This application is related to U.S. patent application Ser. No. 12/852,218, which published as US 2012/0035725 and issued as U.S. Pat. No. 8,428,740, entitled “Retinal Prosthesis Techniques,” filed Aug. 6, 2010, which is incorporated herein by reference.
The present invention relates generally to medical devices, and specifically to retinal prostheses for restoring or enhancing visual function.
Retinal malfunction is a leading cause of blindness and visual impairment. Implantation of a retinal prosthesis in the eye may be effective in restoring some useful vision in individuals suffering from blindness of retinal origin. A variety of retinal prostheses have been described in the patent literature.
Embodiments of the present invention that are described hereinbelow provide retinal prostheses and circuits and methods for enhancing performance and reducing power consumption of such prostheses.
There is therefore provided, in accordance with an embodiment of the present invention, a medical device, including an array of electrodes, configured for implantation in contact with tissue in an eye of a living subject. Driver circuitry is configured to drive the electrodes in an alternating pattern, such that different groups of the electrodes are driven to stimulate the tissue during different, predetermined respective time periods.
In some embodiments, the driver circuitry is configured to hold the electrodes at a common potential in time intervals outside the respective time periods so that the electrodes serve as return electrodes during the time intervals. The driver circuitry may include memory elements for returning the electrodes to a common level following the respective time periods.
In a disclosed embodiment, some of the different time periods overlap, and the groups are selected so that the time periods during which mutually-adjacent electrodes are driven do not overlap.
There is also provided, in accordance with an embodiment of the present invention, a medical device, including a first array of electrodes, configured for implantation in contact with tissue in an eye of a living subject. Light-sensing elements in a second array are configured to output respective signals in response to light that is incident on the elements. Conversion circuits in a third array are coupled to receive from the second array the signals from the light-sensing elements and a representation of a mean level of the signals, and to generate pulses to drive the electrodes at respective frequencies determined responsively to differences between the signals and the representation of the mean level.
In disclosed embodiments, the device includes a common voltage reconstruction circuit, which is configured to receive inputs corresponding to the respective signals output by the light-sensing elements and to output the representation of the mean level to the conversion circuits.
The representation of the mean level may include a function of a mean value of the signals, such as a multiple of the mean value or a time-filtered mean value.
There is additionally provided, in accordance with an embodiment of the present invention, a medical device, including a first array of electrodes, configured for implantation in contact with tissue in an eye of a living subject. Light-sensing elements in a second array are configured to output respective signals in response to light that is incident on the elements. Conversion circuits in a third arrays are coupled to receive the signals from the light-sensing elements, and to generate pulses to drive the electrodes at respective frequencies determined responsively to the signals, including an overshoot in the frequencies in response to a change in an intensity of the incident light on a given light-sensing element.
Typically, the overshoot includes a transient increase in a frequency applied to a given electrode in response to an increase in the intensity incident on the given light-sensing element and may include a transient decrease in the frequency applied to the given electrode in response to a decrease in the intensity.
In a disclosed embodiment, the conversion circuits include a low-pass filter for generating the overshoot, wherein the low-pass filter includes a series of capacitive elements that are switched in sequence to generate a low-pass response.
There is further provided, in accordance with an embodiment of the present invention, a medical device, including a first array of electrodes, configured for implantation in contact with tissue in an eye of a living subject, and a second array of driver circuits. Each driver circuit is configured to drive a respective electrode in the first array with pulses responsively to an intensity of light that is incident on a respective area of the eye and includes a memory element for returning the respective electrode to a common level following each pulse.
In a disclosed embodiment, the memory element includes a flip-flop, and the driver circuits are operative to provide balanced stimulation to the tissue. The driver circuits may contain a discharge path for protecting the device from electrostatic discharge.
There is moreover provided, in accordance with an embodiment of the present invention, a medical device, including a first array of electrodes, configured for implantation in contact with tissue in an eye of a living subject, and a second array of driver circuits. Each driver circuit is configured to drive a respective electrode in the first array responsively to an intensity of light that is incident on a respective area of the eye. A power source is coupled to supply electrical power to the driver circuits, and a power sensor is coupled to deactivate a first group of the electrodes when the electrical power drops below a predetermined threshold, while a second group of the electrodes remains active.
In one embodiment, the second group includes the electrodes within a selected region of the first array, while the first group includes the electrodes outside the region. In an alternative embodiment, the first and second groups of the electrodes are interleaved in the first array.
Typically, the power sensor is configured to monitor a voltage output by the power supply and to deactivate the first group of the electrodes when the voltage drops below the predetermined threshold. The power sensor may be configured to compare the voltage output to a plurality of thresholds and reduce a number of active electrodes further as each threshold is passed.
In one embodiment, the power sensor is configured to be implanted in the eye together with the arrays of electrodes and driver circuits. In an alternative embodiment, the power sensor is configured to be located outside the eye and to transmit signals into the eye in order to activate and deactivate the electrodes.
There is furthermore provided, in accordance with an embodiment of the present invention, a method for neural stimulation, which includes providing an array of electrodes for implantation in contact with tissue in an eye of a living subject. The electrodes are driven in an alternating pattern, such that different groups of the electrodes are driven to stimulate the tissue during different, predetermined respective time periods.
There is also provided, in accordance with an embodiment of the present invention, a method for neural stimulation, which includes providing a first array of electrodes for implantation in contact with tissue in an eye of a living subject. A second array of light-sensing elements outputs respective signals in response to light that is incident on the elements. Pulses are generated to drive the electrodes at respective frequencies determined responsively to differences between the signals output by the light-sensing elements and a representation of a mean level of the signals.
There is additionally provided, in accordance with an embodiment of the present invention, a method for neural stimulation, which includes providing a first array of electrodes for implantation in contact with tissue in an eye of a living subject. A second array of light-sensing elements outputs respective signals in response to light that is incident on the elements. Pulses are generated to drive the electrodes at respective frequencies determined responsively to the signals, including an overshoot in the frequencies in response to a change in an intensity of the incident light on a given light-sensing element.
