The size of electronic devices ranges from the very small to the very large. Gaming devices, portable data assistants (PDAs) and other portable computing devices, laptops, cell phone, smart phones, video players, music players, medical devices, and numerous other types of electronic devices are typically provided in sizes and shapes that are convenient for a user to hold, carry, and transport, for example, by being able to fit within a user's purse or pocket. For example, portable electronic devices are beginning to be used as personal computing platforms, combining computational power and communication capabilities with user convenience in a compact form. Typically such devices include a display used to present pertinent information to the user and, in some cases, the display surface can also be used as a touch sensitive input device. A popular form of such a portable electronic device fits comfortably in a shirt pocket.
Despite the progress made in electronic devices, there is a need in the art for improved methods and systems for display devices.
The present invention relates generally to electronic devices. More specifically, the present invention relates to methods and systems for electronic devices having retractable elements. Particular embodiments of the present invention enable increased display size while retaining portability. Merely by way of example, the invention has been applied to electronic devices having screens or other display elements for displaying images, keyboard elements, sound producing elements, heating/cooling elements, and/or other elements that are retractable.
According to an embodiment of the present invention, a device is provided. The device includes a processor and a memory coupled to the processor. The memory is encoded with instructions that are executable by the processor to provide content signals. The device also includes a display screen extendable to present an extended portion comprising display pixels configured to display content using the content signals. Extension of the display screen imposes a compound shape on the extended portion of the display screen characterized by a central region and a peripheral angled edge region.
According to another embodiment of the present invention, a device is provided that includes an enclosure and an element extendable from the enclosure to present an extended portion comprising transducers. The extended portion is characterized by a plurality of radii of curvature in some embodiments. In other embodiments, the extended portion is characterized by one or more radii of curvature.
According to yet another embodiment of the present invention, a method of operating a retractable electronic device is provided. The method includes extending an element from within an enclosure to present an extended portion comprising transducers outside of the enclosure and activating the transducers to output content via a surface of the extended portion of the element. The method also includes retracting the element to a compact form within the enclosure.
According to an embodiment of the present invention, a device having a processor coupled to a memory encoded with instructions that are executable by the processor to provide content signals is provided. The device further has a display screen extendable to present an extended portion comprising display pixels configured to display content using the content signals. Extension of the display screen imposes an arcuate cross-sectional shape on the extended portion of the display screen, for example, to impose stiffness, rigidity, strength, or otherwise support the extended portion. The arcuate cross-sectional shape may produce uniform stiffness throughout the extended portion of the display screen. In addition to display pixels, the extended portion may have touch sensors for receiving touch input on a surface of the extended portion. The exemplary device may include an enclosure with a curved slot from which the extended portion extends while extended. The arcuate cross-sectional shape may be imposed by the curved slot in the enclosure. The enclosure may secure the display screen when retracted such that the arcuate cross-sectional shape is not imposed on the display screen while secured within the enclosure.
According to another embodiment of the present invention, a device is provided that includes an element extendable to present an extended portion comprising transducers and an enclosure comprising a curved slot through which the element is extended and retracted. An arcuate cross-sectional shape is imposed on the extended portion by the curved slot in the enclosure, but the arcuate cross-sectional shape is not imposed while the element is secured within the enclosure. The transducers may convert electrical signals originating from a processor to display a pixel-based electronic image, provide a screen for projected light images, convert touch input on a surface of the extended portion to signals provided to a processor, produce sound, produce heat, or provide a cooling function, as examples.
According to a specific embodiment of the present invention, a method is provided that includes extending an element from within an enclosure to present an extended portion comprising transducers outside of the enclosure. The element is extended through a curved slot in the enclosure, such that the curved slot imposes an arcuate cross-sectional shape on the extended portion. The arcuate cross-sectional shape is not imposed while the element is secured within the enclosure. The exemplary method further comprises activating the transducers to output content or receive input via a surface of the extended portion of the element and retracting the element to a compact form within the enclosure.
