The present invention relates to a retention device for a composite blade of a gas turbine engine. The invention is particularly concerned with axial retention of the composite blade within a fan disc of a gas turbine engine.
Fan assemblies in large gas turbine engines typically comprise a metal rotor disc provided with individual metallic fan blades. The rotor disc has axially extending dovetail slots disposed about the circumference of the disc into which the fan blades, which have corresponding dovetail roots, are inserted. The dovetail slots secure the fan blades in the radial and circumferential directions, but not in the axial direction. During operation, the fan blades are subject to axial loads generated, for example, by thrust and by foreign object damage on the blades. It is therefore necessary to secure the blade roots within the dovetail slots in an axial direction.
The mechanism selected for securing rotor blades against axial movement is generally dictated both by the size of the engine concerned and by past trends and experience. Thrust ring arrangements are commonly used in smaller engines, but for larger engines of 2 m diameter and above, shear keys are almost exclusively employed to provide the necessary axial retention. Use of a shear key involves forming cooperating slots in the flanks of both the blade root and the associated disc dovetail slot. A shear key is then inserted into the slots, connecting the two components. The sides of the shear key abut the sides of the slots in the blade root and disc, thus securing the blade against axial movement relative to the disc. This arrangement is known to be effective in securing conventional metallic blades within the rotor disc.
Organic matrix composite materials are now being explored as an alternative to metals for component parts of gas turbine engines. Composite materials can contribute to weight reduction with desirable strength to weight ratios, as well as offering resistance to most chemical and environmental threats. Component parts of the fan assembly, including in particular fan blades, lend themselves to composite construction owing to the relatively low temperatures at which they operate. Over these operating temperature ranges, composite materials can provide the required levels of robustness, durability, strength and strain to failure. However, difficulties are encountered when considering axial retention of composite fan blades within the dovetail slots of a rotor disc. The shear key arrangement described above is less suited to retention of composite blades, owing to the significantly lower load carrying capacity of the composite material when compared to the metals that are more conventionally employed. In order to achieve comparable load carrying capacity, the interface between the shear key and composite material of the blade must be oversized, resulting in a non optimised design. Additionally, the amount of material that must be removed from the blade root to create this oversized interface raises concerns over the mechanical integrity of the bade root, as well as having potential knock on effects on the geometrical definition of the blade/disc interface.
A further disadvantage of composite fan blades is that the interface between blade root and disc is a composite/metallic interface. This is outside the range of the extensive experience which has been gained with dry film lubricants for the metallic/metallic interfaces encountered with conventional titanium fan blades.
The present invention seeks to address some or all of the above noted disadvantages associated with composite fan blades.
In the present specification, the terms “axial”, “radial” and “circumferential” are defined with respect to the axial direction of the rotor disc unless otherwise specified.
According to the present invention, there is provided a liner for a composite blade of a gas turbine engine, the liner comprising a metallic shoe for at least partially encasing a blade root of a composite blade, metallic shoe having an inner, an outer surface, and a retention lug, wherein the retention lug comprises an outer key which projects from an outer surface of the retention lug.
The retention lug can further comprise an inner key which projects from an inner surface of the retention lug.
The inner and outer keys can be located on opposing portions of the inner and outer surfaces.
The inner and outer keys may each have the same surface area as the retention lug. That is, there may or may not be a step change in thickness between the retention lug and the inner or outer keys.
The shoe may comprise a base portion and opposed flank portions, substantially corresponding to the base and flanks of a composite blade root. The retention lug may be formed on a flank portion of the shoe.
The retention lug may be metallic and may be integrally formed with the shoe or may be diffusion bonded to the shoe. Alternatively, the retention lug may be attached to the shoe by any other high integrity joining process.
The outer key of the retention lug may comprise a single projection which may have a constant thickness. The retention lug may thus present an outer profile having a single step change from the outer surface of the shoe to the projecting surface of the outer key.
The inner key of the retention lug may comprise a stepped projection having at least one change in thickness. The retention lug may thus present an inner profile having multiple step changes from the inner surface of the shoe to at least two distinct projecting surfaces of the inner key.
The liner may comprise two retention lugs and each lug may be formed on an opposed flank portion of the shoe.
According to another aspect of the present invention, there is provided a blade assembly for a gas turbine engine, the blade assembly comprising a composite blade and a liner according to the first aspect of the present invention.
The liner may be attached to the root of the blade by co-moulding.
The liner may be attached to the root of the blade by secondary bonding.
The inner key of the liner retention lug may engage a corresponding recess formed on the root of the blade.
For a better understanding of the present invention, and to show how it may be carried into effect, reference will now be made by way of example to the following drawings, in which:—
The present invention achieves axial retention of a composite blade root by better distributing the axial loads into the blade, thus addressing the issue of the lower crushing capability of the composite blade when compared with known titanium blades.
A liner comprising a metallic shoe and retention lugs is bonded onto the root of the blade to form the contact flanks of the blade root that will be received in a metallic dovetail slot. The liner provides a metallic/metallic interface at the dovetail slot and distributes axial loading into the blade over a larger area than a conventional shear key. The rotor slot and blade root geometry, together with the reduced number of blades required in a composite design, ensure that the assembled blade and liner can be inserted, engaged, disengaged and extracted from the slot all without need for removal or retraction of the liner or its retention lugs.
