Retractable and/or stowable handwheels may be available with the introduction of automated driver assistance systems (ADAS) and autonomous vehicle systems. Drivers may want a handwheel to be retracted or moved (e.g., upon request) in situations such as when a vehicle is in an autonomous mode. The handwheel may also be brought into a standard driving position when the driver wishes to steer the vehicle.
In accordance with one aspect of the invention, an embodiment of a control system includes a sensing element configured to detect a gesture from at least one user in a vehicle including a handwheel, and a gesture control module configured to receive gesture information from the sensing element and control at least one of the handwheel and the vehicle based on the gesture information.
In accordance with another aspect of the invention, an embodiment of a method of controlling an aspect of a vehicle includes detecting, by a sensing element, a gesture from at least one user in a vehicle including a handwheel, receiving gesture information from the sensing element by a gesture control module, and controlling at least one of the handwheel and the vehicle based on the gesture information.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
Referring now to
It is noted that the embodiments described herein are not limited to the steering system shown in
In one embodiment, the handwheel 14 is moveable to allow a controller and/or user to move the handwheel 14 between various positions. For example, the handwheel 14 may be moveable to one or more positions at which a driver can operate the handwheel 14 and steer the vehicle (referred to as “driving positions”). The handwheel 14 may also be retracted or moved to a stowed position (e.g., during autonomous operation). The handwheel 14 can be moved using a variety of mechanisms, such as a hinged or pivoting portion of the steering shaft 16, a telescoping or retractable portion of the steering shaft 16, or any other suitable mechanism.
As shown in
The vehicle also includes sensors for detecting the position and/or movement of the handwheel 16. In one embodiment, the handwheel includes a torque sensor and/or position sensor (collectively referred to as handwheel sensor 34). The handwheel sensor 34 can sense a torque placed on the handwheel 14 and/or sense the angular position of the handwheel 14. Other sensors include sensors for detecting the position (motor position) and rotational speed (motor velocity or motor speed) of the steering actuator motor or other motor associated with the steering assist unit 18.
A control module 40 controls the operation of the steering system 12 based on one or more sensor signals and further based on the steering control systems and methods of the present disclosure. The control module may be used as part of an EPS system to provide steering assist torque and/or may be used as a driver assistance system that can control steering of the vehicle (e.g., for parking assist, emergency steering control and/or autonomous or semi-autonomous steering control). An example of a driver assistance system is an ADAS (Advanced Driver Assistance Systems) system that, instead of or in addition to directly assisting the driver (by reducing steering efforts), can also accept a position command from another control system to achieve directional control of a vehicle in certain conditions.
Generally speaking, the steering control systems and methods of the present disclosure can be used to control the position of a handwheel or steering wheel and/or provide directional control of a vehicle (either autonomously, semi-autonomously or by providing torque or steering assist) based on one or more gestures performed by a user (e.g., driver or passenger). The control module 40 or other suitable processing device or system senses user gestures and performs various control actions. In one embodiment, the control module responds to appropriate gestures to move the handwheel 14 between one or more driving positions and/or between a driving position and a retracted or stowed position. The control module 40 may also respond to gestures to control steering of the vehicle to allow a user to control the vehicle without physically engaging the handwheel 14.
Aspects of embodiments described herein may be performed by any suitable control system and/or processing device, such as the steering assist unit 18 and/or the control module 40. In one embodiment, the control module 40 is or is included as part of an autonomous driving system.
The gesture control module 52 may control steering and/or handwheel functions, such as the function of retracting the handwheel 14 to a retracted or stowed position, redeployment of the handwheel 14 to a driving position, and moving the handwheel 14 between multiple driving positions. For example, a wave with both hands of a driver with palms toward the dash (or other location of the sensing element 54) may indicate to the control system 50 to retract the handwheel 14. Similarly, a driver may wave both hands toward the dash (or other location of the sensing element 54) to deploy the handwheel 14 into the driving position (e.g. by waving with both hands). The sensing element 54 is positioned so as to view the driver's hand or hands. The sensing element 54 may be a video camera, light sensor, motion sensor or other type of sensor sufficient to recognize driver gestures. A location for the camera may be in the center of the handwheel 14, or to one or more sides of an interface 54 located on the dashboard or on the center of the handwheel 14, although the location is not limited to any specific embodiments described herein.
