Retention socket geometry variations

Information

  • Patent Grant
  • 6626067
  • Patent Number
    6,626,067
  • Date Filed
    Wednesday, September 27, 2000
    23 years ago
  • Date Issued
    Tuesday, September 30, 2003
    20 years ago
Abstract
A device includes a body having a plurality of alternating drive regions and corner regions arranged about a central axis for cooperation to define a socket recess having an open outer end and an inner end. Each drive region has a drive surface disposed thereon and confined thereto. At least one drive surface slopes toward the central axis in a first direction generally parallel to the central axis and in a second direction generally traverse to the central axis. The device may be a rotatably driveable device for driving fasteners and the like, wherein the axis is the axis of rotation. The device can be used for retaining and driving a drive member. In one form, a drive member, comprising alternating flats and corners is inserted into the device. The flats of the drive member frictionally engage with at least two of the drive regions, thereby releaseably retaining the drive member in the body. The drive member can be rotated by rotating the body in one of the clockwise and counter-clockwise directions. The corner regions can comprise channels formed between two drive regions to prevent engagement of the corners of the drive member with the body. Similar principles are also applied to create drive surfaces for a male driver that retain and drive a device having a complementary female socket.
Description




BACKGROUND




The following disclosure relates to devices having female sockets adaptable for matably receiving complementary shaped male members. The following disclosure has particular application to apparatus and methods for retaining the male member in the female socket.




Various types of rotatably driveable devices, such as drive sockets for wrenches and socket-head threaded fasteners, are provided with a female socket recess adapted for receiving a complementary shaped male drive member. A typical form of such a driveable device has a polygonal socket recess formed in one end of the device coaxially with the axis of rotation. Various techniques have been used to facilitate retaining the driveable device on the associated driving tool or other drive member or, stated another way, to retain the driving tool or member in the socket recess.




One technique is to shape the socket recess and/or the drive member so as to provide an interference fit which will frictionally hold the parts together. Thus, for example, in U.S. Pat. No. 4,970,922, there is disclosed a fluted driving tool which is adapted for engagement in a similarly shaped socket recess, the tool and socket recess having cooperating drive surfaces. The drive surfaces in the socket recess are substantially parallel to the axis of rotation while those on the drive member are given a slight helical twist about the axis of rotation so as to afford a wedge fit in the socket recess.




Another technique is to shape a socket recess so as to provide an interference fit with a standard hexagonal shaped nut, bolt, etc. For example, in U.S. Pat. No. 5,277,531 a socket recess differs from a standard hexagonal shaped recess comprising alternating flats and corners by having built-up portions that extend between what would normally be adjacent flats of a standard hexagonal shaped recess. While perfectly adequate for some uses, this design tends to engage the corners of a nut, bolt, etc. and is not adaptable for situations where contact with the corners of the bolts is not desired. Additionally, the built up portions in this design only slope in one direction across the face of the flats, which only allows this design to achieve the maximum interference fit when the socket is turned in one of the clockwise and counter-clockwise directions, but not the other.




SUMMARY




The disclosed apparatus and methods avoid some of the disadvantages of prior devices and methods while affording additional structural and operating advantages.




One form of the disclosed retention socket device comprises a body having a plurality of alternating drive regions and corner regions arranged about a central axis for cooperation to define a socket recess having an open outer end and an inner end. Each drive region can have a drive surface disposed thereon and confined thereto. The disclosed retention socket device can have at least one drive surface that slopes toward the central axis in directions both generally parallel to and traverse to the central axis.




One form of the disclosed method of retaining and driving a drive member comprises inserting a drive member, comprising alternating flats and corners, in a body comprising alternating drive regions and corner regions. The drive member can be releaseably retained in the body by frictionally engaging the flats of the drive member with at least two of the drive regions. The drive member can be rotated by rotating the body in one of the clockwise and counter-clockwise directions while preventing engagement of the corners of the drive member with the body.