According to another specific embodiment of the present invention, an electronic device having a retractable element is provided. The retractable element has an extended form and a retracted form. The extended form may be stiffened by imposing an arcuate shape. The arcuate shape may be curved or angled, over the entire retractable element or limited to edge regions or other portions. The retractable element may comprise plastic and/or metallic material, and the arcuate shape may be imposed in molds or tooling by combinations of heat and pressure, casting, cold forming, or the like.
According to another embodiment of the present invention, a device is provided. The device includes a processor and a memory coupled to the processor. The memory is encoded with instructions that are executable by the processor to provide content signals. The device also includes a display screen extendable to present an extended portion comprising display pixels configured to display content using the content signals. Extension of the display screen imposes an arcuate cross-sectional shape on the extended portion of the display screen. The arcuate cross-sectional shape imposed on the extended portion of the display screen can produce uniform stiffness throughout the extended portion of the display screen. The display screen can include a polymeric material having a thickness between 5 μm and 250 μm or a metallic material. In some embodiments, the extended portion further comprises touch sensors for receiving touch input on a surface of the extended portion. The device can include an enclosure having a curved slot from which the extended portion extends while extended. A radius of curvature of the curved slot is between 0.5 inch and 20 inches. The display screen is secured within the enclosure in a retracted position in which the arcuate cross-sectional shape is not imposed on the display screen while secured within the enclosure. The device can also include a tab accessible for extending the display screen from the enclosure. Moreover, the device can include a crank, wherein rotation of the crank rolls the display screen within the enclosure.
In an embodiment, each of the display pixels comprises display circuits coupled to the processor that are operable to emit or reflect light. The display circuits can be coupled to the processor using wires or conductive traces. In other embodiments, the device can include an interface chip operable to provide for wireless communications under the control of the processor. When fully extended, the extended portion can have a length to width ratio between 0.1 and 10. The device can additionally include at least one of a motor or a spring configured to retract the display screen.
Numerous benefits are achieved by way of the present invention over conventional techniques. For example, embodiments of the present invention provide solutions to conventional devices in which the degree of portability is usually accompanied by a small-sized display that may be considered ill-suited for some applications, such as, but not limited to watching video, viewing or editing large documents, reviewing or creating emails, and performing spreadsheet calculations. Utilizing embodiments of the present invention, large display areas are provided as suitable for the above applications.
These and other embodiments of the invention along with many of its advantages and features are described in more detail in conjunction with the text below and attached figures.
Electronic devices having screens or other display elements for displaying images, keyboard elements, sound producing elements, heating/cooling elements, and/or other elements that are retractable are disclosed. Such elements may extend and retract from a device by being extended to an elongated or extended form and then retracted to a retracted form, as a specific example, by being unwound from and then wound inside an enclosure. In embodiments in which the retractable element is wound, the retractable element comprises a flexible substrate. As examples, thin polymeric (plastic) materials, thin metal foils, and the like may be used in embodiments of the present invention. Some materials provided herein have a flexural modulus in the range of 0.5-10 GPa, although other materials with other characteristics may also be used.
In an embodiment, a flexible, retractable element of a device is stiffened when unwound or otherwise extended from the device because an arcuate (i.e., bowed) cross-sectional shape is imposed across the retractable element. If extended without any stiffening strategy, a flexible element would typically sag due to gravity and have other undesirable mechanical instabilities. However, an arcuate shape is imposed on the flexible, retractable substrate, providing adequate stiffness, for example, for providing a display and/or accepting touch inputs without substantially bending or deforming. The arcuate shape thus provides support and rigidity, for example, for a uniformly contoured and useable display screen. For example, adding curvature to a sheet of flexible material can create mechanical shell characteristics, causing it to carry loads through a combination of membrane response and bending response. Membrane response or “shell response” can increase stiffness for example in the way that the arcuate shape of shells such as arched panels, cylindrical pipes, and egg shells increase the stiffness of those objects that if otherwise shaped would bend or break more easily.