There is further provided, in accordance with an embodiment of the present invention, a method for neural stimulation, which includes providing an array of electrodes for implantation in contact with tissue in an eye of a living subject. The electrodes in the array are driven with pulses responsively to an intensity of light that is incident on a respective area of the eye. Memory elements are coupled to return the electrodes to a common level following each pulse.
There is moreover provided, in accordance with an embodiment of the present invention, a method for neural stimulation, which includes providing an array of electrodes for implantation in contact with tissue in an eye of a living subject. The electrodes in the array are driven responsively to an intensity of light that is incident on an area of the eye. A first group of the electrodes is deactivated when a level of electrical power supplied for driving the electrodes drops below a predetermined threshold, while continuing to drive a second group of the electrodes.
The present invention will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings in which:
Although many retinal prostheses have been proposed in the scientific and patent literature, substantial technical challenges remain in practical implementations of such devices. On the one hand, to mimic natural visual function, such devices should be able to sense light and provide effective neural stimulation with high resolution and high dynamic range. At the same time, because of space limitations and physiological constraints, the circuits of the prosthesis can consume only minimal electrical power. Generally speaking, there is a tradeoff between the efficiency of the electrical circuits and the sensitivity and resolution that the prosthesis can attain.
Embodiments of the present invention that are described hereinbelow address these issues by providing novel, highly efficient processing circuitry for a retinal prosthesis. This circuitry may be integrated with light sensors, electrodes, and other components of retinal prostheses that are described in PCT International Publication WO 2010/089739 and in the above-mentioned U.S. patent application Ser. No. 12/852,218, whose disclosures are incorporated herein by reference.
In the disclosed embodiments, a retinal prosthesis device comprises an array of electrodes, which are implanted so as to contact tissue in the eye of a subject. In some of these embodiments, driver circuits drive the electrodes in an alternating pattern, in which different groups of the electrodes are driven to stimulate the tissue during different, predetermined respective time periods. The groups of the electrodes may be selected geometrically within the array so that the time periods during which mutually-adjacent electrodes are driven do not overlap. Typically, the driver circuits hold the electrodes at a common potential (high or low, depending on the polarity of stimulation) outside their assigned time periods so that the electrodes serve as return electrodes when not applying stimulation.
As a result of these measures, nearly all the energy applied by the driver circuits goes to actually stimulate the neurons in the eye, and wasted energy is minimized. Furthermore, by stimulating different groups of electrodes at different times, an approximately uniform level of overall power output by the circuits can be maintained, thus avoiding large variations in power consumption over time and enhancing efficiency.
In some embodiments, light-sensing elements in the retinal prosthesis output respective signals to conversion circuits, which also receive as input a mean level of the signals from the light-sensing elements. Each conversion circuit generates pulses to drive an electrode at a frequency that depends on the differences between the signal level output by a respective light sensing element (or group of elements) and the mean level. The “mean” that is used by the conversion circuits may be local or global and may comprise any suitable sort of combination of the signal levels, such as a linear, logarithmic, or weighted average or a more complex function. The use of this sort of mean reference level in generating the output pulses to the electrodes enables the prosthesis to compress the large input dynamic range of the light-sensing elements into a much smaller output dynamic range to the electrodes without significant loss of visual information, in a manner similar to the natural functioning of the human eye.
The conversion circuits may be configured to generate an overshoot in the respective frequencies in response to a changes in an intensity of the incident light on a given light-sensing element. This overshoot typically comprises a transient increase in a frequency in response to an increase in light intensity and may also cause a transient decrease in the frequency in response to a decrease in the intensity, mimicking the response of biological light sensing cells in the retina.
It may sometimes occur that the electrical power available to the retinal prosthesis drops below the minimum level needed to run all the circuits of the prosthesis. To deal with this eventuality, while still maintaining some visual function, an embodiment of the present invention provides a power sensor, which deactivates a certain group of the channels in the prosthesis when the electrical power drops below a given threshold, while keeping the remaining electrodes active. The active group may comprise the electrodes within a selected region of the array—meaning that the field of view contracts. Alternatively, the active electrodes may be interleaved with the deactivated electrodes, resulting in reduced resolution.
In the figures and in the explanation that follows, a retinal prosthesis having all of the above features is described. In alternative embodiments, however, only one or a few of the above features may be implemented, possibly in conjunction with other circuits and techniques that are known in the art. All of these embodiments are considered to be within the scope of the present invention.
Conversion circuitry 32 receives and processes the output signals from elements 30 in order to generate pulses to drive electrodes 26. Typically, the frequencies of these pulses depend on the intensity of the light incident on elements 30, as explained in greater detail hereinbelow. In the description that follows, it is assumed that there is a one-to-one correspondence between light-sensing elements 30 and electrodes 26, i.e., circuitry 32 drives each electrode in response to a corresponding light-sensing element. Alternatively, other relations between light-sensing elements and electrodes are possible, such as each electrode being driven in response to a number of neighboring light-sensing elements. Furthermore, although the arrays of light-sensing elements and electrodes in
Typically, circuitry 32 comprises one or more semiconductor chips, in which the analog and digital circuit elements described below are fabricated, using methods of integrated circuit production that are known in the art. Array 28 of light-sensing elements 30 may be integrated into the same chip (or chips) as circuitry 32. Alternatively, array 28 may be fabricated on a separate substrate, and elements 30 may be coupled to the processing channels of circuitry 32 using methods that are known in the art. Electrodes 26 may be fixed to the rear side of prosthesis 20 using through-silicon vias (TSV), for example, or other methods described in the above-mentioned WO 2010/089739 and U.S. Ser. No. 12/852,218.