The disclosed rotatably driveable device and drive member consists of certain novel features and a combination of parts hereinafter fully described, illustrated in the accompanying drawings, and particularly pointed out in the appended claims, it being understood that various changes in the details may be made without departing from the spirit, or sacrificing any of the advantages of the present disclosed rotatably driveable device and drive member.




BRIEF DESCRIPTION OF THE DRAWINGS




For the purpose of facilitating an understanding of the disclosed apparatus and method, there are illustrated in the accompanying drawings preferred embodiments thereof, from an inspection of which, when considered in connection with the following description, the disclosed apparatus and method, its construction and operation, and many of its advantages should be readily understood and appreciated.





FIG. 1

is a fragmentary perspective view of a first form of a female socket, the female socket being a drive socket for a socket wrench;





FIG. 1A

is a fragmentary top plan view of the female socket of

FIG. 1

;





FIG. 2

is a fragmentary perspective view of a second form of a female socket, the female socket being a drive socket for a socket wrench;





FIG. 2A

is a fragmentary top plan view of the female socket of

FIG. 2

;





FIG. 3

is a fragmentary perspective view of a third form of a female socket, the female socket being a drive socket for a socket wrench;





FIG. 3A

is a fragmentary top plan view of the female socket of

FIG. 3

;





FIG. 4

is a fragmentary perspective view of a fourth form of a female socket, the female socket being a drive socket for a socket wrench;





FIG. 4A

is a fragmentary top plan view of the female socket of

FIG. 4

;





FIG. 5

is a fragmentary perspective view of a fifth form of a female socket, the female socket being a drive socket for a socket wrench;





FIG. 5A

is a fragmentary top plan view of the female socket of

FIG. 5

;





FIG. 6

is a fragmentary perspective view of a sixth form of a female socket, the female socket being a drive socket for a socket wrench;





FIG. 6A

is a fragmentary top plan view of the female socket of

FIG. 6

;





FIG. 7

is a fragmentary perspective view of a seventh form of a female socket, the female socket being a drive socket for a socket wrench;





FIG. 7A

is a fragmentary top plan view of the female socket of

FIG. 7

;





FIG. 8

is a top plan view of the female socket of

FIG. 1

or

FIG. 2

with a nut inserted therein when the female socket is spun in the clockwise direction indicated by the arrow labeled C;





FIG. 9

is a top plan view of the female socket of

FIG. 1

or

FIG. 2

with a nut inserted therein when the female socket is spun in the counterclockwise direction indicated by the arrow labeled CC;





FIG. 10

is a fragmentary perspective view of an eighth form of a female socket, the female socket being a drive socket for a socket wrench;





FIG. 10A

is a fragmentary top plan view of the female socket of

FIG. 10

;





FIG. 11

is a fragmentary side view of a first form of a male member, the male member being a driver for a socket wrench or the like;





FIG. 11A

is a fragmentary end view of the male member of

FIG. 11

; and





FIG. 12

is a fragmentary perspective view of a second form of a male member, the male member being a driver for a socket wrench or the like.











DETAILED DESCRIPTION




Referring to

FIGS. 1-10

, there is illustrated a body in the nature of a drive socket


20


for a socket wrench. The drive socket


20


has a cylindrical body


21


with a cylindrical curved surface


22


, an open outer end surface


24


and an back end (not shown). The drive socket


20


has a central rotational axis X extending through the centers of the open outer end surface


24


and the back end. In one form, axis X is the axis of rotation of drive socket


20


.




Formed axially in the open outer end surface


24


is a socket recess


30


, which extends into the cylindrical body


21


, terminating in an inner end surface


31


in the interior of the socket. In one form, the drive socket


20


is designed for use with a ratchet wrench (not shown) and includes a square drive hole (not shown) at the back end of drive socket


20


. The inner end surface


31


is generally located between the back end and some point offset from the open outer end surface


24


.