As described herein, a “gesture” refers to any movement by a user, driver or operator that can be recognized by the gesture control module 52 and used to control an aspect of a handwheel and/or vehicle. Gestures may include directional gestures, waves, hand signals and others, and can correspond to a command such as a steering command or a handwheel position control command, e.g., to retract or stow the handwheel, return the handwheel to a driving position and/or move the handwheel to different driving positions. The number and type of gestures recognized by the gesture control module may be pre-selected (e.g., default) or customizable based on user input.
In one embodiment, the interface 56 includes a display area such as a two-dimensional screen display and/or a three-dimensional holographic display. The display may be positioned at any suitable location, such as at the dashboard or at the handwheel 14. For example, once the handwheel 14 is retracted, an area that the handwheel 14 has vacated may include use for a holographic display area for other gesture functions or entertainment. For gesture functions, a driver could passively page through a menu of vehicle functions by waving a hand left or right within a range of the sensing element 56, for example. A driver could also raise both hands palms up to indicate a change request (e.g. increasing the volume of the audio system) within a range of the sensing element 56. Similarly, to lower the volume, the driver may lower both hands, palms down.
In one embodiment, the display is disposed at a central location or other location on the handwheel that is visible to a user. For example, the display is located on the center hub of the handwheel 14. The center hub may be a stationary hub (i.e., the hub does not rotate when the handwheel is rotated) or the center hub may rotate with the handwheel 14. If the center hub rotates with the handwheel 14, the display could be positioned or configured so that the best viewing would be when the handwheel 14 is stationary. In another example, if the handwheel 14 is stowable, the display can be located so that the best viewing would be when the handwheel 14 is stowed. The display may be located in the dash of the vehicle, e.g., if the handwheel 14 is completely stowed in the dash, so that an unobstructed view of the display area is ensured.
Various gestures can be used to steer the vehicle via a holographic or virtual steering wheel. An example of a three-dimensional holographic display is shown in
In the embodiment of
An example of the holographic image 70 is an image of a steering wheel (a “virtual steering wheel”). The virtual steering wheel can be projected and hand motions around the virtual steering wheel can be tracked to provide steering signals to the vehicle. This can be used in a retracted mode or give the opportunity to remove the actual steering wheel completely. Gestures can also provide optional placement of the virtual steering wheel in the vehicle if multiple cameras are installed. Finally, the physical steering wheel may be replaced with a holographic steering wheel and the holographic steering wheel may be controlled with gestures in a manner described herein.
In the first stage 81, a user (e.g., a driver or passenger) performs a gesture, such as a hand wave or a display of a hand or hands in a selected configuration. The gesture is performed by the user to cause an action to be performed by a control system such as the control system 50.
In the second stage 82, the gesture is detected by a sensing element, such as a video camera.
In the third stage 83, the gesture control module receives gesture detection data from the sensing element and determines the action to be performed based on the gesture. Examples of actions include retracting the handwheel to a retracted or stowed position, moving the handwheel from the retracted or stowed position to a driving position, and moving the handwheel between different driving positions. Other examples include controlling other vehicle systems, such as video, display options, radio station and volume, wipers, etc. Further examples of actions include vehicle control actions such as steering the vehicle.
In the fourth stage 84, the gesture control module generates a message or command to perform the action. For example, the gesture control module sends a command to an appropriate vehicle system or component to realize the action. For example, if the gesture is for moving the handwheel, the gesture control module sends a command to operate an internal motor to move the handwheel. If the gesture is to steer the vehicle (e.g., in conjunction with a holographic image of the handwheel), the gesture control module sends a command to a motor (e.g., in the steering assist unit 18) or sends a command to a steering assist or control system (e.g., the control module 40).
Embodiments described herein provide numerous advantages. The control systems described herein can allow a user to position a handwheel and/or steer a vehicle without requiring the use of buttons or other mechanical devices. This is advantageous over processes that retract the handwheel by pressing a button or grabbing the handwheel and moving it to a desired location. Such processes can present challenges as they may require the user to search for the button, which adds to driver work load and may force the driver's attention off the road. The button may also take up dashboard space, and the act of grabbing the handwheel and moving the handwheel could be difficult for the driver. Embodiments described herein address such challenges and can increase driver safety.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description.