In the disclosed embodiments, the conversion circuitry in each channel 40 comprises the following circuit components:
A clock generator 48 synchronizes the operation of V2F converters 44 and drive circuits 46. The clock generator outputs multiple different clock phases, for example, sixteen different phases, which are distributed to different groups of channels 40. As a result, different groups of channels are activated at different times to drive the corresponding electrodes 26. The remaining electrodes may serve as ground returns during the inactive periods of the corresponding channels. Alternatively, prosthesis 20 may comprise one common electrode, or a local return per channel or group of channels. This staggered pattern of channel timing is described in greater detail below with reference to
Bias reference circuits 50 provide reference voltages for biasing the current sources in all the analog circuits of channels 40. Circuits 50 receive power from a supply regulator 52, which also provides power to the other components of prosthesis 20. The power may be supplied by transduction of optical energy that is projected into the eye, as described in the above-mentioned WO 2010/089739 and U.S. Ser. No. 12/852,218, or from any other suitable power source. When the available power drops below a certain level, the power supply and switching circuits 50 may shut off power to certain channels 40, while using the limited available power to maintain functionality within a limited group of the channels. This power adaptation functionality is described below with reference to
Various parameters of prosthesis 20 may be modified in order to adapt to the physiology of the patient in whose eye the device is implanted and to adjust for changes that may occur over time. For example, an operator may adjust the level of the pulses output by driver circuits 46 so that they are just sufficient to engender neural stimulation and no higher, thereby reducing wasted energy. The values of the various adjustable parameters are held in a configuration register 54. An optical interface 56 is driven by a coded light beam, which is projected into the eye, and sets the values in register 54 in accordance with the encoded data carried by the beam.
V2I converter 64 comprises a main differential amplifier 68 and/or an overshoot amplifier 70, driven by respective current sources 74 (Irng) and 76 (Iovsh). A baseline current source 78 (Imin) generates a minimum current output level to I2F converter 66. Main amplifier 68 receives as inputs the voltage output from the corresponding LTIA 42 and a representation of the mean voltage level VCM, as noted above. This representation may be the mean value itself, or it may comprise some function of the mean, such as a multiple of the mean (by a coefficient greater than or less than one) or a time-filtered mean value. Overshoot amplifier 70 has a high-pass response due to a series capacitor 74 and a parallel low-pass filter (LPF) 72. This low-pass filter is used here due to the difficulty of implementing high-pass filters with low cut-off frequencies (requiring large capacitance and resistance values) in an integrated circuit.
I2F converter 66 outputs a train of pulses to drive circuit 46, at a frequency that is proportional to the current output of V2I converter 64. The minimum frequency output, in dark conditions, is typically below 10 Hz, while the maximum frequency, during periods of overshoot, may exceed 200 Hz. The pulses output by the I2F converter typically have constant amplitude, usable by the logic circuits in driver circuit 46. The pulses from the I2F converter stimulate driver circuit 46 to generate output pulses to the electrodes with proper timing, as described below. The pulses output from I2F converter 66 may be gated by clock generator 48 (
Filter 72 comprises a chain of multiple stages 80, each comprising two shunt capacitors 86, which are connected in series by two switches 82 and 84. The switches are closed in alternation by clock signals PH1 and PH2. The alternating operation of switches 82 and 84 provides the low-pass response, with a time constant controlled by the number of stages 80 and the frequency of the clock signals. The switches can be implemented using very small transistors. Coupling the capacitors to ground, as shown in
Various alternative implementations of this sort of switched-capacitor chain will be apparent to those skilled in the art and are considered to be within the scope of the present invention.
Reference is now made to
In the pictured embodiment, I2F converter 66 outputs pairs of clock pulses 110 and 112, labeled CLK1 and CLK2, which have a fixed pulse width (PW) and are separated by a fixed delay (DLY). Typically, the pulse widths and the delay are in the range of 50-500 μs. The pulse widths and delay determine the duration and rise and fall times of output pulses 114 from driver circuit 46 to electrode 26, and thus control the amount of charge that is delivered to the tissue in each pulse. These pulse parameters may be adjusted to match the activation threshold of the neurons that are stimulated by the electrodes. The repetition frequencies of clock pulses 110 and 112 determine the frequency of the pulses output by the driver circuit, and hence the intensity of stimulation that is applied to the tissue by the corresponding electrode.
The input clock pulses CLK1 and CLK2 are inverted by inverters 100 and 102 to generate the inverse clock signals CLK1N and CLK2N, and these four clock signals together drive flip-flops 104, 106 and switching logic 108. The switching logic comprises bias transistors P1 and N1, which are driven by bias currents BIASP and BIASN from bias reference circuit 50 (
In operation of driver circuit 46, flip-flops 104 and 106 serve as memory elements to pull electrode 26 back to the common level (ground) after the pulse. The rising edge of the CLK1 signal resets flip-flops 104 and 106, disconnecting the pull-down path of the driver circuit and activating the pull-up path through transistors P1 and P2. As a result, the VDD voltage charges the output to electrode 26 during pulse 110. The rising edge of CLK2 then sets flip-flop 104, thus activating the pull-down path through transistors N1 and N2. At the falling edge of CLK2, flip-flop 106 is set, and adds N3 to the pull-down path.
As a result of the pull-down by flip-flops 104 and 106, the voltage on electrode 26 is tied to ground with low resistance in between stimulation pulses. The resistance of transistor N3 is typically less than 500 ohms. Consequently, during periods in which a given driver circuit 46 is not actively outputting pulses, the corresponding electrode 26 serves well as a return electrode for the active electrodes in its neighborhood. This dual functionality of electrodes 26—as stimulating electrodes and return electrodes at different times—obviates the need for dedicated return electrodes and works efficiently in conjunction with the interleaved stimulation times of different groups of electrodes, as described in detail in the next section. The design of driver circuit 46 and the timing of the pulses applied to control the driver circuit ensure that the tissue receives balanced stimulation from the electrodes.
