Retractable instruments comprising a one-piece valve door actuating assembly

Information

  • Patent Grant
  • 8221012
  • Patent Number
    8,221,012
  • Date Filed
    Friday, November 7, 2008
    16 years ago
  • Date Issued
    Tuesday, July 17, 2012
    12 years ago
Abstract
An instrument includes an instrument body having an opening at one end. A valve is mounted within the instrument body, the valve having an opening at one end. A lid is integrally molded with the valve and hingedly movable with respect to the valve opening. An actuating arm is operatively connected to the lid, the actuating arm transmitting forces from an instrument movement mechanism to the valve door under both tension and compression. As a result, the lid is opened and closed substantially solely by the actuating arm.
Description
BACKGROUND

1. Field of the Disclosure


The disclosure relates generally to retractable instruments and more specifically to cap-less, retractable writing instruments having a one-piece valve door actuating assembly.


2. Related Technology


One example of a cap-less, retractable writing instrument is shown in U.S. Pat. No. 5,048,990, which is hereby incorporated by reference. The cap-less writing instrument includes a writing member having a writing tip. The writing member is accommodated in a valve that is disposed inside a writing instrument body. A lid for closing an end opening of the valve is disposed on the valve near the front end thereof. A writing member moving mechanism moves the writing member forwardly and locks the writing member at a writing position with the writing tip protruding through the front of the writing instrument body. The moving mechanism includes separate flexible thread-like members that connect the writing member moving mechanism to the lid so that after the writing member is retracted, the lid is pulled backwardly so as to be brought into contact with the valve, thereby substantially sealing the writing member within the valve and preventing the writing tip from drying out. Because the prior art cap-less writing instrument uses flexible connecting members, the prior art cap-less writing instrument relies to some extent on the nib to push the lid to an open position during extension of the writing instrument at least until the lid is positioned such that the thread member can exert a backwardly directed force on same. As a result of this repeated contact between the nib and the lid, ink builds up on the inner surface of the lid. The uneven inner lid surface results in incomplete contact with the valve. This incomplete contact manifests as one or more breaches in the seal between the lid the valve, thereby allowing premature ink or solvent evaporation from the writing tip and lending to diminished performance of the entire assembly.


Some capless writing instruments incorporate more robust connecting members. One such writing instrument includes connecting members which are molded into a snap ring or seal seat and thus connect the snap ring to the lid. One example of a prior capless writing instrument is the Pentel NX50, which is currently available in Japan. However, in such writing instruments, the lid is a separate component from the valve body. Because the lid is separate component, such prior capless writing instruments use a complicated set of channels and tabs on the connecting members and/or the valve body to bias the lid open when protracting the writing instrument. During closing, it is easy for alignment between the lid and the valve to become displaced and for the lid to contact the valve in different orientations due to the separate components (i.e., there is no alignment mechanism between the lid and valve). As a result, over time, the lid can become worn and deformed and ultimately lose the ability to reliably seal the valve, thus leading to ink evaporation and premature drying of the nib.


SUMMARY OF THE DISCLOSURE

In one embodiment, an instrument comprises an instrument body having an opening at one end. A valve is mounted within the instrument body, the valve having an opening at one end. An integral valve door is hingedly mounted to the valve proximate the opening. An actuating arm is molded to either the valve door or a seat ring. The actuating arm transmits forces under both tension and compression, from an instrument actuating device to the valve door. Thus, the valve door is both opened and closed substantially solely by the actuating arm.


In another embodiment, a retractable writing instrument comprises a writing member having a nib, the nib extending through an opening in a reservoir holder. A valve substantially surrounds the opening and the valve has an open end. A movement mechanism moves the writing member from a retracted position in which the nib is disposed substantially within the valve to an extended position in which the nib is extended outside of the valve through the open end. A lid is integrally attached to the valve at the open end, the lid being movable from an open position in which the lid exposes the open end of the valve to a closed position in which the lid covers the open end of the valve. An actuating arm is attached to the movement mechanism and to the lid, the transfer mechanism transmitting forces under tension or compression, through the actuating arm to the lid. Thus, the lid is both opened and closed by substantially solely by the actuating arm and the nib does not contact the lid during extension or retraction.





BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary aspects and features of an instrument constructed in accordance with the disclosure are described and explained in greater detail below with the aid of the drawing figures in which:



FIG. 1 is an exploded perspective view of a cap-less marker constructed in accordance with the teachings of the disclosure.



FIG. 2A is a cross-sectional view of the cap-less marker of FIG. 1.



FIG. 2B is another cross-sectional view of the cap-less writing marker of FIG. 1 rotated approximately 90 degrees from the cross-sectional view of FIG. 2A.



FIG. 3A is a. top perspective view a seat ring of the cap-less maker of FIG. 1



FIG. 3B is a top perspective view of a valve and lid of the cap-less marker of FIG. 1.



FIG. 4 is a close up cross-sectional view of the valve and lid of the cap-less marker of FIG. 1 with the lid in an open position.



FIG. 5 is an exploded perspective view of an alternative embodiment of a cap-less marker constructed in accordance with the teachings of the disclosure.



FIG. 6A is a cross-sectional view of the cap-less marker of FIG. 5.



FIG. 6B is another cross-sectional view of the cap-less writing marker of FIG. 5 rotated approximately 90 degrees from the cross-sectional view of FIG. 5A.



FIG. 7A is a top perspective view of the valve and lid of the cap-less marker of FIG. 5.



FIG. 7B is a top perspective view a seat ring of the cap-less maker of FIG. 5.



FIG. 8 is a close up perspective view of a first alternate embodiment of a valve and lid.