This patent application claims priority to U.S. Provisional Patent Application Ser. No. 62/175,777, filed Jun. 15, 2015 which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4315117 | Kokubo et al. | Feb 1982 | A |
4337967 | Yoshida et al. | Jul 1982 | A |
4503300 | Lane, Jr. | Mar 1985 | A |
4503504 | Suzumura et al. | Mar 1985 | A |
4561323 | Stromberg | Dec 1985 | A |
4691587 | Farrand et al. | Sep 1987 | A |
4836566 | Birsching | Jun 1989 | A |
4921066 | Conley | May 1990 | A |
4962570 | Hosaka et al. | Oct 1990 | A |
4967618 | Matsumoto et al. | Nov 1990 | A |
4976239 | Hosaka | Dec 1990 | A |
5240284 | Takada et al. | Aug 1993 | A |
5295712 | Omura | Mar 1994 | A |
5319803 | Allen | Jun 1994 | A |
5469356 | Hawkins et al. | Nov 1995 | A |
5488555 | Asgari et al. | Jan 1996 | A |
5618058 | Byon | Apr 1997 | A |
5668721 | Chandy | Sep 1997 | A |
5690362 | Peitsmeier et al. | Nov 1997 | A |
5765116 | Wilson-Jones et al. | Jun 1998 | A |
5893580 | Hoagland et al. | Apr 1999 | A |
5911789 | Keipert et al. | Jun 1999 | A |
6070686 | Pollmann | Jun 2000 | A |
6138788 | Bohner et al. | Oct 2000 | A |
6170862 | Hoagland et al. | Jan 2001 | B1 |
6212453 | Kawagoe et al. | Apr 2001 | B1 |
6227571 | Sheng et al. | May 2001 | B1 |
6256561 | Asanuma | Jul 2001 | B1 |
6301534 | McDermott, Jr. et al. | Oct 2001 | B1 |
6354622 | Ulbrich et al. | Mar 2002 | B1 |
6360149 | Kwon et al. | Mar 2002 | B1 |
6373472 | Palalau et al. | Apr 2002 | B1 |
6381526 | Higashi et al. | Apr 2002 | B1 |
6390505 | Wilson | May 2002 | B1 |
6481526 | Millsap et al. | Nov 2002 | B1 |
6575263 | Hjelsand et al. | Jun 2003 | B2 |
6578449 | Anspaugh et al. | Jun 2003 | B1 |
6598695 | Menjak et al. | Jul 2003 | B1 |
6612392 | Park et al. | Sep 2003 | B2 |
6612393 | Bohner et al. | Sep 2003 | B2 |
6778890 | Shimakage et al. | Aug 2004 | B2 |
6799654 | Menjak et al. | Oct 2004 | B2 |
6817437 | Magnus et al. | Nov 2004 | B2 |
6819990 | Ichinose | Nov 2004 | B2 |
6820713 | Menjak et al. | Nov 2004 | B2 |
6889792 | Fardoun et al. | May 2005 | B1 |
7021416 | Kapaan et al. | Apr 2006 | B2 |
7048305 | Muller | May 2006 | B2 |
7062365 | Fei | Jun 2006 | B1 |
7295904 | Kanevsky et al. | Nov 2007 | B2 |
7308964 | Hara et al. | Dec 2007 | B2 |
7428944 | Gerum | Sep 2008 | B2 |
7461863 | Muller | Dec 2008 | B2 |
7495584 | Sorensen | Feb 2009 | B1 |
7628244 | Chino et al. | Dec 2009 | B2 |
7719431 | Bolourchi | May 2010 | B2 |
7735405 | Parks | Jun 2010 | B2 |
7793980 | Fong | Sep 2010 | B2 |
7862079 | Fukawatase et al. | Jan 2011 | B2 |
7894951 | Norris et al. | Feb 2011 | B2 |
7909361 | Oblizajek et al. | Mar 2011 | B2 |
8002075 | Markfort | Aug 2011 | B2 |
8027767 | Klein et al. | Sep 2011 | B2 |
8055409 | Tsuchiya | Nov 2011 | B2 |
8069745 | Strieter et al. | Dec 2011 | B2 |
8079312 | Long | Dec 2011 | B2 |
8146945 | Born et al. | Apr 2012 | B2 |
8150581 | Iwazaki et al. | Apr 2012 | B2 |
8170725 | Chin et al. | May 2012 | B2 |
8170751 | Lee et al. | May 2012 | B2 |
8260482 | Szybalski et al. | Sep 2012 | B1 |