Referring now to the details of switching logic 108, transistor P1 acts as a pull-up current source, with BIASP generated by a current mirror transistor, which could be common to many driver circuits or the whole array. Similarly, transistor N1 acts as a pull-down current source, with BIASN generated by a current mirror transistor like BIASP. The amount of charging is held equal to the amount of discharging by matching the pull-up current of P1 with the pull-down current of N1 and by matching the pulse widths of CLK1 and CLK2. In case there is residual charge at the end of the pulse, it will be discharged by transistors N1, N2 and N3, which are conducting after the end of the pulse.
The use of switched current sources in circuit 46 (as opposed to voltage switching) enables the output voltage level to be controlled simply by controlling the charging current and charging time. This design eliminates momentarily high currents, which could drop the supply voltage and might damage the tissue contacted by the electrodes due to high current density.
The output circuit to electrode 26 may be exposed to contact with the human body during production of the device and during surgical implantation. For this reason, it is desirable that the electrodes be immune to electrostatic discharge (ESD) stress. Transistor N3 may therefore be configured to provide a discharge path to ground, in order to increase the immunity of prosthesis 20 to ESD.
As noted earlier, the circuit design and waveforms that are shown in
Each channel 40 (including the corresponding driver circuit 46) is assigned to one of sixteen groups, which are numbered in serial order from 0 to 15. Thus, the array is divided up into blocks 122 of 4×4 channels, as shown in the figure, with one channel in each block belonging to each of the groups. (Alternatively, a larger or smaller number of groups may be assigned.) The group numbers indicate the order in which driver circuits 46 are activated. During the active period of its driver circuit, each electrode 26 stimulates the tissue with which it is in contact, following which the driver circuit ties the electrode to ground so that the electrode serves as a return electrode for its neighbors, as explained above. Thus, while the driver circuits in group 12, for example, are active in stimulating the tissue, the neighboring driver circuits in groups 0, 1, 2, 3, 4, 6, 8 and 9 serve as return paths.
Splitting the activation time of the electrodes among multiple phases is useful in avoiding overload of the power supply in prosthesis 20, which may have high serial resistance. When using multiple phases as shown in
In the example shown in
Alternatively, channels 40 may be operated so that the active periods of the different groups of electrodes 26 and driver circuits 46 do not overlap at all, or overlap only minimally.
When the power available from power source 130 drops, however, the operation of channels 40 may be compromised or may cease altogether. This drop may be transient, due to disruption of power beamed into the eye (as described above), for example, or permanent, due to degradation of components of prosthesis 20 over time. In order to avoid total loss of function, when sensor 132 detects that the power level from source 130 has dropped below a certain level, the sensor automatically reduces the number of active channels 40 (and corresponding electrodes) in the array. Optionally, the sensor may have two or more voltage thresholds, and may reduce the number of active channels further as each threshold is passed.
Although sensor 132 is shown in
In the example shown in
Alternatively, other schemes may be used to reduce the number of active channels 40 when the power level drops. The inactive channels may be interleaved in an alternating pattern with the active channels, for example, so that resolution is reduced rather than field of view. For example, in a reduced-power configuration, only alternating channels in alternating rows of the array may be activated. Other such dynamic sizing schemes will be apparent to those skilled in the art and are considered to be within the scope of the present invention.
It will be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.
Number | Name | Date | Kind |
---|---|---|---|
1662446 | Wappler | Mar 1928 | A |
2721316 | Shaw | Oct 1955 | A |
2760483 | Graham | Aug 1956 | A |
4272910 | Danz | Jun 1981 | A |
4551149 | Sciarra | Nov 1985 | A |
4601545 | Kern | Jul 1986 | A |
4628933 | Michelson | Dec 1986 | A |
4664117 | Beck | May 1987 | A |
