Embodiments of the present invention relate to leashes, tethers, cords, or ropes. More particularly, certain embodiments relate to a retractable dog leash providing an end-of-leash warning.
When walking a dog on a retractable leash, often times the dog pulls on the leash such that the leash becomes fully detracted from its housing, jerking the arm of the person walking the dog and jerking and/or choking the neck of the dog (one end of the leash being attached to the housing held by the person and the other end being attached to a collar of the dog). In such situations, neither the person walking the dog nor the dog may be aware that the retractable leash is about to run out. Therefore, it may be desirable to provide a warning to the person walking the dog and/or to the dog that the leash is about to run out. Furthermore, other mechanisms (for uses other than for walking a dog) may have a leash, cord, tether, or rope that is retractable and is coiled up within a housing or on a frame or reel device of some kind. It may be desirable to provide a similar warning in such other mechanisms as well.
Further limitations and disadvantages of conventional, traditional, and proposed approaches will become apparent to one of skill in the art, through comparison of such approaches with the subject matter of the present application as set forth in the remainder of the present application with reference to the drawings.
One embodiment of the present invention comprises a system. The system includes a rotatable retracting mechanism and a leash coiled around the rotatable retracting mechanism and configured to be uncoiled from and recoiled to the rotatable retracting mechanism. The system also includes an end-of-leash detection mechanism configured to determine when the leash is nearing a maximum uncoiled state as the leash is being uncoiled. The system further includes a warning mechanism operatively connected to the end-of-leash detection mechanism and configured to generate a warning signal in response to the end-of-leash detection mechanism determining when the leash is nearing the maximum uncoiled state. The warning signal may include one or more of a mechanical vibration through the leash, an emitted sonic signal, an emitted infrared signal, or a transmitted radio frequency signal. The emitted sonic signal may be audible to dogs but not to humans.
In accordance with an embodiment, the end-of-leash detection mechanism includes a spring component and a pressure sensor. The spring component is configured to apply a determined amount of pressure to the pressure sensor when the leash is nearing the maximum uncoiled state. The pressure sensor is configured to activate the warning mechanism upon sensing the determined amount of pressure. In accordance with an embodiment, the system includes an actuator configured to attach to a dog collar. The actuator is also configured to receive the warning signal and generate an emitted sonic signal in response to receiving the warning signal. The emitted sonic signal may be audible to dogs and not to humans.
In accordance with an embodiment, the end-of-leash detection mechanism includes a spring component and the warning mechanism includes a rattle component operatively connected to the spring component. The spring component is configured to build up stored energy as the leash uncoils in response to rotation of the rotatable retracting mechanism. The spring component is further configured to release the stored energy when the leash is nearing the maximum uncoiled state. The rattle component is configured to make a rattling sound in response to the stored energy being released.
In accordance with an embodiment, the end-of-leash detection mechanism includes a switching mechanism and a bulb mechanism attached to the leash. The bulb mechanism on the leash is configured to activate the switching mechanism upon passing by the switching mechanism when the leash is nearing the maximum uncoiled state. The switching mechanism is operatively connected to the warning mechanism. The warning mechanism is configured to generate the warning signal in response to the switching mechanism being activated.
In accordance with an embodiment, the end-of-leash detection mechanism includes a sensing mechanism and a tag attached to the leash. The tag on the leash is configured to be sensed by the sensing mechanism upon passing by the sensing mechanism when the leash is nearing the maximum uncoiled state. The tag may include one of a magnetic tag, an optically encoded tag, or a radio frequency identification tag. The sensing mechanism may include one of a magnetic sensor, an optical sensor, or a radio frequency identification sensor. The sensing mechanism is operatively connected to the warning mechanism, and the warning mechanism is configured to generate the warning signal in response to the sensing mechanism sensing the tag.
One embodiment comprises an apparatus. The apparatus includes a housing and a cord residing within the housing. The apparatus also includes means for facilitating detraction of the cord from the housing and retraction of the cord back into the housing. The apparatus further includes means for determining when the cord is nearing a maximum state of detraction from the housing, and means for generating a warning signal in response to determining when the cord is nearing the maximum state of detraction from the housing. The warning signal may include one or more of a mechanical vibration through the cord, an emitted sonic signal, an emitted infrared signal, or a transmitted radio frequency signal.