8352110 | Szybalski et al. | Jan 2013 | B1 |
8452492 | Buerkle et al. | May 2013 | B2 |
8479605 | Shavrnoch et al. | Jul 2013 | B2 |
8548667 | Kaufmann | Oct 2013 | B2 |
8606455 | Boehringer et al. | Dec 2013 | B2 |
8632096 | Quinn et al. | Jan 2014 | B1 |
8634980 | Urmson et al. | Jan 2014 | B1 |
8650982 | Matsuno et al. | Feb 2014 | B2 |
8670891 | Szybalski et al. | Mar 2014 | B1 |
8695750 | Hammond et al. | Apr 2014 | B1 |
8725230 | Lisseman et al. | May 2014 | B2 |
8798852 | Chen et al. | Aug 2014 | B1 |
8818608 | Cullinane et al. | Aug 2014 | B2 |
8825258 | Cullinane et al. | Sep 2014 | B2 |
8825261 | Szybalski et al. | Sep 2014 | B1 |
8843268 | Lathrop et al. | Sep 2014 | B2 |
8874301 | Rao et al. | Oct 2014 | B1 |
8880287 | Lee et al. | Nov 2014 | B2 |
8881861 | Tojo | Nov 2014 | B2 |
8899623 | Stadler et al. | Dec 2014 | B2 |
8909428 | Lombrozo | Dec 2014 | B1 |
8915164 | Moriyama | Dec 2014 | B2 |
8948993 | Schulman et al. | Feb 2015 | B2 |
8950543 | Heo et al. | Feb 2015 | B2 |
8994521 | Gazit | Mar 2015 | B2 |
9002563 | Green et al. | Apr 2015 | B2 |
9031729 | Lathrop et al. | May 2015 | B2 |
9032835 | Davies et al. | May 2015 | B2 |
9045078 | Tovar et al. | Jun 2015 | B2 |
9073574 | Cuddihy et al. | Jul 2015 | B2 |
9092093 | Jubner et al. | Jul 2015 | B2 |
9108584 | Rao et al. | Aug 2015 | B2 |
9134729 | Szybalski et al. | Sep 2015 | B1 |
9150200 | Urhahne | Oct 2015 | B2 |
9150224 | Yopp | Oct 2015 | B2 |
9150238 | Alcazar et al. | Oct 2015 | B2 |
9159221 | Stantchev | Oct 2015 | B1 |
9164619 | Goodlein | Oct 2015 | B2 |
9174642 | Wimmer et al. | Nov 2015 | B2 |
9186994 | Okuyama et al. | Nov 2015 | B2 |
9193375 | Schramm et al. | Nov 2015 | B2 |
9199553 | Cuddihy et al. | Dec 2015 | B2 |
9227531 | Cuddihy et al. | Jan 2016 | B2 |
9233638 | Lisseman et al. | Jan 2016 | B2 |
9235111 | Davidsson et al. | Jan 2016 | B2 |
9235211 | Davidsson et al. | Jan 2016 | B2 |
9235987 | Green et al. | Jan 2016 | B2 |
9238409 | Lathrop et al. | Jan 2016 | B2 |
9248743 | Enthaler et al. | Feb 2016 | B2 |
9260130 | Mizuno | Feb 2016 | B2 |
9290174 | Zagorski | Mar 2016 | B1 |
9290201 | Lombrozo | Mar 2016 | B1 |
9298184 | Bartels et al. | Mar 2016 | B2 |
9308857 | Lisseman et al. | Apr 2016 | B2 |
9308891 | Cudak et al. | Apr 2016 | B2 |
9315210 | Sears et al. | Apr 2016 | B2 |
9333983 | Lathrop et al. | May 2016 | B2 |
9360865 | Yopp | Jun 2016 | B2 |
9714036 | Yamaoka et al. | Jul 2017 | B2 |
9725098 | Abou-Nasr | Aug 2017 | B2 |
9810727 | Kandler et al. | Nov 2017 | B2 |
9845109 | George et al. | Dec 2017 | B2 |
9852752 | Chou et al. | Dec 2017 | B1 |
9868449 | Holz | Jan 2018 | B1 |
10040330 | Anderson | Aug 2018 | B2 |
20020016661 | Frediani et al. | Feb 2002 | A1 |
20030046012 | Yamaguchi | Mar 2003 | A1 |
20030094330 | Boloorchi et al. | May 2003 | A1 |
20030227159 | Muller | Dec 2003 | A1 |
20040016588 | Vitale et al. | Jan 2004 | A1 |
20040046346 | Eki et al. | Mar 2004 | A1 |
20040099468 | Chernoff et al. | May 2004 | A1 |