4786818 | Mead et al. | Nov 1988 | A |
4837049 | Byers et al. | Jun 1989 | A |
4903702 | Putz | Feb 1990 | A |
4914738 | Oda et al. | Apr 1990 | A |
4969468 | Byers et al. | Nov 1990 | A |
5016633 | Chow | May 1991 | A |
5024223 | Chow | Jun 1991 | A |
5081378 | Watanabe | Jan 1992 | A |
5108427 | Majercik et al. | Apr 1992 | A |
5109844 | de Juan, Jr. et al. | May 1992 | A |
5133356 | Bryan et al. | Jul 1992 | A |
5147284 | Fedorov et al. | Sep 1992 | A |
5159927 | Schmid | Nov 1992 | A |
5215088 | Normann et al. | Jun 1993 | A |
5397350 | Chow et al. | Mar 1995 | A |
5411540 | Edell et al. | May 1995 | A |
5476494 | Edell et al. | Dec 1995 | A |
5526423 | Ohuchi et al. | Jun 1996 | A |
5575813 | Edell et al. | Nov 1996 | A |
5597381 | Rizzo, III | Jan 1997 | A |
5608204 | Hofflinger et al. | Mar 1997 | A |
5674263 | Yamamoto et al. | Oct 1997 | A |
5769875 | Peckham et al. | Jun 1998 | A |
5800478 | Chen et al. | Sep 1998 | A |
5800533 | Eggleston et al. | Sep 1998 | A |
5800535 | Howard, III | Sep 1998 | A |
5835250 | Kanesaka | Nov 1998 | A |
5836996 | Doorish | Nov 1998 | A |
5837995 | Chow et al. | Nov 1998 | A |
5865839 | Doorish | Feb 1999 | A |
5873901 | Wu et al. | Feb 1999 | A |
5895415 | Chow et al. | Apr 1999 | A |
5935155 | Humayun et al. | Aug 1999 | A |
5944747 | Greenberg et al. | Aug 1999 | A |
5949064 | Chow et al. | Sep 1999 | A |
6020593 | Chow et al. | Feb 2000 | A |
6032062 | Nisch | Feb 2000 | A |
6035236 | Jarding et al. | Mar 2000 | A |
6043437 | Schulman et al. | Mar 2000 | A |
6069365 | Chow et al. | May 2000 | A |
6075251 | Chow et al. | Jun 2000 | A |
6201234 | Chow et al. | Mar 2001 | B1 |
6230057 | Chow et al. | May 2001 | B1 |
6259937 | Schulman et al. | Jul 2001 | B1 |
6287372 | Briand et al. | Sep 2001 | B1 |
6298270 | Nisch et al. | Oct 2001 | B1 |
6324429 | Shire et al. | Nov 2001 | B1 |
6347250 | Nisch et al. | Feb 2002 | B1 |
6368349 | Wyatt et al. | Apr 2002 | B1 |
6389317 | Chow et al. | May 2002 | B1 |
6400989 | Eckmiller | Jun 2002 | B1 |
6427087 | Chow et al. | Jul 2002 | B1 |
6442431 | Veraart et al. | Aug 2002 | B1 |
6458157 | Suaning | Oct 2002 | B1 |
6472122 | Schulman et al. | Oct 2002 | B1 |
6473365 | Joh et al. | Oct 2002 | B2 |
6498043 | Schulman et al. | Dec 2002 | B1 |
6507758 | Greenberg et al. | Jan 2003 | B1 |
6533798 | Greenberg et al. | Mar 2003 | B2 |
6574022 | Chow et al. | Jun 2003 | B2 |
6611716 | Chow et al. | Aug 2003 | B2 |
6647297 | Scribner | Nov 2003 | B2 |
6658299 | Dobelle | Dec 2003 | B1 |
6677225 | Ellis et al. | Jan 2004 | B1 |
6678458 | Ellis et al. | Jan 2004 | B2 |
6683645 | Collins et al. | Jan 2004 | B1 |
6738672 | Schulman et al. | May 2004 | B2 |
6755530 | Loftus et al. | Jun 2004 | B1 |
6758823 | Pasquale et al. | Jul 2004 | B2 |
6761724 | Zrenner et al. | Jul 2004 | B1 |
6762116 | Skidmore | Jul 2004 | B1 |
6770521 | Visokay et al. | Aug 2004 | B2 |
6785303 | Holzwarth et al. | Aug 2004 | B1 |
6792314 | Byers et al. | Sep 2004 | B2 |
6804560 | Nisch et al. | Oct 2004 | B2 |
6821154 | Canfield et al. | Nov 2004 | B1 |
6844023 | Schulman et al. | Jan 2005 | B2 |
6847847 | Nisch et al. | Jan 2005 | B2 |
6888571 | Koshizuka et al. | May 2005 | B1 |
6904239 | Chow et al. | Jun 2005 | B2 |
6908470 | Stieglitz et al. | Jun 2005 | B2 |
6923669 | Tsui et al. | Aug 2005 | B1 |
6935897 | Canfield et al. | Aug 2005 | B2 |
6949763 | Ovadia et al. | Sep 2005 | B2 |
6961619 | Casey | Nov 2005 | B2 |
6970745 | Scribner | Nov 2005 | B2 |
6974533 | Zhou | Dec 2005 | B2 |
6976998 | Rizzo et al. | Dec 2005 | B2 |
6990377 | Gliner et al. | Jan 2006 | B2 |
7001608 | Fishman et al. | Feb 2006 | B2 |
7003354 | Chow et al. | Feb 2006 | B2 |
7006873 | Chow et al. | Feb 2006 | B2 |
7025619 | Tsui et al. | Apr 2006 | B2 |
7027874 | Sawan et al. | Apr 2006 | B1 |
7031776 | Chow et al. | Apr 2006 | B2 |
7035692 | Maghribi et al. | Apr 2006 | B1 |
7037943 | Peyman | May 2006 | B2 |
7047080 | Palanker et al. | May 2006 | B2 |
7058455 | Huie, Jr. et al. | Jun 2006 | B2 |
7071546 | Fey et al. | Jul 2006 | B2 |
7079881 | Schulman et al. | Jul 2006 | B2 |
7081630 | Saini et al. | Jul 2006 | B2 |
7096568 | Nilsen et al. | Aug 2006 | B1 |
7103416 | Ok et al. | Sep 2006 | B2 |
7107097 | Stern et al. | Sep 2006 | B2 |
7127286 | Mech et al. | Oct 2006 | B2 |
7127301 | Okandan et al. | Oct 2006 | B1 |
7130693 | Montalbo | Oct 2006 | B1 |
7133724 | Greenberg et al. | Nov 2006 | B2 |
7139612 | Chow et al. | Nov 2006 | B2 |
7147865 | Fishman et al. | Dec 2006 | B2 |
7149586 | Greenberg et al. | Dec 2006 | B2 |
7158834 | Paul, Jr. | Jan 2007 | B2 |