FIG. 9 is a perspective view of a second alternate embodiment of a valve and lid.



FIG. 10 is a perspective view of a third embodiment of a valve and lid.





DETAILED DESCRIPTION

A cap-less writing instrument 10 generally constructed in accordance with the teachings of the disclosure is shown in FIG. 1. The illustrated writing instrument includes a barrel 12 that houses reservoir holder 14. The reservoir holder 14, in turn, holds a reservoir 16 for carrying ink. A snap ring (or spring seat) 18 is seated at one end of the reservoir holder 14. A nib 20 extends through the snap ring 18 and through an opening 22 on the reservoir holder 14 and contacts the reservoir 16. During writing, the nib 20 draws ink from the reservoir 16 through capillary action. A valve 24 is disposed over the nib 20 and a portion of the reservoir holder 14. A valve lid 26 is integrally molded and hingedly attached to the valve 24. The hinge is typically a living hinge and molded integrally with the valve 24 and lid 26. The valve 24 and valve lid 26 provide a seal around the nib 20 when the nib 20 is in a retracted position, thus preventing ink (or solvent contained therein) evaporation and premature drying of the nib 20. A pair of actuating arms 28 are molded to the lid 26. The actuating arms 28 provide opening and closing forces to the lid 26 from a spring or other force generating mechanism (not shown). The disclosed cap-less writing instrument does not rely on the nib 20 for lid opening forces as is the case with prior art cap-less writing instruments because the valve lid 26 is opened and closed substantially solely by the actuating arms 28. A nose 30 is coupled to the barrel 12 to provide protection for the valve 24 and lid 26 and to provide a user with a gripping surface.


Turning now to FIGS. 2A and 2B, the valve 24 surrounds the opening 22 of the reservoir holder 14. The opening 22 is located at one end of the reservoir holder 14 in an extension 32 that has a smaller outer diameter than the rest of the reservoir holder 14. One end of the extension 32 being part of the reservoir holder 14 thereby forming a shoulder 34. The extension 32 is disposed within an inner diameter of the snap ring 18. The snap ring 18 and the shoulder 34 form a seat for a spring (not shown) which generates opening and closing forces for protracting and retracting the writing instrument and the seal lid 26. The spring (not shown) is trapped between the snap ring 18 and the valve 24, which is disposed near the opening 22. Thus, the spring (not shown) transmits forces to the actuating arms 28, which in turn transmit those forces to the lid 26 thereby selectively opening and closing the lid 26. The valve 24 forms a seal with the extension 32 where the extension 32 meets the valve 24. At the other end of the valve 24, the valve lid 26 selectively closes the valve 24. As a result, the nib 20 is protected from the environment and ink (more specifically, the solvent contained therein) within the nib 20 is prevented from evaporating.



FIG. 3B is a close up view of the valve 24 and lid 26. In this embodiment, the actuating arms 28 are molded into the lid 26. However, the actuating arms 28 may be molded to the snap ring 18, as discussed hereinafter, or to both the lid 26 and the snap ring 18. As a result, a valve actuating assembly is formed which requires less parts and less assembly time as compared to valves of prior art cap-less writing instruments. At ends opposite the lid 26, the actuating arms 28 may have one or more stops 40a, 40b. The illustrated stops 40a, 40b can connect the actuating arms 28 to the snap ring 18 shown in FIG. 3A. The snap ring 18 includes one or more slots 42. During assembly, the stops 40a, 40b may be inserted laterally into a lower portion of the slot 42. As a result, a neck 44 of the slot 42 may become trapped between the stops 40a, 40b and the actuating arms 28 become capable of transmitting forces from the snap ring 18 to the valve lid 26. This slot and stop connection reduces assembly time thus increasing manufacturing efficiency over prior capless writing instruments that used flexible actuating members such as monofilament strings.


The valve 24 includes one or more stabilizing features, manifested in this embodiment as recessed guides 46. In the assembled condition, the actuating arms 28 may be disposed substantially within the guides 46. The guides 46 protect the actuating arms 28 from possible entanglement with the spring (not shown) which is a common problem in prior art designs. Additionally, the guides 46 provide lateral support to the actuating arms during opening of the lid 26. For example, any portion of the actuating arm 28 that remains within the guide 46 is effectively prevented from buckling or deforming under compressive loads. The guides 46 aid in sequenced opening of the lid 26 which will be discussed hereinafter.


Turning now to FIG. 4, the lid 26 is shown in an open condition. The actuating arms 28 have predictably deformed due to a geometric feature 50, such as a thinning of the actuating arms 28, or a notch in the actuating arms 28. Optionally, two or more geometric features 50 may be included on the actuating arms 28 to create multiple stages or sequences of lid 26 opening. Selective thinning of the actuator arms 28 is not possible with prior art actuators such as monofilaments or other thread-like members. The geometric feature 50 locally weakens the actuating arms 28 so that the actuating arms 28 experience deformation in the vicinity of the geometric feature 50 before any other part of the actuating arms 28 begin to deform. Thus the amount, location, and timing of deformation may be controlled such that the lid 26 is sequentially opened. In this manner, the lid 26 is not subject to 1) contact from the nib 20; or 2) contact with the instrument body because the deformation of the actuating arms 28 effectively reduces the overall distance the lid 26 moves compared to the distance the snap ring moves. As a result, the actuating arms 28 can open the lid 26 and stop the opening motion before the lid 26 contacts an inside of the instrument body. Thus, the lid 26 and actuator arms 28 may have a longer lifespan than prior art designs.