The flexible, retractable element may, but need not, include or otherwise use support strips or braces to provide additional support when extended. Omitting strips or braces may reduce the thickness, weight, or other attributes of a device. For example, a flexible element may be wound into a more compact retracted form by omitting strips or braces.
A flexible, retractable element may be used to provide one or more of a wide variety of features on a device. As examples, a flexible, retractable element may comprise transducers for various purposes, a screen for displaying pixel-based electronic images, a screen for projected light images, a keyboard, a touch-based input device, a sound producing device, and/or a heating or cooling device. A flexible, retractable element may provide or add multi-media capabilities to a device. For example, a smart phone device may include a flexible, retractable element that provides information to a user that is visual (e.g., via display pixels), aural (e.g., voice, music, or other audio), and/or tactile. In an embodiment in which the retractable elements provides a screen for projected light images in the extended position, the reflectivity of various portions of the element may be varied to provide a predetermined reflection profile that can be fixed for a period of time to display still images on a screen and change at a predetermined refresh rate as appropriate to the display of video images on a screen.
In one embodiment, a retractable display comprising display pixels on a flexible substrate is peripheral to a host electronic device, which may be a hand-held device. The display pixels are capable of emitting or reflecting light and have associated display circuits. In this example, a display pixel is a picture element representing one dot on the display screen. Communication between the host and the display circuits may employ wires or flexible circuit traces and/or wireless communications. A wired interface may employ the High Definition Multimedia Interface (“HDMI”) standard for example, or alternatively a variant of the Universal Serial Bus (“USB”) standard. Wireless communications may employ recent semiconductor chips developed for Near Field Communications (“NFC”), optimized for a short range such as a few centimeters. A device that includes a fixed, rigid screen may include a flexible, retractable element that provides a larger screen, for example, to display enhanced content when a user-selects a large-size display format option. Such a large size display can enable an improved user experience for watching movies, television, or the like, as well as for graphics-intensive applications such as video games, large spreadsheets, long threads of e-mail messages, and medical diagnostics, including X-ray analysis, for example.
A flexible, extendible element may comprise a metal foil and provide a heating or cooling function on a device. In one such device, a cooling surface or heat sink may be extended from the device in extended form if additional cooling is necessary and retracted into a smaller form when the cooling is not needed. Extending a cooling surface may be manually controlled or automatic, for example, based on a sensor detecting that cooling is required. A device with a flexible, retractable, cooling element may be employed by a soldier, for example, who may deploy the cooling element to cool an electronic equipment pack while in camp and retract the cooling element to enable a compact profile when on the move.
Various mechanisms may be used to extend and retract a flexible, retractable element. For example, a flexible, retractable element may be extended by a user pulling on a tab provided at an edge or a projecting portion of the element that is accessible while the element is retracted. Winding or otherwise retracting and unwinding or otherwise extending a flexible, retractable element may be accomplished using any combination of human fingers, a knurled knob, a hand crank, a spring, or a motor, as examples. In one example, human fingers apply torque for winding and unwinding to either a knurled knob or to a hand crank that winds a rollable retractable element into a compact wound state within an enclosure. Unwinding may additionally or alternatively be achieved by the user pulling on a tab. A spring may be used to store energy during unwinding, the energy returned during the winding operation to reduce the required torque. The spring may obviate the need for a motor to wind the device. Alternatively, a motor may be used to apply torque for winding or unwinding, in response to, for example, a user pressing a button on the device.
A larger display may be provided as a user option, to be deployed when preferred by the user, and having a convenient method for deploying the larger display and for storing it when done. This display can accomplish this function while not significantly compromising compactness, or portability such as the ability to carry the device in a shirt pocket. It is desirable that the retractable display be rugged enough to sustain many thousands of deployment cycles; also to sustain dropping on the floor or other surface without severe damage.