The socket recess


30


has a generally polygonal shape at the open outer end thereof, i.e., at the open outer end surface


24


, the shape being generally hexagonal in the illustrated embodiments and including sides, such as drive regions


32


, spaced apart by corner regions


33


. In the illustrated embodiment, the drive socket


20


has a plurality of alternating drive regions


32


and corner regions


33


arranged about a central axis X for cooperation to define the socket recess


30


. Each of the illustrated corner regions


33


comprises a channel-shaped flank relief formed between two drive regions. The reliefs prevent the corners of a drive member, such as fastener


34


(see FIGS.


8


and


9


), from contacting the corner regions


33


of socket recess


30


. However, the corner regions


33


can also comprise differently shaped flank reliefs. In other cases, the corner regions


33


can even comprise normal corners when contacting the corners of a drive member is of less concern.




The drive region has one or more drive surfaces


35


,


36


, respectively extending from the drive regions


32


and sloping toward the central axis both generally parallel to the central axis X and generally traverse to the central axis X (see FIG.


1


). In other words, one or more drive surfaces


35


,


36


slope toward the central axis X in a first direction generally parallel to the central axis, for example along the shortest route between the open outer surface


24


and the inner end surface


31


, and in a second direction generally traverse to the central axis, for example the shortest route between two edges


38


of drive region


32


. This sloping inward toward the central axis X determines the depth of insertion of the hex head bolt and thus the area of engagement between the hex head bolt


34


and the drive socket


20


. In one form, the slope is positive in a direction following the shortest route from the open outer surface


24


towards the inner end surface


31


and in one of the two directions that follow the shortest route between two edges


38


of the drive region


32


.




In one form, the drive surfaces


35


,


36


extend from the inner end surface


31


towards the open outer end surface


24


and also extend from a point adjacent one of corner regions


33


that borders one edge


38


of a drive region


32


and towards the other corner region


33


bordering the same drive region


32


. For purposes of illustration, the size of the drive surfaces


35


,


36


have been exaggerated in the drawings since, in some embodiments, they may be difficult to see with the naked eye.




As shown in

FIGS. 1

,


6


and


10


, the drive surface


35


,


36


extend from the inner end surface


31


towards the open outer end surface


24


, but can end before reaching the open outer end surface


24


. In another form, the drive surfaces


35


,


36


can extend all the way to the top of the open outer end surface


24


(see

FIGS. 2-5

and


7


). The drive surfaces


35


,


36


can have any suitably shaped surfaces, including a planar surface


37


(see

FIGS. 1A

,


2


A,


4


A,


5


A,


6


A and


10


A) or curved surface, such as a concave curved surface


39


(see

FIGS. 3A

,


4


A and


7


A). It is thought that concave curved surface


39


might better accommodate irregularities and imperfections found in many drive members. The concave curved surface


39


can be used to provide a greater distribution of stress created when the fastener


34


is wedged in socket recess


30


because the curved surface allows for a greater amount of surface contact between the fastener


34


and the drive regions


32


. The concave curved surface


39


connects the line contact with the corner contact, whereas the planar surface


37


has a smaller line contact that is separate from the contact at the corner channel.




In one form, one or more drive surfaces each comprise a clockwise drive surface


35


that has a positive slope from the left towards the right of the drive region


32


. In another form, one or more drive surfaces each comprise a counterclockwise drive surface


36


that has a negative slope from the left towards the right of the drive region


32


. As used herein, the terms right and left refer to the right and left direction of a drive region when it is viewed as depicted in the only full drive region


32


that is shown in both

FIGS. 1 and 1A

.




In one form, the drive socket


20


can have at least one drive region


32


that includes a clockwise drive surface


35


while at least one other drive region


35


includes a counterclockwise drive surface


36


. Furthermore, the drive regions


32


can include both a clockwise drive surface


35


and a counterclockwise drive surface


36


. When a drive region


32


comprise both clockwise and counterclockwise drive surfaces


35


and


36


, the drive surfaces can meet at a point between the corner regions


33


that border the particular drive portion


32


. In this manner, the drive surfaces


35


and


36


can form a peak


42


where the opposite sloping drive surfaces meet. In other forms, the drive surfaces


35


and


36


can form a a plateau


43


(shown in FIGS.