The guides 46 support the geometric feature 50 as long as the geometric feature 50 is disposed substantially within the guides 46. As a result, the actuating arms 28 do not begin to deform or buckle as shown in FIG. 4 until the geometric feature 50 extends above the guides 46. Once the geometric feature 50 is above the guides 46, the actuating arms 28 begin to deform such that some of the upward movement of the actuating arms 28 is translated into lateral movement. Thus, the lid 26 opens more quickly (because all of the upward movement of the actuating arms 28 is directed to upward movement of the lid) when the geometric feature 50 is disposed within the guides 46, and the lid opens more slowly (because some of the upward movement of the actuating arms 28 is converted into lateral movement) when the geometric feature 50 is located outside of the guides 46. Another result of the deformation of the actuating arms 28 is a much shorter nose 30. Because the actuating arms 28 are not linear when the lid 26 is opened (i.e., the actuating arms 28 have buckled in the vicinity of the geometric feature 50), the nose 30 may be smaller than prior art noses resulting in a material savings and a shorter instrument overall. It should be understood that while actuating arms including a geometric feature are generally preferred, this feature is optional.


Another embodiment of a cap-less writing instrument 110 is shown in FIGS. 5-7B. Reference numerals for like parts are shown as exactly 100 greater that the embodiment shown in FIGS. 1-3B. The cap-less writing instrument 110 generally includes a barrel 112 that houses reservoir holder 114. The reservoir holder 114, in turn, holds a reservoir 116 for carrying ink. A snap ring (or spring seat) 118 is seated at one end of the reservoir holder 114. A nib 120 extends through the snap ring 118 and through an opening 122 on the reservoir holder 114 and contacts the reservoir 116. A valve 124 is disposed over the nib 120 and a portion of the reservoir holder 114. A valve lid 126 is integrally molded and hingedly attached to the valve 124. The hinge is typically a living hinge and molded integrally with the valve 124 and lid 126. In this embodiment, a pair of actuating arms 128 is molded to the snap ring 118 as opposed to the embodiment of FIGS. 1-3B where the actuating arms were molded to the lid 26.



FIG. 7A shows a close up perspective view of the valve 124 and the lid 126. The valve 124 includes one or more stabilizing features that manifest as openings 162 which extend through the lid 126 from a top lid surface to a bottom lid surface in this embodiment. Although the openings 162 are shown as circular in shape, the openings 162 can be virtually any shape, such as, for example, square, rectangular, oval, triangular, etc. The openings 162 are shaped and sized to receive ends of the actuator arms 128. The openings protect the actuating arms 128 by spacing the actuating arms 128 away from an inner surface of the valve 124. As seen in FIG. 7B, the actuator arms 128 of this embodiment are integral to the snap ring 118 (e.g., integrally molded to the snap ring 118). The actuator arms 128 include a tapered head 164 opposite the snap ring 118. The actuator arms 128 also include a stop 166 positioned between the head 164 and the snap ring 118. During assembly, the head 164 is pushed through the opening 162 thus securing the actuating arms 128 to the valve lid 126. The actuating arms 128 are protected from entanglement with an actuating spring (not shown) which generally is disposed about the extension 32 because the actuating arms 128 are disposed inside the valve 124. Moreover, the openings 162 support the actuating arms 128 during opening and closing of the lid 126. The actuating arms 128 of this embodiment may optionally also include geometric features 150 similar to the geometric features 50 of the embodiment of FIGS. 1-3B. The actuating arms 128 are prevented from deforming while the geometric features 150 are within the valve 124 (similar to the support provided by the guides 46 of the embodiment of FIGS. 1-3B) whether or not such geometric features are present. Thus, the embodiment of FIGS. 5-7A produces a sequenced or staged opening of the valve lid 126 and all of the benefits provided by such a sequenced or staged opening as discussed above.



FIGS. 8-10 illustrate further alternate embodiments of the lid 226 and actuator arms 228. In these embodiments, the actuator arms 228 are attached to force directing members 270 disposed on a lid 226 (as described in U.S. patent application Ser. No. 12/057,477, which is hereby incorporated by reference) or directly to a side edge of the lid 226. The force directing member 270 may be a tower 270 (FIG. 9) or one or more ribs 270 (FIG. 10). The force directing members 270 reduce deflection of the lid in the closed position. The actuator arms 228 may be attached to the force directing member 270 by any known means, such as snapping, welding, molding, screwing, etc.


Like the actuator arms 28, 128 of previous embodiments, the actuator arms 228 of the embodiment shown in FIGS. 8-10 have the ability to transfer forces, under compression, to the lid 26, 126, 226 such that the lid 26, 126, 226 is substantially solely actuated by the actuating arms 28, 128, 228 and the nib 20, 120 of the writing instrument does not contact the lid 26, 126, 226.


In the closed position, the actuator arms 28, 128, 228 are under tensile forces from the instrument moving mechanism. These tensile forces are transmitted through the actuator arms 28, 128, 228 which “pull down” on the lid 26, 126, 226 thus providing a positive sealing force between the lid 26, 126, 226 and the valve 24, 124, 224. The valve 24, 124, 224, lid 26, 126, 226 and actuator arms 28, 128, 228 may be molded from a single material, or from multiple materials (e.g., a single shot molding process or a double shot molding process). Based on clearances inside of the instrument body, the location at which the actuator arms 28, 128, 228 extend from the lid 26, 126, 226 may be optimized to provide adequate clearance for movement of the actuator arms 28, 128, 228.