20040129098 | Gayer et al. | Jul 2004 | A1 |
20040182640 | Katou et al. | Sep 2004 | A1 |
20040204808 | Satoh et al. | Oct 2004 | A1 |
20040262063 | Kaufmann et al. | Dec 2004 | A1 |
20050001445 | Ercolano | Jan 2005 | A1 |
20050081675 | Oshita et al. | Apr 2005 | A1 |
20050155809 | Krzesicki et al. | Jul 2005 | A1 |
20050197746 | Pelchen et al. | Sep 2005 | A1 |
20050205344 | Uryu | Sep 2005 | A1 |
20050275205 | Ahnafield | Dec 2005 | A1 |
20060224287 | Izawa et al. | Oct 2006 | A1 |
20060244251 | Muller | Nov 2006 | A1 |
20060271348 | Rossow et al. | Nov 2006 | A1 |
20070021889 | Tsuchiya | Jan 2007 | A1 |
20070029771 | Haglund et al. | Feb 2007 | A1 |
20070046003 | Mori et al. | Mar 2007 | A1 |
20070046013 | Bito | Mar 2007 | A1 |
20070241548 | Fong | Oct 2007 | A1 |
20070284867 | Cymbal et al. | Dec 2007 | A1 |
20080009986 | Lu et al. | Jan 2008 | A1 |
20080238068 | Kumar et al. | Oct 2008 | A1 |
20090024278 | Kondo et al. | Jan 2009 | A1 |
20090112406 | Fujii et al. | Apr 2009 | A1 |
20090189373 | Schramm | Jul 2009 | A1 |
20090256342 | Cymbal et al. | Oct 2009 | A1 |
20090276111 | Wang et al. | Nov 2009 | A1 |
20090292466 | McCarthy et al. | Nov 2009 | A1 |
20100152952 | Lee et al. | Jun 2010 | A1 |
20100222976 | Haug | Sep 2010 | A1 |
20100228417 | Lee et al. | Sep 2010 | A1 |
20100228438 | Buerkle | Sep 2010 | A1 |
20100250081 | Kinser et al. | Sep 2010 | A1 |
20100280713 | Stahlin et al. | Nov 2010 | A1 |
20100286869 | Katch et al. | Nov 2010 | A1 |
20100288567 | Bonne | Nov 2010 | A1 |
20110098922 | Ibrahim | Apr 2011 | A1 |
20110153160 | Hesseling et al. | Jun 2011 | A1 |
20110167940 | Shavrnoch et al. | Jul 2011 | A1 |
20110187518 | Strumolo et al. | Aug 2011 | A1 |
20110224876 | Paholics et al. | Sep 2011 | A1 |
20110266396 | Abildgaard et al. | Nov 2011 | A1 |
20110282550 | Tada et al. | Nov 2011 | A1 |
20120136540 | Miller | May 2012 | A1 |
20120150388 | Boissonnier et al. | Jun 2012 | A1 |
20120197496 | Limpibunterng et al. | Aug 2012 | A1 |
20120205183 | Rombold | Aug 2012 | A1 |
20120209473 | Birsching et al. | Aug 2012 | A1 |
20120215377 | Takemura et al. | Aug 2012 | A1 |
20120296525 | Endo et al. | Nov 2012 | A1 |
20130002416 | Gazit | Jan 2013 | A1 |
20130087006 | Ohtsubo et al. | Apr 2013 | A1 |
20130158771 | Kaufmann | Jun 2013 | A1 |
20130218396 | Moshchuk et al. | Aug 2013 | A1 |
20130233117 | Read et al. | Sep 2013 | A1 |
20130253765 | Bolourchi et al. | Sep 2013 | A1 |
20130292955 | Higgins et al. | Nov 2013 | A1 |
20130325202 | Howard et al. | Dec 2013 | A1 |
20140012469 | Kunihiro et al. | Jan 2014 | A1 |
20140028008 | Stadler et al. | Jan 2014 | A1 |
20140046542 | Kauffman et al. | Feb 2014 | A1 |
20140046547 | Kauffman et al. | Feb 2014 | A1 |
20140070933 | Gautama et al. | Mar 2014 | A1 |
20140111324 | Lisseman et al. | Apr 2014 | A1 |
20140152551 | Mueller | Jun 2014 | A1 |
20140156107 | Karasawa et al. | Jun 2014 | A1 |
20140168061 | Kim | Jun 2014 | A1 |
20140172231 | Terada | Jun 2014 | A1 |
20140277896 | Lathrop et al. | Sep 2014 | A1 |