6


and


6


A). However plateau


43


need not be flat as depicted, plateau


43


can have any suitable shape and can even have a radius, for example a convex radius.




As shown in

FIGS. 5

,


5


A,


10


and


10


A the drive socket


20


can have drive regions


32


that comprise only one type of the clockwise drive surfaces


35


and counterclockwise drive surfaces


36


. If only one drive surface


35


or


36


is located on each drive region


32


, it can be advantageous for the drive surface


35


or


36


to extend from a point adjacent the corner region


33


bordering one end of the drive region to a point adjacent the corner region bordering the other end of the drive region, as depicted in

FIGS. 5 and 5A

. In other cases, it can be advantageous for the drive surface


35


or


36


to extend from a point adjacent the corner region


33


bordering one end of the drive region to a point some distance the corner region bordering the other end of the drive region, as depicted in

FIGS. 10 and 10A

. The drive surface


35


or


36


can stop short of extending all the way between bordering corner regions


33


so that there is little, if any, friction causing the hex head bolt


34


to be retained when the socket


20


is rotated in one direction.




For example, the embodiment shown in

FIGS. 10 and 10A

can be used to have a larger amount of friction force from engagement when socket


20


is rotated in the clockwise direction to tighten hex head bolt


34


and a less amount of friction force from engagement when socket


20


is rotated in the counterclockwise direction. This design can allow hex head bolt


34


to more easily drop out of socket


20


when bolt


34


is loosened. This design's centering and holding feature may even reduce unwanted vibration between bolt


34


and socket


20


that would be felt by users using an impact wrench.




The outline of drive surfaces


35


,


36


can have any suitable shape, however substantially polygonal shaped outlines such as substantially triangular shaped outlines (see

FIGS. 1-5

and


10


) and substantially rectangular shaped outlines (see

FIGS. 4

,


6


and


7


) are illustrated. When there are two drive surfaces


35


,


36


on a drive region, the outlines of drive surface


35


,


36


can both be substantially triangular (see FIGS.


1


-


3


), both substantially rectangular (see FIGS.


6


and


7


), or one can be triangular and the other rectangular (see FIG.


4


).




Referring to

FIGS. 8 and 9

, the operation of the drive socket


20


will be described in connection with an associated fastener


34


which, for purposes of illustration, is shown as a hex head bolt. The fastener


34


comprises alternating flats


44


and corners


46


. As the fastener


34


enters the open end of the socket recess


30


, as illustrated in

FIGS. 8 and 9

, the corners


46


of the fastener


34


are, respectively, radially aligned with the corner regions


33


of the socket recess


30


, there being a clearance space therebetween depending upon the manufacturing tolerances for the fastener


34


and the drive socket


20


and the presence or absence of reliefs. As the fastener


34


progresses axially into the socket recess


30


, the flats


44


thereof will, respectively, frictionally engage at least two drive surfaces


35


or


36


, each on different drive regions


32


, producing a wedge fit which will serve to releaseably retain the fastener


34


in engagement in the drive socket


20


. Additionally, fastener


34


can also be retained in drive socket


20


merely by being wedged between one or more peaks


42


or plateaus


43


, even if the drive socket


20


is not rotated in either direction.




As the drive socket


20


is rotated for rotating fastener


34


, there may result an initial slight relative rotation of the drive socket


20


and the fastener


34


, as indicated in

FIGS. 8 and 9

, but the bolt


34


will normally remain in a retained engagement with drive surface


35


or


36


. When reliefs are present, the corners of the drive member will be prevented from engaging the drive socket


20


, and even without corner reliefs, wear will be concentrated on the flats of the fastener.