As the instrument moving device moves the instrument towards the open (extended) position, the actuator arms 28, 128, 228 experience a change from a tensile force to a compressive force. Because the actuator arms 28, 128, 228 are rigid or semi-rigid, the actuator arms 28, 128, 228 transmit compressive force to the lid 26, 126, 226 thus pushing the lid 26, 126, 226 to the open position before the nib contacts an inner surface of the lid 26, 126, 226. Prior art devices were not capable of transferring compressive forces because prior art devices use flexible actuator arms, such as monofilament string. As the instrument protracts, the actuator arms 28, 128, 228 may bend or bow slightly outward under the compressive force, while still transmitting force under compression from the instrument moving device to the lid 26, 126, 226.


The disclosed embodiments make assembly more efficient and less costly as compared to prior art designs. For example, the disclosed embodiments eliminate the need to melt ends of the monofilament string or otherwise glue the monofilament string to the lid and seat ring. The melting process is difficult to control, very time consuming and expensive. The disclosed one-piece valve door actuating assemblies provide a more efficient assembly process and a more reliable and longer lasting seal between the lid and the valve.


The above disclosed valve lids, valves and actuator arms may be formed from any material that combines limited flexibility with the ability to transfer compressive forces to the valve lid. Such materials include, but are not limited to various materials including but not limited to natural and synthetic rubbers, thermoplastic elastomers, and conventional thermoplastics such as polypropylenes, nylons, etc.


Notwithstanding the disclosure that the actuator arms specifically illustrated herein include a spring to generate opening and closing forces which are transmitted to the lid through the actuating arms, a variety of force generating mechanisms can be used including but not limited to helical springs, leaf springs, etc.


The one-piece valve door assemblies may be used on virtually any instrument having a lid. For example, as will be appreciated by one of skill in the art, one-piece valve door assemblies as described above may be used in various retractable writing instruments such as highlighters, markers, felt-tipped pens, ball point pens, and the like. In addition to writing instruments, the one-piece valve door assemblies are also applicable to a variety of other retractable instruments including paint brush applicators, correction fluid applicators, make-up applicators, such as nail polish and mascara applicators, perfume applicators, thermometers, pH detectors, knives, fluid sampling devices, flash lights, laser pointers, and other instruments. The one-piece valve door assembly is particularly useful for writing instruments such as retractable markers having relatively large writing points as such instruments greatly benefit from the improved seal achieved with the improved valve assemblies described herein. In one aspect, the writing instrument is a permanent marker. In another aspect, the writing instrument may be a dry-erase marker.


Although certain one-piece valve door assemblies have been described herein in accordance with the teachings of the present disclosure, the scope of coverage of this patent is not limited thereto. On the contrary, while the invention has been shown and described in connection with various preferred embodiments, it is apparent that certain changes and modifications, in addition to those mentioned above, may be made. This patent covers all embodiments of the teachings of the disclosure that fairly fall within the scope of permissible equivalents. For example, the rigid or semi-rigid actuator arms may take on virtually any shape and/or size provided that they are capable of transmitting both compressive and tensile forces as described herein. Many other variations of the invention may also be used without departing from the principles outlined above. Accordingly, it is the intention to protect all variations and modifications that may occur to one of ordinary skill in the art.