These illustrative examples are given to illustrate embodiments of the present invention and are not intended to limit the scope of the present invention. The following sections describe various additional embodiments and examples with reference to the drawings in which like numerals indicate like elements. It should be noted that the figures are only intended to facilitate the description of specific embodiments. They are not intended as an exhaustive description or as a limitation on the scope of the present invention. In addition, an aspect described in conjunction with a particular embodiment is not necessarily limited to that embodiment and may be practiced in other embodiments.
The enclosure 12 in the example of
Retractable element 13 may be a display screen. Various display technologies are well suited to retractable displays. These include but are not limited to organic light emitting diode (“OLED”) displays and quantum dot displays (“QLEDs”). Some versions of these display technologies support high resolution pixel displays and are also fast enough to display video for movies and television, such as, active matrix (“AM”) displays, including AMOLED and AMQLED respectively. AMOLED and AMQLED displays may employ a single substrate that may be easier to wind around a small radius spool. A small radius may be useful for portable devices, for example, improving the ability of a device to fit easily in a user's pocket. Also, the substrate may be thin, of the order of 0.002 inches for example, providing lower bending forces than thicker substrates. The lower bending forces lead to a lower winding torque.
Multiple thin film layers may be deposited and patterned on the substrate to form a display screen. The thin film layers may include both organic and inorganic materials and combinations thereof. AM displays typically require a backplane comprising thin film transistors (TFTs) arranged to implement row-and-column addressing of individual display elements (pixels). The layers comprising the TFT backplane and the light-emitting or light-controlling elements may be thin, for example, of the order of 1 μm in thickness, and may have a flexible rather than a brittle characteristic so they can withstand many thousands of deployment cycles without cracking or fatigue problems.
Other display types may also be rollable, including liquid crystal displays (“LCDs”), and electrophoretic or “electronic paper” or “ePaper” reflective type displays. LCD displays are typically constructed on a plurality of substrates arranged in a stack. Typically these will include a diffuser, polarizers, color filters and a backlight for example. An ePaper display also typically requires a plurality of substrates in a stacked construction, which may make it more difficult to roll the display into a small radius enclosure for storage. Nonetheless, both LCD and ePaper displays may be adaptable to rollable versions, albeit with a larger radius than single-substrate devices in some embodiments. Reel-to-reel manufacturing methods are suitable for many display types with printed electronics methods of fabrication enabling substantially lowered production costs.
Retractable element 13 may comprise one or more of many suitable polymeric and/or other materials, including but not limited to various forms of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), MYLAR, MELINEX, and multiple forms of polyimide (KAPTON, UPILEX, CR1). PET, PEN, MYLAR, MELINEX, KAPTON and UPILEX are thermo-elastic materials that can be heat formed by applying heat and pressure in a mold. CR1 is a clear polyimide available from Mantech Electronics (Pty) Ltd. that can be cast in a mold. Benzocyclobutene, BCB, is a polymeric resin used as a dielectric and can also be cast in a mold. Retractable element 13 may also comprise one or more of many suitable metallic materials, including but not limited to steel, spring steel, and stainless steel as examples. For good performance in an environment of repeated stress (during rolling and unrolling for example) the metallic materials may be “full hard”, such as full hard 302 or 304 stainless steel, which may be dual certified as AMS5906 and AMS5913 respectively. Advantages provided by metallic materials use in conjunction with retractable element 13 are lower creep and a reduced tendency to take on a set when stored in retracted form, particularly at high temperatures. The metallic materials may be formed by cold stamping, or by a drawing process as examples. Other advantages of metallic materials are an improved water barrier, since metals generally are substantially less water permeable than other materials, and moisture can adversely affect many electronic devices, OLED displays in particular. OLED and QLED displays are light-emitting, not requiring a backlight. ePaper displays are reflective, again not requiring a backlight. Liquid crystal displays employ electronic light shutters implemented using liquid crystals as cross-polarizable materials and typically require a backlight.