When the drive socket


20


includes both clockwise and counter clockwise drive surfaces


35


and


36


, the amount of surface area of each clockwise drive surface


35


that contacts fastener


34


will normally be larger when drive socket


20


rotates fastener


34


in the clockwise direction (labeled C) than when drive socket


20


rotates fastener


34


in the counterclockwise direction (labeled CC). Likewise, the amount of surface area of each counterclockwise drive surface


35


that contacts the fastener


34


will normally be larger when drive socket


20


rotates fastener


34


in the counterclockwise direction than when drive socket


20


rotates fastener


34


in the clockwise direction. As used herein, the clockwise and counterclockwise directions are used in the ordinary sense when viewing the back end of the drive socket (opposite the open outer end surface


24


). Therefore the directions are labeled as shown in

FIGS. 8 and 9

because those views are of the open outer end surface


24


.




When drive socket


20


rotates fastener


34


in the clockwise direction, flats


44


of the bolt will normally be frictionally engaged between two or more clockwise drive surfaces


35


. Similarly, when drive socket


20


rotates fastener


34


in the counterclockwise direction, flats


44


of the bolt will normally be frictionally engaged between two or more counterclockwise drive surfaces


36


. After fastener


34


is rotated in one of the clockwise and counterclockwise directions, this process can be repeated to fasten and remove the same fastener


34


or to fasten or remove a second fastener


34


by rotating either bolt in the associated clockwise or counterclockwise directions.




The slope of the drive surfaces


35


,


36


may vary within a range of angles. Various factors that are used to determine such range are described in U.S. Pat. No. 5,277,531, which is incorporated herein by reference. The degree of the slope can be related to the broad range of fastener hex head tolerances. For example, the smaller the dimension across the flats on the fastener, the deeper the point where it will engage in the socket, likewise the larger this dimension then the shallower the point where it will engage in the socket. Thus, the slopes can be designed to compensate for the wide variations of fasteners dimensions and tolerances that a particular fastener driver would likely be used for. Referring to

FIGS. 11

,


11


A and


12


, it is shown that similar principles can be applied to male members that are inserted into female sockets. Because the similar principles apply, items that are analogous to those previously described have the same numbers with the suffix “a” after the number. There is illustrated a body in the nature of a male driver


20




a


, such as a male driver on a socket wrench and the like. The male driver


20




a


has a body


22




a


having an outer end surface


24




a


and an opposite end (not shown). The male driver


20




a


has a central rotational axis Xa extending through the centers of the outer end surface


24




a


and the opposite end. In one form, axis Xa is the axis of rotation of male driver


20




a.






Projecting from the body


22




a


is a male portion


30




a


, which begins at outer end surface


24




a


and terminates in a back end surface


31




a


towards the rear of male portion


30




a


. The back end surface


31




a


is generally located between the outer end surface


24




a


and some point offset from the opposite end of male driver.




The male portion


30




a


has a generally polygonal shape at the outer end thereof, i.e., at the outer end surface


24




a


, the shape being generally square in the illustrated embodiment and including sides, such as drive regions


32




a


, spaced apart by corner regions


33




a


. In the illustrated embodiment, the male driver


20




a


has a plurality of alternating drive regions


32




a


and corner regions


33




a


arranged about a central axis Xa for cooperation to define the male portion


30




a


. Each of the illustrated corner regions


33




a


comprises a beveled corner forming a relief between two drive regions


32




a


. The reliefs prevent the corner portions


33




a


of male portion


30




a


, from contacting the interior corners of a standard square-shaped female opening that is used to couple a socket and a ratchet wrench. However, the corner regions


33




a


can also comprise differently shaped reliefs. In other cases, the corner regions


33




a


can even comprise normal corners when contacting the interior corners of a female opening is of less concern.