Claims
  • 1. An instrument comprising: an instrument body having an opening at one end;a valve mounted within the instrument body, the valve having an opening at one end and a lid integrally molded with the valve, the lid being hingedly movable on the valve proximate the opening;a snap ring operatively coupled to a reservoir holder within the instrument body, the snap ring being separated from the valve; andat least two actuating arms molded to one of the lid and the snap ring, the actuating arms operatively connecting the lid to an instrument actuating device, the instrument actuating device providing force to protract and retract a writing tip through the valve opening by providing force to the actuating arms,wherein upon protraction, the actuating arms transmit forces from the instrument actuating device to the lid under compression and the lid is actuated substantially solely by the actuating arms.
  • 2. The instrument of claim 1, wherein the valve includes at least two stabilizing features and the actuating arms are at least partially disposed within the stabilizing features, the stabilizing features providing lateral support to the portion of the actuating arms disposed in the guides.
  • 3. The instrument of claim 2, wherein the stabilizing features are recessed guides.
  • 4. The instrument of claim 3, wherein at least one of the actuating arms includes a first geometric feature that locally weakens the actuating arm and thereby defines a first location of deformation when the actuating arm is under compression and the geometric feature is above the recessed guide.
  • 5. The instrument of claim 4, wherein the first geometric feature is a portion of the actuating arm that is thinner than the rest of the actuating arm.
  • 6. The instrument of claim 4, wherein the first geometric feature is a notch in the actuating arm.
  • 7. The instrument of claim 3, wherein the actuating arm includes a second geometric feature that locally weakens the actuating arm and defines a second location of deformation when the actuating arm is under compression.
  • 8. The instrument of claim 1, wherein the lid includes at least two openings extending through the lid from a top lid surface to a bottom lid surface, and the actuating arms are extended through the valve and attached to the lid through the openings, thereby protecting the actuating arms from entanglement with the instrument actuating device and securing the actuating arm to the lid.
  • 9. The instrument of claim 1, wherein the snap ring includes a slot and the actuating arm includes first and second stops and the slot is disposed between the first and second stops when the actuating arm is secured to the snap ring.
  • 10. The instrument of claim 9, wherein each actuating arm includes a head at one end and a stop disposed between the head and the snap ring, the head being located on one side of the lid and the stop being located on the other side of the lid.
  • 11. The instrument of claim 1, wherein each actuating arm is molded both to the lid and to the snap ring.
  • 12. The instrument of claim 1, further comprising a force directing component disposed on the lid.
  • 13. The instrument of claim 12, wherein the force directing component is one of a tower disposed on the lid and a rib disposed on the lid.
  • 14. The instrument of claim 1 wherein the instrument is a writing instrument.
  • 15. The instrument of claim 14 wherein the writing instrument is a retractable marker.
  • 16. The instrument of claim 1 wherein the instrument is one of a thermometer, a pH detector, a knife with a retractable blade, a flash light, a laser pointer, and a fluid sampling device.
  • 17. A retractable writing instrument comprising; a writing member having a nib, the nib extending from an opening in a reservoir holder;a valve substantially surrounding the opening, the valve having an open end;a writing member movement mechanism that provides force to move the writing member from a retracted position in which the nib is disposed substantially within the valve to an extended position in which the nib extends outside of the valve through the open end;a lid integrally molded to the valve and hingedly movable with respect to the opening, the lid being movable from an open position in which the lid exposes the open end of the valve to a closed position in which the lid covers the open end of the valve;a snap ring operatively coupled to a reservoir holder within the instrument, the snap ring being spaced apart and separated from the valve; andan actuating arm molded to one of the lid and the snap ring, force is being transmitted from the writing instrument movement mechanism to a actuating arm and then the lid under compression during protraction of the nib,wherein the nib does not contact an inner surface of the lid during protraction.