A further advantage of using a metallic material for the retractable element 13 may relate to integration of a pixel display substrate with a retractable element, the advantage relating to cold forming of the retractable element. For example, a pixel display substrate with a fully formed backplane and light emitting pixels may be produced by a first manufacturer. This display substrate may have high value, and further processing may degrade it, particularly processing at an elevated temperature. The retractable element 13 may be produced by a second manufacturer. For convenience and low cost relating to integration of the pixel display substrate of the first manufacturer with the retractable element of the second manufacturer, and to avoid degradation of the valuable display substrate, cold forming around the edges of retractable element 13 may be desirable. Cold forming may also be used advantageously for affixing the pixel display substrate to the retractable element, as will be further described below.
The retractable element 13 may, but need not, include or otherwise use support strips or braces (not shown) to provide additional support when extended. Omitting strips or braces may reduce the thickness, weight, or other attributes of a device. For example, a flexible element may be wound into a more compact retracted form by omitting strips or braces. In addition, it may be desirable to omit support strips, braces, and other structural members to improve endurance or durability, particularly in circumstances in which frequent extension and retraction of the retractable element 13 is expected. Support members and braces may also interfere with the clean lines of a retractable element 13 used as a display, creating an aesthetic undesirable to some users. Support members and braces may complicate the apparatus for winding and unwinding, just by their physical presence and size and weight, and they may add undesirable weight and cost. For example, with regard to weight, retractable element 13 comprising a polymeric substrate sheet and thin films may have a total weight less than 4 gm in the case of a polymeric substrate sheet having a 0.004 inch thickness deployed in a 7-inch display weighing around 3 gm and thin films comprising display layers weighing less than 1 gm. External bracing elements used with such a display may weigh many times more than this.
Endurance is provided so that the mean number of deployment cycles available in a retractable device before the device becomes damaged or degraded to the point of unacceptability to the user is high. Examples of unacceptability include failure to wind or unwind, scratching or other surface damage that degrades a displayed image, or kinks that create annoying distortions in a displayed image. The kinks may be a consequence of repeated dropping of the device, for example.
Device 10 may have various attributes that improve endurance, reduce size requirements, and provide various other features advantageous to particular applications. With respect to endurance, strong shear forces may be generated during extension and retraction of the retractable element 13. These shear forces may damage fragile substrate material that may be included in the retractable element 13. When a sheet material is bent to form a radius of curvature, the outer surface of the sheet will be in tension and the inner surface will be in compression. The tensile and compressive force vectors can be summed to create a resultant shear stress; the shear stress is proportional to sheet thickness and inversely proportional to the radius of curvature. Shear-induced damage to the retractable element 13 and/or external support structural member may appear only after repetitive screen deployments. Various materials-related and mechanical design features maybe implemented to support high endurance and long life, for example, of device 10. The retractable element 13 may be a single substrate to provide low winding torque, a small radius, and a compact rolled or otherwise retracted form. The retractable device may be thin to enable a small radius of curvature with low winding torque. Low winding torque may otherwise be achieved to improve device life and endurance. Using few or no external members to provide support for the retractable element 13 may provide endurance in terms of deployment cycles and a compact rolled or otherwise retracted form. The retractable element may be formed of materials selected to improve endurance. In one example, lubricity of films and the cylindrical enclosure is high to provide for low torque operation and lack of cracking with multiple bending cycles resulting in good fatigue performance. Wireless data communications may be employed to reduce the cabling requirement and increase the useful life of cable components. Avoiding the use of brushes and electrical wiper connections may result in lower maintenance and long operational life. Configurations that include limit stops and strain relief may also provide longer operational life.