One embodiment comprises a method. The method includes determining when a leash is about to reach a maximum state of detraction from a reel mechanism as the leash is being detracted from the reel mechanism. The method also includes generating a warning signal in response to determining when the leash is about to reach the maximum state of detraction from the reel mechanism. The warning signal provides an indication that the leash is about to reach the maximum state of detraction from the reel mechanism. The warning signal may include one or more of a mechanical vibration through the leash, an emitted first sonic signal, an emitted infrared signal, or a transmitted radio frequency signal. The method may further include transmitting at least a portion of the warning signal to an actuator device attached to a collar worn by a dog. The method may also include the actuator device generating and emitting a second sonic signal, that is audible to dogs and not to humans, in response to the warning signal.
These and other novel features of the subject matter of the present application, as well as details of illustrated embodiments thereof, will be more fully understood from the following description and drawings.
The terms “leash”, “tether”, “cord”, and “rope” may be used interchangeably herein. However, in general, the term “cord” is broader than the terms “leash”, “tether”, or “rope”. For example, a leash may be considered a type of cord. The term “housing” is used broadly herein and may refer to a substantially enclosed casing, a substantially open frame structure, or any architecture capable of storing a retractable cord. The phrases “nearing a maximum state of detraction” and “nearing a maximum uncoiled state” may be used interchangeably herein and may refer to a cord that is being pulled out of a housing that is about to run out, such that it cannot be pulled out any further from the housing, but has not yet run out. For example, a cord that is capable of being detracted fifteen feet out of a housing may be defined as nearing a maximum state of detraction when thirteen feet of the cord has been detracted from the housing.
The apparatus 200 is designed such that the end-of-leash warning point (EOLWP) corresponds to the point where the leash 220 is mostly detracted from the housing 210 and is about to run out. That is, the leash 220 is nearing a maximum state of detraction (e.g., nearing a maximum uncoiled state) from the housing 210. For example, a leash that is capable of being detracted twenty feet out of a housing may be designed as nearing a maximum state of detraction when fifteen feet of the leash has been detracted from the housing.
When the warning mechanism 250 emits the sound, the emitted sound 260 alerts the dog at the other end of the leash that the leash is about to run out. As a result, the dog becomes trained to associate the emitted sound with the leash nearing a maximum state of detraction. When the dog is trained (e.g., after several walks with the owner using the apparatus 200), the dog will learn to stop or back off from pulling on the leash when hearing the emitted sound. In this manner, the leash will not totally run out and the arm of the person walking the dog will not be jerked (and the neck of the dog will not be jerked or choked).
In accordance with an embodiment, the emitted sound 260 may be audible to both the person walking the dog (a human) and the dog itself. In accordance with another embodiment, the emitted sound 260 may be audible to the dog but not the human. The warning mechanism 250 may be designed to emit a sound that is annoying to the dog, thus making it more likely that the dog will be trained more quickly to stop or back off from pulling on the leash.
In accordance with an embodiment, the warning mechanism 250 may include a sound emitter. For example, the activating signal 410 may trigger a sonic oscillator to activate within the sound emitter. The sonic oscillator may produce a frequency that is audible to both humans and dogs, or just dogs. The sound emitter may include a power source (e.g., a small battery) to power the oscillator. In accordance with an embodiment, the power source may be kept charged by an energy harvesting device (not shown) that harvests mechanical energy from the rotating motion of the apparatus, as the leash is uncoiled and recoiled, and converts the mechanical energy to electrical energy which is stored in the power source (e.g., a small battery).
In accordance with another embodiment, the warning mechanism 250 may include a radio frequency transmitter. For example, the activating signal 410 may trigger a radio frequency oscillator to activate within the radio frequency transmitter. The radio frequency oscillator may produce an electromagnetic wave 510 (see
In accordance with yet another embodiment, the warning mechanism 250 may include an ultrasonic transmitter instead of a radio frequency transmitter. The resulting system would work much the same way as the system 500 of
In accordance with still another embodiment, the warning mechanism 250 may include an infrared emitter instead of a radio frequency or ultrasonic transmitter. The resulting system would work much the same way as the system 500 of
In yet another embodiment, the actuator may be configured to apply a slight stimulus (e.g., a slight electrical shock) to the dog upon receiving an activating signal. The activating signal may be transmitted wirelessly to the actuator, or via wired means through the leash 220, for example, in accordance with various embodiments.