  • 18. The retractable writing instrument of claim 17, wherein the actuating arm includes a geometric feature that locally weakens the actuating arm so that the actuating arm deforms proximate the geometric feature when under compression.
  • 19. The retractable writing instrument of claim 17, wherein the valve includes a stabilizing feature that laterally supports portions of the actuating arm that are disposed within the stabilizing feature.
  • 20. The retractable writing instrument of claim 19, wherein the stabilizing feature is a recessed guide.
US Referenced Citations (340)
Number Name Date Kind
1810249 Koehler Jun 1931 A
1923634 Markstein Aug 1933 A
1940548 Jensen Dec 1933 A
2073719 Ross Mar 1937 A
2224470 Boust Dec 1940 A
2291859 Andrews Aug 1942 A
2392840 Groft Jan 1946 A
2401711 Smith Jun 1946 A
2603186 Fischer Jul 1952 A
2626049 Tursky Jan 1953 A
2874679 Zepelovitch Feb 1959 A
2949887 Martin et al. Aug 1960 A
2957452 Brannon Oct 1960 A
3035299 Gordon et al. May 1962 A
3124106 Kosta Mar 1964 A
3146758 Zepell Sep 1964 A
3169511 Spatz Feb 1965 A
3292593 Furuya Dec 1966 A
3480370 Koeln Nov 1969 A
3525573 Fend Aug 1970 A
3583820 Koeln Jun 1971 A
3594091 Bleuer Jul 1971 A
3617138 Fukui et al. Nov 1971 A
3637316 Bross et al. Jan 1972 A
3733139 Neidhardt et al. May 1973 A
3813176 Kamo May 1974 A
3895632 Plowiecki et al. Jul 1975 A
3941488 Maxwell Mar 1976 A
3944371 Schenk Mar 1976 A
3945734 Woodbridge Mar 1976 A
3955893 Pulaski May 1976 A
3985455 Wahlberg Oct 1976 A
4022535 Ritter May 1977 A
4115015 Torii et al. Sep 1978 A
4161374 Koeln et al. Jul 1979 A
4177814 Knepshield et al. Dec 1979 A
4218154 Erfer Aug 1980 A
4221490 Malm Sep 1980 A
4269525 Melikian May 1981 A
4315695 Alves dos Santos et al. Feb 1982 A
4318340 Shenoha et al. Mar 1982 A
4416392 Smith Nov 1983 A
4469462 Hashimoto et al. Sep 1984 A
4479732 Shimizu et al. Oct 1984 A
4533271 Sansevero Aug 1985 A
4540300 Midorikawa et al. Sep 1985 A
4549827 Mack Oct 1985 A
4560297 Leem et al. Dec 1985 A
4575271 Hashimoto et al. Mar 1986 A
4580918 Baker et al. Apr 1986 A
4618280 Kageyama et al. Oct 1986 A
4629348 Hashimoto et al. Dec 1986 A
4667828 Samuelson May 1987 A
4711592 Gregory Dec 1987 A
4738724 Wittwer et al. Apr 1988 A
4738817 Wittwer et al. Apr 1988 A
4759650 Granoff Jul 1988 A
4768529 Mahruki et al. Sep 1988 A
4770320 Miles et al. Sep 1988 A
4796781 Windorski Jan 1989 A
4812069 White et al. Mar 1989 A
4812299 Wason Mar 1989 A
4815881 Chern Mar 1989 A
4859103 Wittek et al. Aug 1989 A
4863796 Wason Sep 1989 A
4879058 Wason Nov 1989 A
4879323 Wason Nov 1989 A
4896983 Im et al. Jan 1990 A
4902657 Wason Feb 1990 A
4902729 Wason Feb 1990 A
4904101 Petterson Feb 1990 A
4907825 Miles et al. Mar 1990 A
4911570 Rhoades Mar 1990 A
4921127 Windorski May 1990 A
4933387 Wason Jun 1990 A
4937078 Mezei et al. Jun 1990 A
4954468 Wason Sep 1990 A
4957233 Samuelson Sep 1990 A
4968728 Wason Nov 1990 A
4969764 Gregory Nov 1990 A
4974980 Gueret et al. Dec 1990 A
4986440 Windorski Jan 1991 A
4989801 Thomas et al. Feb 1991 A
4993590 Windorski Feb 1991 A
5015111 Petterson May 1991 A
5022773 Waldinger et al. Jun 1991 A
5022775 Inoue et al. Jun 1991 A
5024547 Mui et al. Jun 1991 A
5026189 Keil et al. Jun 1991 A
5048990 Hashimoto et al. Sep 1991 A
5059435 Sloan et al. Oct 1991 A
5072686 Falco Dec 1991 A
5080255 Windorski Jan 1992 A
5090955 Simon Feb 1992 A
D324542 Lin Mar 1992 S
5092701 Lai et al. Mar 1992 A
5158205 Bodziak et al. Oct 1992 A
5165570 Windorski et al. Nov 1992 A
5167346 Bodziak Dec 1992 A
5174814 Burwell et al. Dec 1992 A
5184908 Yamamoto et al. Feb 1993 A
5207523 Wittek May 1993 A
5336006 Badr et al. Aug 1994 A
5342135 Tucker Aug 1994 A
5342136 Fukami et al. Aug 1994 A
5358864 van den Broeck et al. Oct 1994 A
5372580 Simon et al. Dec 1994 A
5411168 Merten et al. May 1995 A
5420615 Witz et al. May 1995 A
5426456 Kuelzer et al. Jun 1995 A
5439626 Bennett et al. Aug 1995 A
5454655 Chiswell Oct 1995 A
5517218 Lehna et al. May 1996 A
5547301 Kageyama et al. Aug 1996 A
5547468 Simon et al. Aug 1996 A
5553956 Mitsuya et al. Sep 1996 A
5599122 Yu Feb 1997 A
5604036 Price et al. Feb 1997 A
5605402 Uggetti et al. Feb 1997 A
5607437 Simon et al. Mar 1997 A
5610046 van Ooyen et al. Mar 1997 A
5643660 Price et al. Jul 1997 A
5651627 Dowzall et al. Jul 1997 A
5653725 Simon et al. Aug 1997 A
5670014 Mendelovich et al. Sep 1997 A
5672021 Abber et al. Sep 1997 A
5676481 Nicoll et al. Oct 1997 A
5697518 Callahan, Jr. Dec 1997 A
5769270 Fujisawa et al. Jun 1998 A