Using such attributes in a device having a retractable element comprising a 7-inch display that is wound inside a cylinder enclosure of 0.375 inch diameter, a torque requirement less than 3 ounce-inches per inch of display width is achievable. Such a diameter is suitable for integrating with a smart phone having a similar thickness, for example. A sheet thickness in the range of 0.001-0.010 inches may provide adequate stability of the extended form, while requiring a small winding/unwinding torque. Using the wireless connection method, the number of signal conductors can be reduced from typically over twenty conductors, to as few as just two conductors required for power, with the transmission of display data handled by the wireless link. The small number of conductors can be implemented in a relatively narrow flexible interconnection circuit; the narrow circuit may be stressed less by the twisting action associated with winding and unwinding.
Portable devices will preferably endure dropping on the floor or other surface without substantial damage. In the extended mode, the retractable element 13 may fold on impact with the floor, thereby avoiding permanent damage. The absence of structural support members in the retractable element 13 of the device 10 may also provide a simpler and more durable structure for surviving stress of this type. The thinness of retractable element 13 may allow it to flex more easily and have less of a tendency to kink than thicker structures. The lower mass may also result in a lower momentum being developed during the fall, reducing the force on impact. In one embodiment, an accelerometer is provided in the device 10 to detect free-fall to provide information used to responsively partially or completely retract the retractable element 13 before the device 10 reaches the floor, for example, by activating a motorized or spring-loaded retraction mechanism.
In
A computer-readable medium or other memory may comprise, but is not limited to, an electronic, optical, magnetic, or other storage device capable of providing a processor with computer-readable instructions. Other examples comprise, but are not limited to, a floppy disk, CD-ROM, DVD, magnetic disk, memory chip, ROM, RAM, an ASIC, a configured processor, optical storage, magnetic tape or other magnetic storage, or any other medium from which a computer processor can read instructions. The instructions may comprise processor-specific instructions generated by a compiler and/or an interpreter from code written in any suitable computer-programming language, including, for example, C, C++, C#, Visual Basic, Java, Python, Perl, and JavaScript.
The host component 11 may also comprise a number of external or internal devices such as a mouse, joystick, buttons, a touch screen, touch pad, a camera, a CD-ROM, DVD, a keyboard, a display, audio speakers, one or more microphones, or any other input or output devices. A bus may be included in the host component. Host component 11 could be a gaming device, a PDA or other portable computing devices, a laptop, a desktop computer, a workstation, a television, a cell phone, a smart phone, a video player, a music player, a medical device, and one of numerous other types of electronic devices. Host component 11 may be portable, stationary, used on a desktop, mounted to a wall or ceiling or otherwise used in a residence or other building, mounted or otherwise integrated in an automobile, boat, airplane, or other craft, or otherwise used.
Substrate 23 (also referred to as “sheet”) may, but need not comprise, a polymeric material, a metallic material, or combinations thereof. The flexibility (and conversely the rigidity) of substrate 23 will depend on the chosen material(s) and its/their thickness. In one embodiment, the flexural modulus is in the range of 0.5-10 GPa. The thickness of substrate 23 will typically vary with the size of the deployed flexible device, and for certain devices is between 5 μm and 250 μm. Thinner substrates will pack more tightly into shell 25 of mechanism 20, and they will also be capable of a smaller radius of curvature. Stress in a curved substrate may be calculated by dividing the thickness of the substrate by the radius of curvature; if the thickness is reduced by half, the radius of curvature can also be reduced by half without increasing stress in the substrate material. The ability to retract the flexible device into a highly compact space may be desirable, for example, to reduce the thickness of shell 25 and device 10 to as small as 0.375 inch or smaller.