7158836 | Suzuki | Jan 2007 | B2 |
7160672 | Schulman et al. | Jan 2007 | B2 |
7162308 | O'Brien et al. | Jan 2007 | B2 |
7177697 | Eckmiller et al. | Feb 2007 | B2 |
7190051 | Mech et al. | Mar 2007 | B2 |
7191010 | Ohta et al. | Mar 2007 | B2 |
7224300 | Dai et al. | May 2007 | B2 |
7224301 | Dai et al. | May 2007 | B2 |
7235350 | Schulman et al. | Jun 2007 | B2 |
7242597 | Shodo | Jul 2007 | B2 |
7244027 | Sumiya | Jul 2007 | B2 |
7248928 | Yagi | Jul 2007 | B2 |
7251528 | Harold | Jul 2007 | B2 |
7255871 | Huie, Jr. et al. | Aug 2007 | B2 |
7257446 | Greenberg et al. | Aug 2007 | B2 |
7263403 | Greenberg et al. | Aug 2007 | B2 |
7271525 | Byers et al. | Sep 2007 | B2 |
7272447 | Stett et al. | Sep 2007 | B2 |
7291540 | Mech et al. | Nov 2007 | B2 |
7295872 | Kelly et al. | Nov 2007 | B2 |
7302598 | Suzuki et al. | Nov 2007 | B2 |
7314474 | Greenberg et al. | Jan 2008 | B1 |
7321796 | Fink et al. | Jan 2008 | B2 |
7342427 | Fensore et al. | Mar 2008 | B1 |
7377646 | Suzuki | May 2008 | B2 |
7379000 | Dai et al. | May 2008 | B2 |
7388288 | Solzbacher et al. | Jun 2008 | B2 |
7400021 | Wu et al. | Jul 2008 | B2 |
7447547 | Palanker | Nov 2008 | B2 |
7447548 | Eckmiller | Nov 2008 | B2 |
7480988 | Ok et al. | Jan 2009 | B2 |
7481912 | Stelzle et al. | Jan 2009 | B2 |
7482957 | Dai et al. | Jan 2009 | B2 |
7483751 | Greenberg et al. | Jan 2009 | B2 |
7493169 | Greenberg et al. | Feb 2009 | B2 |
7499754 | Greenberg et al. | Mar 2009 | B2 |
7539544 | Greenberg et al. | May 2009 | B2 |
7555328 | Schulman et al. | Jun 2009 | B2 |
7556621 | Palanker et al. | Jul 2009 | B2 |
7565202 | Greenberg et al. | Jul 2009 | B2 |
7565203 | Greenberg et al. | Jul 2009 | B2 |
7571004 | Roy et al. | Aug 2009 | B2 |
7571011 | Zhou et al. | Aug 2009 | B2 |
7574263 | Greenberg et al. | Aug 2009 | B2 |
7610098 | McLean | Oct 2009 | B2 |
7622702 | Wu et al. | Nov 2009 | B2 |
7630771 | Cauller | Dec 2009 | B2 |
7631424 | Greenberg et al. | Dec 2009 | B2 |
7638032 | Zhou et al. | Dec 2009 | B2 |
7666523 | Zhou | Feb 2010 | B2 |
7676274 | Hung et al. | Mar 2010 | B2 |
7691252 | Zhou et al. | Apr 2010 | B2 |
7706887 | Tai et al. | Apr 2010 | B2 |
7706893 | Hung et al. | Apr 2010 | B2 |
7709961 | Greenberg et al. | May 2010 | B2 |
7725191 | Greenberg et al. | May 2010 | B2 |
7734352 | Greenberg et al. | Jun 2010 | B2 |
7738962 | Greenberg et al. | Jun 2010 | B2 |
7749608 | Laude et al. | Jul 2010 | B2 |
7750076 | Laude et al. | Jul 2010 | B2 |
7751896 | Graf et al. | Jul 2010 | B2 |
7765009 | Greenberg et al. | Jul 2010 | B2 |
7766903 | Blumenkranz et al. | Aug 2010 | B2 |
7776197 | Zhou | Aug 2010 | B2 |
7831309 | Humayun et al. | Nov 2010 | B1 |
7834767 | Shodo | Nov 2010 | B2 |
7835798 | Greenberg et al. | Nov 2010 | B2 |
7840273 | Schmid | Nov 2010 | B2 |
7846285 | Zhou et al. | Dec 2010 | B2 |
7853330 | Bradley et al. | Dec 2010 | B2 |
7871707 | Laude et al. | Jan 2011 | B2 |
7877866 | Greenberg et al. | Feb 2011 | B1 |
7881799 | Greenberg et al. | Feb 2011 | B2 |
7887681 | Zhou | Feb 2011 | B2 |
7894909 | Greenberg et al. | Feb 2011 | B2 |
7894911 | Greenberg et al. | Feb 2011 | B2 |
7904148 | Greenberg et al. | Mar 2011 | B2 |
7908011 | McMahon et al. | Mar 2011 | B2 |
7912556 | Greenberg et al. | Mar 2011 | B2 |
7914842 | Greenberg et al. | Mar 2011 | B1 |
7937153 | Zhou et al. | May 2011 | B2 |
7957811 | Caspi et al. | Jun 2011 | B2 |
7962221 | Greenberg et al. | Jun 2011 | B2 |
7979134 | Chow et al. | Jul 2011 | B2 |
7989080 | Greenberg et al. | Aug 2011 | B2 |
8000804 | Wessendorf et al. | Aug 2011 | B1 |
8010202 | Shah et al. | Aug 2011 | B2 |
8010206 | Dai et al. | Aug 2011 | B2 |
8014868 | Greenberg et al. | Sep 2011 | B2 |
8014869 | Greenberg et al. | Sep 2011 | B2 |
8014878 | Greenberg et al. | Sep 2011 | B2 |
8024022 | Schulman et al. | Sep 2011 | B2 |
8034229 | Zhou et al. | Oct 2011 | B2 |
8046078 | Greenberg et al. | Oct 2011 | B2 |
8060211 | Greenberg et al. | Nov 2011 | B2 |
8060216 | Greenberg et al. | Nov 2011 | B2 |
8068913 | Greenberg et al. | Nov 2011 | B2 |
8078284 | Greenberg et al. | Dec 2011 | B2 |
8090447 | Tano et al. | Jan 2012 | B2 |
8090448 | Greenberg et al. | Jan 2012 | B2 |
8103352 | Fried et al. | Jan 2012 | B2 |
8121697 | Greenberg et al. | Feb 2012 | B2 |
8131375 | Greenberg et al. | Mar 2012 | B2 |
8131378 | Greenberg et al. | Mar 2012 | B2 |
8145322 | Yao et al. | Mar 2012 | B1 |
8150526 | Gross et al. | Apr 2012 | B2 |
8150534 | Greenberg et al. | Apr 2012 | B2 |
8160713 | Greenberg et al. | Apr 2012 | B2 |
8165680 | Greenberg et al. | Apr 2012 | B2 |