The drive region has one or more drive surfaces


35




a


,


36




a


, respectively extending from the drive regions


32




a


and sloping away from the central axis both generally parallel to the central axis Xa and generally traverse to the central axis Xa. In other words, one or more drive surfaces


35




a


,


36




a


slope away from the central axis in a first direction generally parallel to the central axis, for example along the shortest route between the outer end surface


24




a


and the back end surface


31




a


, and in a second direction generally traverse to the central axis, for example the shortest route between two edges


38




a


of drive region


32




a


. This sloping outward away from the central axis Xa determines the depth of insertion of the male portion


30




a


into a female opening and thus the area of engagement between the male driver


20




a


and the female opening in a socket. In one form, the slope is positive in a direction following the shortest route from the outer end surface


24




a


towards the back end surface


31


a and in one of the two directions that follow the shortest route between two edges


38




a


of the drive region


32




a.






In one form, the drive surfaces


35




a


,


36




a


extend from the back end surface


31




a


towards the outer end surface


24




a


and also extend from a point adjacent one of corner regions


33




a


that borders one edge


38




a


of a drive region


32




a


and towards the other corner region


33




a


bordering the same drive region


32




a


. For purposes of illustration, the size of the drive surfaces


35




a


,


36




a


have been exaggerated in the drawings since, in some embodiments, they may be difficult to see with the naked eye.




As shown in

FIGS. 11 and 12

, the drive surface


35




a


,


36




a


extend from the back end surface


31




a


towards the outer end surface


24




a


, but can end before reaching the outer end surface


24




a


. In another form, the drive surfaces


35




a


,


36




a


can extend all the way to the top of the outer end surface


24




a


(not shown). The drive surfaces


35




a


,


36




a


can have any suitably shaped surfaces, including a planar surface


37




a


(see

FIG. 11A

) or curved surface.




In one form, one or more drive surfaces each comprise a clockwise drive surface


35




a


that has a positive slope from the bottom towards the top of the drive region


32




a


. In another form, one or more drive surfaces each comprise a counterclockwise drive surface


36




a


that has a negative slope from the bottom towards the top of the drive region


32




a


. As used herein, the terms bottom and top refer to the bottom and top direction of a drive region when it is viewed as depicted in the only full drive region


32




a


that is shown in both

FIGS. 11 and 11A

. Drive surfaces


35




a


and


36




a


can be made with the same variations and combinations previously described for drive surfaces


35


and


36


of drive socket


20


.




The operation of the male driver


20




a


is similar to that previously described for drive socket


20


except that the male driver


20




a


is inserted into a square female opening comprising alternating flats and corners and it is drive surfaces


35




a


or


36




a


that engage the flats of the female opening. Additionally, corner portions


33




a


can be beveled to prevent contact with the interior corners of the female opening.




While the device has been disclosed in

FIGS. 1-12

as embodied in a drive socket


20


and male driver


20




a


, it will be appreciated that the principles are applicable to any rotatably driveable device, including those disclosed in U.S. Pat. No. 5,277,531 and can even be applied to the associate male portions of common hex-headed or square-headed nuts and bolts. While, devices that are substantial square-shaped or substantially hex-shaped are depicted, the principles are also applicable to other polygon-shaped devices and other appropriately shaped devices. While the foregoing embodiments are drive sockets and drivers for ratchet wrenches and similar devices, it will be appreciated that the principles of the disclosed device and method are applicable to any socketed device which is adapted to receive an associated male member in engagement in the socket. Likewise the principles of the disclosed device and method are applicable to a male member which is adapted to be received by and to retain an associated female member.




From the foregoing, it can be seen that there has been provided an improved device having either a male member or a female socket which is configured to produce a retention interference fit with an associated female socket or male member.