Winding forces associated with retraction and unwinding forces associated with extension depend on the stiffness of substrate 23; a stiffer substrate will typically require more torque on shaft 22 to accomplish the desired winding motion. Accordingly, it is desirable to use thin substrates that can be rolled into compact form and will require low torque in operation; for similar reasons it is also desirable to use thin films in fabricating the flexible device on the flexible substrate. Low torque requirements will typically be conducive to long life of mechanism 20. It may be desirable to configure a device to achieve an endurance target of an average of 10,000 deployment cycles, each cycle including winding and unwinding of substrate 23. However, if substrate 23 is too thin it will typically not be rigid enough to form a well-shaped display (having substantial uniformity) without drooping or sagging under the effect of gravity, or exhibiting other unwanted variations in shape or configuration. Also it may be desirable that the substrate support the application of finger movements or gestures for the case of touch-sensitive displays. The advantages of using a thin substrate as well as other advantages are enabled by stiffening the deployed screen 13 of
In
In some implementations, the extended portion can be characterized by one or more radii of curvature. In some embodiments, the extended portion is characterized by a plurality of radii of curvature. In these implementations, rather than a single curvature across the substrate 32, the cross section can be characterized by several curvatures as a function of position, for example, flat in a central region (substantially an infinite radius of curvature) or a gentle curvature in the central region and a smaller radius of curvature at edge portions. In some embodiments, the central region is flat and peripheral portions (e.g., sides) have edges that are either flat angled portions or curved angled portions. The curvature can vary at the transition from the flat region to the angled edges to provide mechanical rigidity. One of ordinary skill in the art would recognize many variations, modifications, and alternatives.
The method also includes activating the transducers to output content via a surface of the extended portion of the element (1414) and retracting the element to a compact form within the enclosure (1416). In some embodiments, activating the transducers can include receiving input via a surface of the extended portion of the element.
It should be appreciated that the specific steps illustrated in
Numerous specific details are set forth herein to provide a thorough understanding of the claimed subject matter. However, those skilled in the art will understand that the claimed subject matter may be practiced without these specific details. Other elements that would be known by one of ordinary skill have not been described in detail so as not to obscure claimed subject matter. The use of “adapted to” or “configured to” herein is meant as open and inclusive language that does not foreclose devices adapted to or configured to perform additional tasks or steps.
The devices and systems discussed herein are not limited to any particular hardware architecture or configuration. An electronic or other computing device can include any suitable arrangement of components. Computing devices include but are not limited to multipurpose microprocessor-based computer systems accessing stored software that programs or configures the computing system from a general purpose computing apparatus to a specialized computing apparatus. Any suitable programming, scripting, or other type of language or combinations of languages may be used to implement software to be used in programming or configuring a computing device, for example, to control operation of a retractable element, contents to be displayed on a retractable element, or process input received from an input mechanism provided on a retractable element.
While the present subject matter has been described in detail with respect to specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing may readily produce alterations to, variations of, and equivalents to such embodiments. Accordingly, it should be understood that the present disclosure has been presented for purposes of example rather than limitation, and does not preclude inclusion of such modifications, variations and/or additions to the present subject matter as would be readily apparent to one of ordinary skill in the art. For example, a pull tab 14 is shown for extending (unwinding) an exemplary display screen and a hand crank is shown for retracting (winding) the display screen, but winding and unwinding may be accomplished using other means, including but not limited to any combination of human fingers, a knurled knob, a hand crank, a spring, and a motor, as is known in the art. Similarly, while an example of a retractable mechanism attached to a smart phone is described, a retractable element and/or an associated enclosure may be separated from the smart phone or other host and need not be used with a host at all. For example, a retractable screen for viewing a projected image could be a stand-alone device, not requiring any power or associated wires. Also, the principles described for the retractable display may be applied to larger and smaller display formats, for example a device having a retractable display for viewing large format X-ray images or a miniaturized retractable device attached to eye glasses. A device need not be portable. The retractable device may not be a display but rather a keyboard, or a speaker for creating sound, or may implement another transducer or heating/cooling device, or any other useful flexible device having an extended form and a retracted form.
This application claims priority to U.S. Provisional Patent Application No. 61/376,441, filed on Aug. 24, 2010, entitled “Retractable Device,” the disclosure of which is hereby incorporated by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
61376441 | Aug 2010 | US |