8170676 | Greenberg et al. | May 2012 | B2 |
8170682 | Greenberg et al. | May 2012 | B2 |
8180453 | Greenberg et al. | May 2012 | B2 |
8180454 | Greenberg et al. | May 2012 | B2 |
8180460 | Nevsmith et al. | May 2012 | B2 |
8190267 | Greenberg et al. | May 2012 | B2 |
8195266 | Whalen, III et al. | Jun 2012 | B2 |
8197539 | Nasiatka et al. | Jun 2012 | B2 |
8200338 | Grennberg et al. | Jun 2012 | B2 |
8226661 | Balling et al. | Jul 2012 | B2 |
8239034 | Greenberg et al. | Aug 2012 | B2 |
8244362 | Yonezawa | Aug 2012 | B2 |
8249716 | Tano et al. | Aug 2012 | B2 |
20020091421 | Greenberg et al. | Jul 2002 | A1 |
20030023297 | Byers et al. | Jan 2003 | A1 |
20030032946 | Fishman et al. | Feb 2003 | A1 |
20030132946 | Gold | Jul 2003 | A1 |
20040054407 | Tashiro et al. | Mar 2004 | A1 |
20040078064 | Suzuki | Apr 2004 | A1 |
20040088026 | Chow et al. | May 2004 | A1 |
20040098067 | Ohta et al. | May 2004 | A1 |
20040181265 | Palanker et al. | Sep 2004 | A1 |
20040189940 | Kutschbach et al. | Sep 2004 | A1 |
20050015120 | Seibel et al. | Jan 2005 | A1 |
20050119605 | Sohn | Jun 2005 | A1 |
20050146954 | Win et al. | Jul 2005 | A1 |
20060106432 | Sawan et al. | May 2006 | A1 |
20060111757 | Greenberg et al. | May 2006 | A9 |
20060184245 | Graf et al. | Aug 2006 | A1 |
20060282128 | Tai et al. | Dec 2006 | A1 |
20060287688 | Yonezawa | Dec 2006 | A1 |
20070005116 | Lo | Jan 2007 | A1 |
20070123766 | Whalen et al. | May 2007 | A1 |
20070142877 | McLean | Jun 2007 | A1 |
20070142878 | Krulevitch et al. | Jun 2007 | A1 |
20070191909 | Ameri et al. | Aug 2007 | A1 |
20080114230 | Addis | May 2008 | A1 |
20080234791 | Arle et al. | Sep 2008 | A1 |
20080262571 | Greenberg et al. | Oct 2008 | A1 |
20080288036 | Greenberg et al. | Nov 2008 | A1 |
20090002034 | Westendorp et al. | Jan 2009 | A1 |
20090005835 | Greenberg et al. | Jan 2009 | A1 |
20090024182 | Zhang et al. | Jan 2009 | A1 |
20090118805 | Greenberg et al. | May 2009 | A1 |
20090192571 | Stett et al. | Jul 2009 | A1 |
20090204207 | Blum et al. | Aug 2009 | A1 |
20090204212 | Greenberg et al. | Aug 2009 | A1 |
20090216295 | Zrenner et al. | Aug 2009 | A1 |
20090228069 | Dai et al. | Sep 2009 | A1 |
20090287275 | Suaning et al. | Nov 2009 | A1 |
20090326623 | Greenberg et al. | Dec 2009 | A1 |
20100174224 | Sohn | Jul 2010 | A1 |
20100204754 | Gross et al. | Aug 2010 | A1 |
20100249878 | McMahon et al. | Sep 2010 | A1 |
20100331682 | Stein et al. | Dec 2010 | A1 |
20110054583 | Litt et al. | Mar 2011 | A1 |
20110172736 | Gefen et al. | Jul 2011 | A1 |
20120035725 | Gefen et al. | Feb 2012 | A1 |
20120035726 | Gross et al. | Feb 2012 | A1 |
20120041514 | Gross et al. | Feb 2012 | A1 |
20120209350 | Taylor et al. | Aug 2012 | A1 |
20120221103 | Liran et al. | Aug 2012 | A1 |
20120259410 | Gefen et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
WO-0191854 | Dec 2001 | WO |
WO-03032946 | Apr 2003 | WO |
WO-2007009539 | Jan 2007 | WO |
WO-2007095395 | Aug 2007 | WO |
WO-2010035173 | Apr 2010 | WO |
WO-2010089739 | Aug 2010 | WO |
WO-2011086545 | Jul 2011 | WO |
WO-2012017426 | Feb 2012 | WO |
WO-2012114327 | Aug 2012 | WO |
WO-2012153325 | Nov 2012 | WO |
Entry |
---|
International Search Report and Written Opinion dated Aug. 12, 2011 for Application No. PCT/IL2011/00022. |
Office Action issued Aug. 24, 2011 for U.S. Appl. No. 12/368,150. |
International Search Report and Written Opinion issued Dec. 12, 2011 for PCT/IL2011-00609. |
U.S. Appl. No. 12/852,218, Gefan et al. |
Zrenner E., 2002. “Will retinal implants restore vision?” Science 295(5557), pp. 1022-1025. |
Jourdain R P., et al., “Fabrication of piezoelectric thick-film bimorph micro-actuators from bulk ceramics using batch-scale methods” Multi-Material Micro Manufacture, S. Dimov and W. Menz (Eds.) 2008 Cardiff University, Cardiff, UK., Whittles Publishing Ltd. |
Lianga C, et al., “Surface modification of cp-Ti using femtosecond laser micromachining and the deposition of Ca/P layer” Materials Letters vol. 62, Issue 23, Aug. 31, 2008, pp. 3783-3786. |
Seo J M., et al., “Biocompatibility of polyimide microelectrode array for retinal stimulation,” Materials Science and Engineering: C, vol. 24, No. 1, Jan. 5, 2004, pp. 185-189 (5). |
Sorkin R., et al., “Process entanglement as a neuronal anchorage mechanism to rough surfaces,” Nanotechnology 20 (2009) 015101 (8pp). |
Vorobyeva A Y. et al., “Metallic light absorbers produced by femtosecond laser pulses,” Advances in Mechanical Engineering vol. 2010, Article ID 452749, 4 pages doi:10.1155/2010/452749, Hindawi Publishing Corporation. |
