Aug 2002 B1
6447529 Fogarty et al. Sep 2002 B2
6468205 Mollenauer et al. Oct 2002 B1
6482175 Walker Nov 2002 B1
6506200 Chin Jan 2003 B1
6514272 Kieturakis et al. Feb 2003 B1
6517514 Campbell Feb 2003 B1
6527787 Fogarty et al. Mar 2003 B1
6540764 Kieturakis et al. Apr 2003 B1
6554802 Pearson Apr 2003 B1
6796960 Cioanta et al. Sep 2004 B2
7691089 Gresham Apr 2010 B2
8277418 Lopez Oct 2012 B2
8343106 Lopez Jan 2013 B2
8454645 Criscuolo et al. Jun 2013 B2
10987128 Buyda Apr 2021 B2
20040111061 Curran Jun 2004 A1
20040138702 Peartree Jul 2004 A1
20050192594 Skakoon Sep 2005 A1
20060142699 Lampropoulos Jun 2006 A1
20080275401 Sage Nov 2008 A1
20090182282 Okihisa Jul 2009 A1
20090287155 Silich Nov 2009 A1
20110144447 Schleitweiler Jun 2011 A1
20180271557 Buyda Sep 2018 A1
20190060637 Duijsens Feb 2019 A1
Foreign Referenced Citations (16)
Number Date Country
0480653 Apr 1992 EP
0610099 Aug 1994 EP
0880939 Dec 1998 EP
3378422 Sep 2018 EP
9206638 Apr 1992 WO
9218056 Oct 1992 WO
9221293 Dec 1992 WO
9221295 Dec 1992 WO
9309722 May 1993 WO
9714458 Apr 1997 WO
9721461 Jun 1997 WO
9912602 Mar 1999 WO
0126724 Apr 2001 WO
02096307 Dec 2002 WO
2004032756 Apr 2004 WO
2018128644 Jul 2018 WO
Non-Patent Literature Citations (2)
Entry
Extended European Search Report dated Aug. 6, 2021 issued in corresponding EP Appln. No. 21165280.5.
Communication Pursuant to Article 94(3) EPC issued in corresponding European Application No. 21 165 280.5 dated Sep. 8, 2022, 6 pages.
Related Publications (1)
Number Date Country
20210298737 A1 Sep 2021 US