20140277945 | Chandy | Sep 2014 | A1 |
20140300479 | Wolter et al. | Oct 2014 | A1 |
20140303827 | Dolgov et al. | Oct 2014 | A1 |
20140306799 | Ricci | Oct 2014 | A1 |
20140309816 | Stefan et al. | Oct 2014 | A1 |
20140354568 | Andrews et al. | Dec 2014 | A1 |
20150002404 | Hooton | Jan 2015 | A1 |
20150006033 | Sekiya | Jan 2015 | A1 |
20150014086 | Eisenbarth | Jan 2015 | A1 |
20150032322 | Wimmer | Jan 2015 | A1 |
20150032334 | Jang | Jan 2015 | A1 |
20150051780 | Hahne | Feb 2015 | A1 |
20150060185 | Feguri | Mar 2015 | A1 |
20150120124 | Bartels et al. | Apr 2015 | A1 |
20150120141 | Lavoie et al. | Apr 2015 | A1 |
20150120142 | Park et al. | Apr 2015 | A1 |
20150123947 | Jubner | May 2015 | A1 |
20150210273 | Kaufmann et al. | Jul 2015 | A1 |
20150246673 | Tseng et al. | Sep 2015 | A1 |
20150251666 | Attard et al. | Sep 2015 | A1 |
20150283998 | Lind et al. | Oct 2015 | A1 |
20150314804 | Aoki et al. | Nov 2015 | A1 |
20150324111 | Jubner et al. | Nov 2015 | A1 |
20150338849 | Nemec et al. | Nov 2015 | A1 |
20160001781 | Fung et al. | Jan 2016 | A1 |
20160009332 | Sirbu | Jan 2016 | A1 |
20160071418 | Oshida et al. | Mar 2016 | A1 |
20160075371 | Varunjikar et al. | Mar 2016 | A1 |
20160082867 | Sugioka et al. | Mar 2016 | A1 |
20160185387 | Kuoch | Jun 2016 | A1 |
20160200246 | Lisseman et al. | Jul 2016 | A1 |
20160200343 | Lisseman et al. | Jul 2016 | A1 |
20160200344 | Sugioka et al. | Jul 2016 | A1 |
20160207536 | Yamaoka et al. | Jul 2016 | A1 |
20160207538 | Urano et al. | Jul 2016 | A1 |
20160209841 | Yamaoka et al. | Jul 2016 | A1 |
20160229450 | Basting et al. | Aug 2016 | A1 |
20160231743 | Bendewald et al. | Aug 2016 | A1 |
20160244070 | Bendewald et al. | Aug 2016 | A1 |
20160280251 | George et al. | Sep 2016 | A1 |
20160288825 | Varunjikar et al. | Oct 2016 | A1 |
20160291862 | Yaron et al. | Oct 2016 | A1 |
20160318540 | King | Nov 2016 | A1 |
20160318542 | Pattok et al. | Nov 2016 | A1 |
20160347347 | Lubischer | Dec 2016 | A1 |
20160347348 | Lubischer | Dec 2016 | A1 |
20160355207 | Urushibata | Dec 2016 | A1 |
20160362084 | Martin et al. | Dec 2016 | A1 |
20160362126 | Lubischer | Dec 2016 | A1 |
20160364003 | O'Brien | Dec 2016 | A1 |
20160368522 | Lubischer | Dec 2016 | A1 |
20160375860 | Lubischer | Dec 2016 | A1 |
20160375923 | Schulz | Dec 2016 | A1 |
20160375925 | Lubischer et al. | Dec 2016 | A1 |
20160375926 | Lubischer et al. | Dec 2016 | A1 |
20160375927 | Schulz et al. | Dec 2016 | A1 |
20160375928 | Magnus | Dec 2016 | A1 |
20160375929 | Rouleau | Dec 2016 | A1 |
20160375931 | Lubischer | Dec 2016 | A1 |
20170029009 | Rouleau | Feb 2017 | A1 |
20170029018 | Lubischer | Feb 2017 | A1 |
20170066473 | Yu et al. | Mar 2017 | A1 |
20170101032 | Sugioka et al. | Apr 2017 | A1 |
20170101127 | Varunjikar et al. | Apr 2017 | A1 |
20170113712 | Watz | Apr 2017 | A1 |
20170151950 | Lien | Jun 2017 | A1 |
20170151977 | Varunjikar et al. | Jun 2017 | A1 |
20170151978 | Oya et al. | Jun 2017 | A1 |
20170158055 | Kim et al. | Jun 2017 | A1 |