5813787 Dowzall et al. Sep 1998 A
5823697 Talbot et al. Oct 1998 A
D400581 Hasegawa Nov 1998 S
5829904 Matsumoto et al. Nov 1998 A
5849559 Van Der Wouw et al. Dec 1998 A
5855442 Keller Jan 1999 A
5865553 Flye Sainte Marie et al. Feb 1999 A
5871294 Turner Feb 1999 A
5871296 Furukawa et al. Feb 1999 A
5891398 Lewis et al. Apr 1999 A
5899618 Kobayashi et al. May 1999 A
5904806 Mendelovich et al. May 1999 A
5906446 McCulloch et al. May 1999 A
5915867 Hashimoto et al. Jun 1999 A
5927881 Yang Jul 1999 A
5927882 Kageyama et al. Jul 1999 A
5927883 Lebauer Jul 1999 A
5929051 Ni et al. Jul 1999 A
5931846 Simon et al. Aug 1999 A
5957603 Bell Sep 1999 A
5961703 Fraas et al. Oct 1999 A
5967688 Hu et al. Oct 1999 A
D417206 Hirota Nov 1999 S
6019535 Turner Feb 2000 A
6027271 Barosso et al. Feb 2000 A
6033141 Blaustein et al. Mar 2000 A
6048121 Carver Apr 2000 A
6066356 Van Der Wouw et al. May 2000 A
6089776 Kaufmann et al. Jul 2000 A
6095707 Kaufmann et al. Aug 2000 A
6099924 Nakamaki et al. Aug 2000 A
6106179 Kuo Aug 2000 A
6120204 Rigoni Sep 2000 A
6120751 Unger Sep 2000 A
6135660 Stevens et al. Oct 2000 A
6155733 Holbrook et al. Dec 2000 A
6158913 Dumler et al. Dec 2000 A
6170318 Lewis Jan 2001 B1
6210768 Blok et al. Apr 2001 B1
6213661 Coon Apr 2001 B1
6231257 Stevens et al. May 2001 B1
6244744 Calvin Jun 2001 B1
6244774 Barosso et al. Jun 2001 B1
6261019 Furukawa et al. Jul 2001 B1
D446213 Chen et al. Aug 2001 S
6283661 Connors Sep 2001 B1
6306598 Charych et al. Oct 2001 B1
6347898 Rhodes et al. Feb 2002 B1
6350369 Lewis et al. Feb 2002 B1
6354754 Pan Mar 2002 B1
6371673 Gueret Apr 2002 B1
D457185 Ham May 2002 S
6398178 Azola et al. Jun 2002 B1
6409408 Koyama et al. Jun 2002 B2
D460484 Bianco, Jr. Jul 2002 S
D460982 Bianco, Jr. Jul 2002 S
6416242 Kaufmann et al. Jul 2002 B1
6417121 Newkirk et al. Jul 2002 B1
6417122 Newkirk et al. Jul 2002 B1
6420285 Newkirk et al. Jul 2002 B1
6433012 Tuse et al. Aug 2002 B1
6468759 Charych Oct 2002 B1
6478495 Ami et al. Nov 2002 B2
6482517 Anderson Nov 2002 B1
6497524 Kim Dec 2002 B1
6505984 Smith et al. Jan 2003 B2
D471233 Geiselhart et al. Mar 2003 S
D472578 Plantz et al. Apr 2003 S
6540422 Torii Apr 2003 B2
6554516 Christopher Apr 2003 B1
6554517 Ahmed Apr 2003 B2
6561713 Sukhna et al. May 2003 B2
6565275 Brand et al. May 2003 B2
6565763 Asakawa et al. May 2003 B1
6588958 Seidler Jul 2003 B1
6605344 Ohba et al. Aug 2003 B1
6607325 Hori et al. Aug 2003 B2
6631333 Lewis et al. Oct 2003 B1
6638621 Anderson Oct 2003 B2
6644880 Duez et al. Nov 2003 B2
6648539 Dai et al. Nov 2003 B2
6656319 Boyd et al. Dec 2003 B1
D487113 Kent Feb 2004 S
D489087 Kent Apr 2004 S
6719472 Windorski et al. Apr 2004 B2
6723394 Sirringhaus et al. Apr 2004 B1
6752557 Hsieh et al. Jun 2004 B1
6755584 O'Brien et al. Jun 2004 B2
D497180 Cetera Oct 2004 S
D497387 Cetera Oct 2004 S
D501509 Lecce Feb 2005 S
6866436 Kanari et al. Mar 2005 B2
6927256 Stevens et al. Aug 2005 B2
6964534 Brand et al. Nov 2005 B2
6967102 Anderson et al. Nov 2005 B1
6974697 Comer et al. Dec 2005 B2
6977244 Tormo et al. Dec 2005 B2
6979456 Parikh et al. Dec 2005 B1
6979558 Harris, Jr. et al. Dec 2005 B2
6979559 Harris, Jr. et al. Dec 2005 B2
6981812 Hsieh et al. Jan 2006 B1
6989007 Shadduck Jan 2006 B2
6989195 Anderson Jan 2006 B2
6991514 Meloni et al. Jan 2006 B1
7004945 Boyd et al. Feb 2006 B2
7008633 Yang et al. Mar 2006 B2
7018838 Murphy et al. Mar 2006 B2
7022683 Ni et al. Apr 2006 B1
7037015 Witz et al. May 2006 B1
7037657 Le et al. May 2006 B2
7048963 Braithwaite et al. May 2006 B2
7059796 Lewis, Jr. et al. Jun 2006 B2
7060754 Stevens et al. Jun 2006 B2
7101102 Sawa et al. Sep 2006 B2
7220073 Yoon et al. May 2007 B2
7322766 Erlebacher et al. Jan 2008 B2
7329062 Brand et al. Feb 2008 B2
7331730 Fukui et al. Feb 2008 B2
7341388 Carroll Mar 2008 B2
7350996 Bielecki et al. Apr 2008 B2
7465112 Qiu et al. Dec 2008 B2
7488130 Dylkiewicz et al. Feb 2009 B2
20020010510 Silvestrini Jan 2002 A1
20020029084 Paul et al. Mar 2002 A1
20020081139 Legg Jun 2002 A1
20020081232 Lewis et al. Jun 2002 A1
20020131807 Ami et al. Sep 2002 A1
20020142477 Lewis et al. Oct 2002 A1
20020159817 Brand et al. Oct 2002 A1
20020159818 Smith et al. Oct 2002 A1
20020172544 Dai Nov 2002 A1
20020192007 Lee Dec 2002 A1
20030000958 Windorski et al. Jan 2003 A1
20030068191 Hori Apr 2003 A1
20030108377 Duez et al. Jun 2003 A1
20030108743 Anderson Jun 2003 A1
20030138283 O'Brien et al. Jul 2003 A1
20030195300 Stevens et al. Oct 2003 A1
20030210945 Noguchi Nov 2003 A1
20030210947 Calendrille et al. Nov 2003 A1
20030211130 Sanders et al. Nov 2003 A1
20030215281 Sexton et al. Nov 2003 A1
20030222048 Asakawa et al. Dec 2003 A1
20040028875 Van Rijn et al. Feb 2004 A1