Vorobyeva A Y. et al., “Femtosecond laser structuring of titanium implants,” Applied Surface Science vol. 253, Issue 17, Jun. 30, 2007, pp. 7272-7280. |
Wallman L., et al., “The geometric design of micromachined silicon sieve electrodes influences functional nerve regeneration,” Biomaterials May 2001:22(10):1187-93. |
Warren M. Grill, et al. “Implanted Neural Interfaces: Biochallenges and Engineered Solutions”, Annu. Rev. Biomed. Eng. 2009, 11:1-24. |
International Search Report dated Aug. 17, 2010 in connection with PCT/IL2010/00097. |
Puech M., et al., “Fabrication of 3D packaging TSV using DRIE” ALCATEL Micro Machining Systems, www.adixen.com. |
Stein DJ, et al., “High voltage with Si series photovoltaics” Proceedings of SPIE, the International Society for Optical Engineering 206, vol. 6287, pp. 62870D.1-62870D. |
Starzyk JA, et al., “A DC-DC charge pump design based on voltage doublers” IEEE Transaction on Circuits and Systems—I: Fundamental theory and applications, vol. 48, No. 3, Mar. 2001. |
Walter P., et al., “Cortical Activation via an implanted wireless retinal prosthesis,” Investigative Ophthalmology and Visual Science. 2005;46:1780-1785. |
Wu J T. and Chang K L., “MOS charge pumps for low-voltage operation” IEEE Journal of Solid-State Circuits, vol. 33 No. 4 Apr. 1998. |
Swain P K., et al., “Back-Illuminated Image Sensors Come to the Forefront. Novel materials and fabrication methods increase quality and lower cost of sensors for machine vision and industrial imaging.” Photonics Spectra Aug. 2008. |
Sony Global News Release “Sony develops back-illuminated CMOS image sensor, realizing high picture quality, nearly twofold sensitiviity (*1) and low noise,” published Feb. 24, 2011 at “<http://www.sony.net/SonyInfo/News/Press/200806/08-069E/index.html>”, pp. 1-3. |
David C NG, et al., “Pulse frequency modulation based CMOS image sensor for subretinal stimulation” IEEE Transactions on Circuits and Systems-II: Express Briefs, vol. 53, No. 6, Jun. 2006. |
Kim B., “Through-Silicon-Via Copper Deposition for Vertical Chip Integration” Master. Res. Soc. Symp. Proc. vol. 970, 2007 Material Research Society. |
Delbruck and Mead, “Analog VLSI Adptive, Logarithmic, Wide-dynamic-Range Photoreceptor,” 1994 International Symposium on Circuits and Systems (London, 1994), pp. 339-342. |
Palanker D. et al., “Design of a high-resolution optoelectric retinal prosthesis”. Journal of Neural Engineering, Institute of physics publishing, Bristol, GB. vol. 2, No. 1, Mar. 1, 2005, pp. S105-S120, XP002427333, ISSN: 1741-2552, DOI: 10.1088/1741-2560/2/1/012. |
Supplementary European Search Report dated Aug. 10, 2012, which issued during the prosecution of Applicant's European Application No. 10 73 8277. |
International Preliminary Report on Patentability dated Jul. 17, 2012, which issued during the prosecution of Applicant's PCT/IL2011/000022. |
Schwarz et al.: “Single-Chip CMOS Image Sensors for a Retina Implant System”, Member, IEEE, 2000. |
Pelayo et al.: “Cortical Visual Neuro-Prosthesis for the Blind: Retina-Like Software/Hardware Preprocessor”, Dept. of Computer Architecture and Technology, University of Granada, Spain, Neural Engineering, 2003. Conference Proceedings. First International IEEE EMBS Conference. |
Office Action dated Sep. 28, 2012, which issued during the prosecution of U.S. Appl. No. 13/103,264. |
International Search Report and a Written Opinion both dated Sep. 17, 2012, which issued during the prosecution of Applicant's PCT/IL12/00057. |
Office Action dated Aug. 28, 2012, which issued during the prosecution of U.S. Appl. No. 12/852,218. |
M. Schwarz, et al.. “Hardware Architecture of a Neural Net Based Retina Implant for Patients Suffereing from Retinitis Pigmentosa”, Fraunhofer Institute of Microelectric Circuits and Systems, pp. 653-658. |
K. Ganesan, et al. “Diamond Penetrating Electrode Array for Epi-Retinal Prosthesis,” 32nd Annual International Conference of the IEEE EMBS, Buenos Aires, Argentina, Aug. 31-Sep. 4, 2010, pp. 6757-6760. |
W. Finn, et al., “An Amphibian Model for Developing and Evaluating Retinal Protheses,” 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam 1996, pp. 1540-1541. |
Shawn Kelly, “A system for electrical Retinal Stimulation for Human Trials”, Massachusetts Institute of Technology, Jun. 1998, pp. 1-45. |
A. Andreaou, et al., “Translinear Circuits in Subthreshold MOS,” Analog Integrated Circuits and Signal Processing, vol. , pp. 141-166 (1996). |
Number | Date | Country | |
---|---|---|---|
20120221103 A1 | Aug 2012 | US |