20170158222 | Schulz et al. | Jun 2017 | A1 |
20170166222 | James | Jun 2017 | A1 |
20170203785 | Naik et al. | Jul 2017 | A1 |
20170225704 | Urushibata | Aug 2017 | A1 |
20170232998 | Ramanujam et al. | Aug 2017 | A1 |
20170240204 | Raad et al. | Aug 2017 | A1 |
20170242428 | Pal et al. | Aug 2017 | A1 |
20170274929 | Sasaki et al. | Sep 2017 | A1 |
20170293306 | Riefe et al. | Oct 2017 | A1 |
20170297606 | Kim et al. | Oct 2017 | A1 |
20170305425 | Oct 2017 | A1 | |
20170305458 | Wang et al. | Oct 2017 | A1 |
20170334458 | Sato et al. | Nov 2017 | A1 |
20180015948 | Varunjikar et al. | Jan 2018 | A1 |
20180017968 | Zhu et al. | Jan 2018 | A1 |
20180029632 | Bodtker et al. | Feb 2018 | A1 |
20180059661 | Sato et al. | Mar 2018 | A1 |
20180059662 | Sato et al. | Mar 2018 | A1 |
20180072341 | Schulz et al. | Mar 2018 | A1 |
20180093700 | Chandy | Apr 2018 | A1 |
20180105198 | Bodtker et al. | Apr 2018 | A1 |
20180107214 | Chandy | Apr 2018 | A1 |
20180136727 | Chandy | May 2018 | A1 |
20180148087 | Wang et al. | May 2018 | A1 |
Number | Date | Country |
---|---|---|
1722030 | Jan 2006 | CN |
1736786 | Feb 2006 | CN |
101037117 | Sep 2007 | CN |
101041355 | Sep 2007 | CN |
101596903 | Dec 2009 | CN |
102027458 | Apr 2011 | CN |
102320324 | Jan 2012 | CN |
102452391 | May 2012 | CN |
202563346 | Nov 2012 | CN |
102939474 | Feb 2013 | CN |
103158699 | Jun 2013 | CN |
103419840 | Dec 2013 | CN |
103448785 | Dec 2013 | CN |
103677253 | Mar 2014 | CN |
103777632 | May 2014 | CN |
103818386 | May 2014 | CN |
104024084 | Sep 2014 | CN |
102939474 | Aug 2015 | CN |
104936850 | Sep 2015 | CN |
104968554 | Oct 2015 | CN |
19523214 | Jan 1997 | DE |
19923012 | Nov 2000 | DE |
10212782 | Oct 2003 | DE |
102005032528 | Jan 2007 | DE |
102005056438 | Jun 2007 | DE |
102006025254 | Dec 2007 | DE |
102008057313 | Oct 2009 | DE |
102010025197 | Dec 2011 | DE |
102012010887 | Dec 2013 | DE |
1559630 | Aug 2005 | EP |
1783719 | May 2007 | EP |
1932745 | Jun 2008 | EP |
2384946 | Nov 2011 | EP |
2426030 | Mar 2012 | EP |
2489577 | Aug 2012 | EP |
2604487 | Jun 2013 | EP |
1606149 | May 2014 | EP |
2862595 | May 2005 | FR |
3016327 | Jul 2015 | FR |
S60157963 | Aug 1985 | JP |
S60164629 | Aug 1985 | JP |
H05162652 | Jun 1993 | JP |
2768034 | Jun 1998 | JP |
2004074845 | Mar 2004 | JP |
2007253809 | Oct 2007 | JP |
2011043884 | Mar 2011 | JP |
20174099 | Jan 2017 | JP |
20100063433 | Jun 2010 | KR |
2006099483 | Sep 2006 | WO |
2007034567 | Mar 2007 | WO |
2010082394 | Jul 2010 | WO |
2010116518 | Oct 2010 | WO |
2013080774 | Jun 2013 | WO |
2013101058 | Jul 2013 | WO |
Entry |
---|
China Patent Application No. 201510204221.5 Second Office Action dated Mar. 10, 2017, 8 pages. |
CN Patent Application No. 201210599006.6 First Office Action dated Jan. 27, 2015, 9 pages. |
CN Patent Application No. 201210599006.6 Second Office Action dated Aug. 5, 2015, 5 pages. |
CN Patent Application No. 201310178012.9 First Office Action dated Apr. 13, 2015, 13 pages. |