With reference to
The retention lugs 6, 8 are formed on opposed regions of the flank portions 12, 14, one lug on each flank portion of the shoe 4. The first retention lug 6 is described in detail below with additional reference to
The inner key 24 of the lug 6 comprises first and second stepped regions 28, 30, each presenting a substantially rectangular projecting surface 32, 34. The first region 28 projects substantially perpendicularly from the surface of the body 20 to a uniform thickness and presents a rectangular projecting surface 32 that is of substantially the same area as the body 20 of the lug 6. The second region 30 projects substantially perpendicularly from the projecting surface 32 of the first region 28 to a uniform thickness and presents a rectangular projecting surface 34. The uniform thicknesses of the outer key 22, the first region 28 and the second region 30 may be the same or different. The second projecting surface 34 is smaller in at least one dimension than the first projecting surface 32. In a preferred embodiment shown in the Figures, the projecting surfaces of the outer key 22 and both regions 28, 30 of the inner key 24 are all of the same width. The projecting surface 32 of the first region 28 of the inner key 24 is of the greatest length, equal to the length of the lug body 20. The projecting surface 34 of the second region 30 of the inner key 24 is of reduced length compared to the surface 32 of the first region 28, and the projecting surface 26 of the outer key 22 is of reduced length compared to the surface 34 of the second region 30. Viewed in section, as shown in
In use, as illustrated in
The assembly is inserted into the slot 44 in a radially inner position, shown in strong outline in
The shoe 4 of the liner 2 is thus sandwiched between the root 42 of the blade 40 and the flanks of the dovetail slot 44. The compressive load placed on the flank portions 12, 14 of the shoe 4 resists any tendency of the shoe 4 to detach from the blade root 42 by shear and negates the bond peel failure mode of the bonding between the shoe 4 and blade root 42.
The sides of the outer keys 22 of the lugs 6, 8 abut the sides of the recesses 50 formed in the dovetail slot 44 and prevent axial displacement of the assembly of blade root 42 and liner 2 within the dovetail slot. Axial loads are reacted into the blade 40 via the metallic shoe 4 and then via shear in the bond to the body of the blade 40. Load distribution into the root 42 is achieved via the stepped inner keys 24. The stepped inner keys 24 distribute the load more evenly across the blade root than a standard shear key, and over a larger area, thus addressing the issue of the lower crushing capability of a composite blade. Potential wedging effects are avoided by having step changes in thickness of the inner keys rather than a tapered change. The step changes also assist with preventing rotation of the lugs and any corresponding stresses.
In addition to distributing axial loads over a wider area within a composite blade, and thus enabling a composite blade to be adequately restrained against axial movement without compromising mechanical integrity, the liner of the present invention provides a metallic/metallic interface between the assembled blade 40 and liner 2 and the dovetail slot 44 in the rotor disc. Known dry film lubricants for use with conventional metallic blades can therefore be employed at the assembly/slot interface.
Number | Date | Country | Kind |
---|---|---|---|
1106050.6 | Apr 2011 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
2317338 | Rydmark | Apr 1943 | A |
2786648 | Ledwith | Mar 1957 | A |
2874932 | Sorensen | Feb 1959 | A |
2928651 | Turnbull | Mar 1960 | A |
3202398 | Webb | Aug 1965 | A |
3383094 | Diggs | May 1968 | A |
3383095 | Anderson | May 1968 | A |
3598503 | Muller | Aug 1971 | A |
3653781 | Cooper | Apr 1972 | A |
3720480 | Plowman et al. | Mar 1973 | A |
3910719 | Hessler et al. | Oct 1975 | A |
4102602 | Rottenkolber | Jul 1978 | A |
4169694 | Sanday | Oct 1979 | A |
4207029 | Ivanko | Jun 1980 | A |
4417854 | Cain et al. | Nov 1983 | A |
4462756 | Muggleworth et al. | Jul 1984 | A |
4527952 | Forestier et al. | Jul 1985 | A |
4655687 | Atkinson | Apr 1987 | A |
4818182 | Bouru | Apr 1989 | A |
4832568 | Roth et al. | May 1989 | A |
4995788 | Turnberg | Feb 1991 | A |
5074752 | Murphy et al. | Dec 1991 | A |
5118257 | Blakeley et al. | Jun 1992 | A |
5160243 | Herzner et al. | Nov 1992 | A |
5240375 | Wayte | Aug 1993 | A |
5340280 | Schilling | Aug 1994 | A |
5443366 | Knott et al. | Aug 1995 | A |
5573377 | Bond et al. | Nov 1996 | A |
5624233 | King et al. | Apr 1997 | A |
5791877 | Stenneler | Aug 1998 | A |
6132175 | Cai et al. | Oct 2000 | A |
6398499 | Simonetti et al. | Jun 2002 | B1 |
6431835 | Kolodziej et al. | Aug 2002 | B1 |
6857856 | Potter et al. | Feb 2005 | B2 |
8282356 | Cairo | Oct 2012 | B2 |
8651817 | Radomski | Feb 2014 | B2 |
20090016890 | Douguet et al. | Jan 2009 | A1 |
20090081046 | Mace et al. | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
0 495 586 | Jul 1992 | EP |
2 042 689 | Apr 2009 | EP |
2 299 059 | Mar 2011 | EP |
1 319 689 | Mar 1963 | FR |
836030 | Jun 1960 | GB |
2 115 883 | Sep 1983 | GB |
Entry |
---|
Jun. 14, 2012 European Search Report issued in Application No. EP 12 16 0708. |
Search Report issued in British Application No. 1106050.6 dated Aug. 4, 2011. |
Number | Date | Country | |
---|---|---|---|
20120257981 A1 | Oct 2012 | US |