Claims
  • 1. A device comprising: a body having a plurality of alternating drive regions and corner regions arranged about a central axis, each drive region having disposed thereon and confined thereto only one drive surface which has intersecting edges lying in a plane which intersects the central axis and which has a predetermined slope relative to the axis.
  • 2. A device comprising: a body having a plurality of alternating drive regions and corner regions arranged about a central axis for cooperation to define a socket recess having an open outer end and an inner end, each drive region having disposed thereon and confined thereto only one drive surface which has intersecting edges lying in a plane which intersects the central axis and which has a predetermined slope relative to the axis.
  • 3. The device of claim 2, wherein a first drive region includes a first drive surface having a clockwise drive portion and a second drive region includes a second drive surface disposed thereon and confined thereto, the second drive surface sloping toward the central axis in a first direction generally parallel to the central axis and in a second direction generally traverse to the central axis, wherein the second drive surface includes a counter-clockwise drive portion.
  • 4. The device of claim 2, wherein the at least one drive region includes first and second drive surfaces, and wherein each of the first and second drive surfaces slopes toward the central axis in a first direction generally parallel to the central axis and in a second direction generally traverse to the central axis.
  • 5. The device of claim 4, wherein the first and second drive surfaces intersect at a line disposed between two corner regions that border the at least one drive region.
  • 6. The device of claim 4, wherein at least one of the first and second drive surfaces includes a curved surface.
  • 7. The device of claim 6, wherein the curved surface is concave.
  • 8. The device of claim 4, wherein the first drive surface includes a counterclockwise drive portion.
  • 9. The device of claim 8, wherein the second drive surface includes a clockwise drive portion.
  • 10. The device of claim 4, wherein at least one of the first and second drive surfaces is substantially polygonal in outline.
  • 11. The device of claim 10, wherein the at least one of the first and second drive surfaces is substantially rectangular in outline.
  • 12. The device of claim 10, wherein the at least one of the first and second drive surfaces is substantially triangular in outline.
  • 13. The device of claim 12, wherein the other of the first and second drive surfaces is substantially rectangular in outline.
  • 14. The device of claim 13, wherein the central axis is the axis of rotation of the body.
  • 15. The device of claim 14, wherein the body is a drive socket for a socket wrench.
  • 16. The device of claim 15, wherein at least one corner region includes a relief.
  • 17. The device of claim 16, wherein the relief is a channel formed between two drive regions.
  • 18. A device comprising: a body having a plurality of alternating drive regions and corner regions arranged about a central axis for cooperation to define a male member, each drive region having disposed thereon and confined thereto only one drive surface which has intersecting edges lying in a plane which intersects the central axis and which has a predetermined slope relative to the axis.
US Referenced Citations (31)
Number Name Date Kind
2202240 Trotter May 1940 A
3463209 Podolsky Aug 1969 A
3834253 Carr Sep 1974 A
3835737 Carr Sep 1974 A
3996819 King Dec 1976 A
4060113 Matsushima Nov 1977 A
4126063 Palmer Nov 1978 A
4145939 Garrison Mar 1979 A
4384812 Miyagawa May 1983 A
4457654 Sygnator Jul 1984 A
4607547 Martus Aug 1986 A
4644831 Yang Feb 1987 A
4911593 Kephart Mar 1990 A
4930378 Colvin Jun 1990 A
4934226 Dacey, Jr. Jun 1990 A
4947712 Brosnan Aug 1990 A
4970922 Krivec Nov 1990 A
5012706 Wright et al. May 1991 A
5019080 Hemer May 1991 A
5105690 Lazzara et al. Apr 1992 A
5174704 Kazino et al. Dec 1992 A
5219253 Shinjo Jun 1993 A
5219392 Ruzicka et al. Jun 1993 A
5277531 Krivec Jan 1994 A
5279190 Goss et al. Jan 1994 A
5507211 Wagner Apr 1996 A
5904076 Siwy May 1999 A
6003411 Knox et al. Dec 1999 A
6131493 Yamamoto et al. Oct 2000 A
6199455 Wagner Mar 2001 B1
6354175 Dobson et al. Mar 2002 B1
Foreign Referenced Citations (2)
Number Date Country
0 442 511 Aug 1991 EP
0 596 374 Jun 1992 EP