CN Patent Application No. 201310178012.9 Second Office Action dated Dec. 28, 2015, 11 pages. |
CN Patent Application No. 201410089167 First Office Action and Search Report dated Feb. 3, 2016, 9 pages. |
EP Application No. 14156903.8 Extended European Search Report, dated Jan. 27, 2015, 10 pages. |
EP Application No. 14156903.8 Office Action dated May 31, 2016, 5 pages. |
EP Application No. 14156903.8 Partial European Search Report dated Sep. 23, 2014, 6 pages. |
EP Application No. 15152834.6 Extended European Search Report dated Oct. 8, 2015, 7 pages. |
European Application No. 12196665.9 Extended European Search Report dated Mar. 6, 2013, 7 pages. |
European Search Report for European Application No. 13159950.8; dated Jun. 6, 2013; 7 pages. |
European Search Report for related European Application No. 15152834.6, dated Oct. 8, 2015; 7 pages. |
Gillespie, Thomas D.; “Fundamentals of Vehicle Dynamics”; Society of Automotive Enginers, Inc.; published 1992; 294 pages. |
Kichun, et al.; “Development of Autonomous Car-Part II: A Case Study on the Implementation of an Autonomous Driving System Based on Distributed Architecture”; IEEE Transactions on Industrial Electronics, vol. 62, No. 8, Aug. 2015; 14 pages. |
Van der Jagt, Pim; “Prediction of Steering Efforts During Stationary or Slow Rolling Parking Maneuvers”; Ford Forschungszentrum Aachen GmbH.; Oct. 27, 1999; 20 pages. |
Van Der Jagt, Pim; “Prediction of steering efforts during stationary or slow rolling parking maneuvers”; Jul. 2013, 20 pages. |
Varunjikar, Tejas; Design of Horizontal Curves With DownGrades Using Low-Order Vehicle Dynamics Models; A Theisis by T. Varunkikar; 2011; 141 pages. |
Chinese First Office Action and Search Report dated Dec. 20, 2017 cited in Application No. 2016103666609.X, (w/ English language translation), 16 pgs. |
Chinese First Office Action dated Jan. 22, 2018 cited in Application No. 201610575225.9, (w/ English language translation), 16 pgs. |
Chinese Office Action and Search Report dated Mar. 22, 2018 cited in Application No. 201610832736.4, (w/ English language translation) 12 pgs. |
Chinese Office Action and Search Report from the Chinese Patent Office for CN Application No. 201610575225.9 dated Oct. 16, 2018, 19 pages, English Translation Included. |
Chinese Office Action from the Chinese Patent Office for CN Application No. 2017102318205 dated Oct. 12, 2018, 7 pages, English Translation Only. |
Chinese Office Action from the CN Patent Office for CN Application No. 201610832736.4 dated Oct. 16, 2018, 18 pages, English Translation Included. |
Chinese Office Action & Search Report for Chinese Application No. 201601575225.9 dated Oct. 16, 2018, English translation included, 19 pages. |
Yan, et al., “EPS Control Technology Based on Road Surface Conditions,” Jun. 22-25, 2009, pp. 933-938, 2009 IEEE International Conference on Information and Automation. |
Number | Date | Country | |
---|---|---|---|
20160362117 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
62175777 | Jun 2015 | US |