The rattling sound 820 is heard by the dog, providing an indication to the dog that the leash 220 is nearing the defined maximum state of detraction, causing the dog to stop or back off from pulling on the leash. Again, after several walks with the dog using the apparatus 800, the dog will train and react to the rattling sound 820 to avoid being jerked and/or choked by the leash running out. Such an embodiment is purely mechanical and does not require any electrical components or sources of electrical power.
In accordance with an embodiment, when the leash 220 is retracted such that the bulb mechanism 920 passes by the switching mechanism 910 again, but in the opposite direction, the switching mechanism 910 is reset (e.g., toggled back to its original position) and the warning mechanism 250 is deactivated. In other embodiments, the warning mechanism 250 may be active for a defined period of time, after which the warning mechanism 250 automatically turns off, and the switching mechanism 910 may automatically reset.
When the leash 220 is being uncoiled (see direction of uncoiling leash in
In accordance with an embodiment, when the leash 220 is retracted such that the tag 1220 passes by the sensing mechanism 1210 again, but in the opposite direction, the sensing mechanism 1210 senses the tag 1220 again and deactivates the warning mechanism 250. In other embodiments, the warning mechanism 250 may be active for a defined period of time, after which the warning mechanism 250 automatically turns off.
During operation, when the leash 220 is initially being detracted from the housing 210, the lever mechanism 1420 is disengaged from the toothed component 1410. However, as the EOLWP point is reached, the trigger component 1430 engages the second arm 1422 of the lever mechanism 1420, causing the lever mechanism 1420 to rotate around the pivot point 1423 such that the first arm 1421 engages the toothed component 1410.
In one embodiment, when the first arm 1421 engages the rotating toothed component 1410, the engagement causes the toothed component 1410 to vibrate, causing a mechanical vibration to be propagated through the leash 220 in a similar manner to that of
In another embodiment, when the first arm 1421 engages the rotating toothed component 1410, the engagement causes a clicking sound that can be heard by the dog. The clicking sound provides an indication to the dog that the leash 220 is nearing the defined maximum state of detraction, causing the dog to stop or back off from pulling on the leash.
The various embodiments described herein are examples of possible embodiments but are not meant to be limiting. Other embodiments falling within the scope of the appended claims are possible as well. For example, various other combinations of parts of the various embodiments described herein may be possible and fall within the scope of the appended claims. For example, in other embodiments, the configuration of the lever mechanism 1420 and the trigger component 1430 may be used to activate switches and/or electronics.
In summary, an apparatus, a system, and a method for providing an end-of-leash warning are disclosed. Embodiments provide for determining when a retractable leash is about to reach a maximum state of detraction from a housing or reel mechanism as the leash is being detracted (e.g., by a dog), and generating a warning signal in response to determining when the retractable leash is about to reach the maximum state of detraction. The warning signal may be in the form of, for example, an emitted sonic signal, an emitted infrared signal, a transmitted radio frequency signal, or a mechanical vibration through the leash. The warning signal may be used to alert, for example, a dog and/or a person walking a dog that the leash is running out.
In the specification and claims, reference will be made to a number of terms that have the following meanings. The singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise. Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term such as “about” is not to be limited to the precise value specified. In some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Similarly, “free” may be used in combination with a term, and may include an insubstantial number, or trace amounts, while still being considered free of the modified term. Moreover, unless specifically stated otherwise, any use of the terms “first,” “second,” etc., do not denote any order or importance, but rather the terms “first,” “second,” etc., are used to distinguish one element from another.
As used herein, the terms “may” and “may be” indicate a possibility of an occurrence within a set of circumstances; a possession of a specified property, characteristic or function; and/or qualify another verb by expressing one or more of an ability, capability, or possibility associated with the qualified verb. Accordingly, usage of “may” and “may be” indicates that a modified term is apparently appropriate, capable, or suitable for an indicated capacity, function, or usage, while taking into account that in some circumstances the modified term may sometimes not be appropriate, capable, or suitable. For example, in some circumstances an event or capacity can be expected, while in other circumstances the event or capacity cannot occur—this distinction is captured by the terms “may” and “may be.”
This written description uses examples to disclose the invention, including the best mode, and also to enable one of ordinary skill in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to one of ordinary skill in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
While the claimed subject matter of the present application has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the claimed subject matter. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the claimed subject matter without departing from its scope. Therefore, it is intended that the claimed subject matter not be limited to the particular embodiments disclosed, but that the claimed subject matter will include all embodiments falling within the scope of the appended claims.