20040037609 Kageyama Feb 2004 A1
20040050816 Asakawa et al. Mar 2004 A1
20040062879 Bowman et al. Apr 2004 A1
20040201117 Anderson Oct 2004 A1
20040213627 Marschand et al. Oct 2004 A1
20040234326 Erlebacher et al. Nov 2004 A1
20040265035 Brand et al. Dec 2004 A1
20040265039 Buck Dec 2004 A1
20050004578 Lambrecht et al. Jan 2005 A1
20050019112 Erickson et al. Jan 2005 A1
20050043470 Stevens et al. Feb 2005 A1
20050047844 Lammers et al. Mar 2005 A1
20050058497 Marschand Mar 2005 A1
20050074268 Beil Apr 2005 A1
20050079003 Buck et al. Apr 2005 A1
20050084320 Carroll Apr 2005 A1
20050084321 Carroll Apr 2005 A1
20050089656 Shiina Apr 2005 A1
20050115690 Bohlig Jun 2005 A1
20050191112 Yoon Sep 2005 A1
20050196580 Provost et al. Sep 2005 A1
20050196583 Provost et al. Sep 2005 A1
20050208259 Provost et al. Sep 2005 A1
20050217092 Barker et al. Oct 2005 A1
20050221271 Murphy et al. Oct 2005 A1
20050246023 Yeung Nov 2005 A1
20050250181 Schroder Glad et al. Nov 2005 A1
20050256253 Parker et al. Nov 2005 A1
20050265774 Albisetti Dec 2005 A1
20050271451 Brand et al. Dec 2005 A1
20060002755 Sawa Jan 2006 A1
20060002852 Saltzman et al. Jan 2006 A1
20060002971 Saltzman et al. Jan 2006 A1
20060004193 Muller et al. Jan 2006 A1
20060004314 McCarthy et al. Jan 2006 A1
20060019339 Lauth et al. Jan 2006 A1
20060036269 Schachar et al. Feb 2006 A1
20060051274 Wright et al. Mar 2006 A1
20060051451 Hutchinson et al. Mar 2006 A1
20060051735 Fuhr et al. Mar 2006 A1
20060058383 Huang et al. Mar 2006 A1
20060062780 Zocher et al. Mar 2006 A1
20060063882 Velev et al. Mar 2006 A1
20060065992 Hutchinson et al. Mar 2006 A1
20060069230 Papisov Mar 2006 A1
20060073159 Vonderheide et al. Apr 2006 A1
20060073294 Hutchinson et al. Apr 2006 A1
20060073298 Hutchinson et al. Apr 2006 A1
20060073333 Anderson Apr 2006 A1
20060084034 Hochman Apr 2006 A1
20060088897 Lim et al. Apr 2006 A1
20060095066 Chang et al. May 2006 A1
20060099244 Guilford May 2006 A1
20060106408 Schachar et al. May 2006 A1
20060106409 Schachar et al. May 2006 A1
20060110439 Tobia et al. May 2006 A1
20060115462 Subbotin et al. Jun 2006 A1
20060116712 Sepetka et al. Jun 2006 A1
20060116713 Sepetka et al. Jun 2006 A1
20060121608 Comer et al. Jun 2006 A1
20060216103 Bielecki et al. Sep 2006 A1
20070172300 Wlodarczyk Jul 2007 A1
20080131188 Breuer et al. Jun 2008 A1
20080138139 Kageyama Jun 2008 A1
20080175648 Hayes et al. Jul 2008 A1
20080193194 Yoon Aug 2008 A1
20080298878 Hui Dec 2008 A1
Foreign Referenced Citations (93)
Number Date Country
451 884 Nov 1927 DE
623 816 Dec 1935 DE
1 259 732 Jan 1968 DE
26 49 230 Apr 1978 DE
34 38 074 Apr 1986 DE
88 05 298 Aug 1989 DE
88 06 917 Nov 1989 DE
89 00 030 May 1990 DE
295 10 975 Sep 1995 DE
33 41 759 Nov 1997 DE
297 09 080 Oct 1998 DE
100 30 440 Jan 2002 DE
103 26 926 Jan 2005 DE
0 150 557 Aug 1985 EP
0 267 557 May 1988 EP
0267557 May 1988 EP
0 316 007 May 1989 EP
0 354 823 Feb 1990 EP
0 400 272 Dec 1990 EP
0 416 181 Mar 1991 EP
0 469 465 Feb 1992 EP
0 545 917 Jun 1993 EP
0 586 792 Mar 1994 EP
0 667 818 Aug 1995 EP
0 703 096 Mar 1996 EP
0 711 673 May 1996 EP
0 822 098 Feb 1998 EP
0 899 128 Mar 1999 EP
1 050 417 Nov 2000 EP
1 354 722 Oct 2003 EP
1 600 078 Nov 2005 EP
1955869 Aug 2008 EP
1.424.492 Jan 1966 FR
2.220.353 Oct 1974 FR
2907371 Apr 2008 FR
243110 Nov 1925 GB
937632 Sep 1963 GB
2 106 044 Apr 1983 GB
2 325 649 Dec 1998 GB
58-009788 Jan 1983 JP
58-153081 Sep 1983 JP
60-119588 Jun 1985 JP
1-280596 Nov 1989 JP
1-281999 Nov 1989 JP
2-041992 Mar 1990 JP
2-108086 Apr 1990 JP
2-283499 Nov 1990 JP
4-043345 Feb 1992 JP
4-316899 Nov 1992 JP
6-035232 Feb 1994 JP
6-216585 Aug 1994 JP
7-242094 Sep 1995 JP
7-290883 Nov 1995 JP
7-329486 Dec 1995 JP
8-072470 Mar 1996 JP
8-108676 Apr 1996 JP
8-216585 Aug 1996 JP
8-258480 Oct 1996 JP
8-282174 Oct 1996 JP
8-282175 Oct 1996 JP
9-131994 May 1997 JP
10-100579 Apr 1998 JP
10-114188 May 1998 JP
11-139081 May 1999 JP
2000-025386 Jan 2000 JP
2003-128971 May 2003 JP
2003-312185 Nov 2003 JP
2003-312186 Nov 2003 JP
2003-312188 Nov 2003 JP
2003-056790 Jul 2003 KP
2003-060260 Jul 2003 KP
2003-061516 Jul 2003 KP
WO-9000118 Jan 1990 WO
WO-9312175 Jun 1993 WO
WO-9317879 Sep 1993 WO
WO-9411204 May 1994 WO
WO-9411205 May 1994 WO
WO-9425293 Nov 1994 WO
WO-9507191 Mar 1995 WO
WO-9639054 Dec 1996 WO
WO-9806450 Feb 1998 WO
WO-9911471 Mar 1999 WO
WO-0128696 Apr 2001 WO
WO-0164453 Sep 2001 WO
WO-0206437 Jan 2002 WO
WO-0213173 Feb 2002 WO
WO-02064379 Aug 2002 WO
WO-03002357 Jan 2003 WO
WO-03068530 Aug 2003 WO
WO-2005009755 Feb 2005 WO
WO-2007097602 Aug 2007 WO
WO-2007126253 Nov 2007 WO
WO-2008029993 Mar 2008 WO
Related Publications (1)
Number Date Country
20100119288 A1 May 2010 US