1. Field
Embodiments of the present invention relate to load guides for utility vehicles and the like. More particularly, embodiments of the present invention relate to a load guide with a retractable portion that is moveable between an operative position and a retracted position.
2. Related Art
Construction and utility equipment may be equipped to lift, move, and place heavy loads. Such equipment may include a boom and a winch for engaging and moving heavy loads. By way of example, digger derricks and similar utility vehicles are used to set utility poles and the like by digging or drilling holes and then placing the utility poles in the holes. Digger derricks may include an auger to dig the hole, a winch to lift the pole, and a pole guide mounted on the boom to stabilize and guide the placement of the pole as the pole is positioned and then placed in the hole using the boom and winch.
Pole guides typically include a pair of arms or grapple tongs for selectively engaging and securing the pole as the pole is lifted using the winch. With the pole secured by the pole guide, the boom can then be moved to position the pole to be placed in the drilled hole. To effectively engage the pole, the arms protrude outward from the boom. The protruding arms may limit or obstruct movement of the boom when not in use or otherwise encumber use of the boom.
A boom assembly in accordance with a first embodiment of the invention comprises a boom, a load guide base, and a pair of load-securing arms movably connected to the load guide base. The load guide base is secured to the boom and presents a front portion that is proximate a load supported by the boom. Each of the arms is movable between an operative position and a retracted position, wherein moving the arms from the operative position to the retracted position includes rotating each of the arms toward the other arm, and further includes translational movement of each of the arms away from the front portion of the load guide base.
A load guide in accordance with a second embodiment of the invention comprises a base including a load engaging front portion, and a first arm and a second arm each including a mounting portion and a load engaging portion. A first link element is pivotably attached to the base proximate a first end of the first link element and is pivotably attached to the mounting portion of the first arm proximate a second end of the first link element. A second link element is pivotably attached to the base proximate a first end of the second link element and is pivotably attached to the first arm proximate a second end of the second link element.
A third link element is pivotably attached to the base proximate a first end of the third link element and is pivotably attached to the mounting portion of the second arm proximate a second end of the third link element, the first and third link elements being mechanically entrained such that movement of one causes corresponding symmetric movement of the other. A fourth link element is pivotably attached to the base proximate a first end of the fourth link element and is pivotably attached to the second arm proximate a second end of the fourth link element.
An actuator induces movement of the third link element relative to the base, thereby causing the first arm and the second arm to move from an operative position to a retracted position, wherein moving the arms from the operative position to the retracted position includes rotating each of the arms toward the other arm, and further includes translational movement away from the front portion of the base.
A method of using a load guide with a retractable arm assembly in accordance with a third embodiment of the invention comprises moving a pair of arms of the arm assembly to an open position to receive a load supported by a boom, moving the pair of arms to an engaged position to engage and secure the load, and moving the pair of arms to a retracted position by rotating each of the arms toward the other arm and moving each of the arms away from a front portion of a load guide base, the load guide base being secured to the boom.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Other aspects and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments and the accompanying drawing figures.
The drawing figures do not limit the present invention to the specific embodiments disclosed and described herein. The drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the invention.
The following detailed description references the accompanying drawings that illustrate specific embodiments in which the invention may be practiced. The embodiments are intended to describe aspects of the invention in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments can be utilized and changes can be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense. The scope of the present invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.
In this description, references to “one embodiment,” “an embodiment,” or “embodiments” mean that the feature or features being referred to are included in at least one embodiment of the technology. Separate references to “one embodiment,” “an embodiment,” or “embodiments” in this description do not necessarily refer to the same embodiment and are also not mutually exclusive unless so stated and/or except as will be readily apparent to those skilled in the art from the description. For example, a feature, structure, act, etcetera described in one embodiment may also be included in other embodiments, but is not necessarily included. Thus, the present technology can include a variety of combinations and/or integrations of the embodiments described herein.
Turning now to the drawings, an exemplary utility vehicle 10 with a boom assembly 12 including a boom 14 and a load guide assembly 16 constructed according to an exemplary embodiment of the present invention is illustrated. The boom assembly 12 is mounted on the vehicle 10 to enable rotational and/or pivotal movement relative to a frame of the vehicle 10 and includes a loadline 18 for attaching to and lifting a load in a conventional manner. The illustrated boom 14 comprises a plurality of nested boom sections that may be telescopically extended and retracted and a piston and cylinder assembly 22 for pivoting the boom 14 relative to the vehicle 10. The vehicle 10 may further include additional implements or tools not depicted in the drawings, such as an auger attached to the boom for drilling a hole for utility pole placement.
The load guide assembly 16 is secured to a distal end of the boom 14 and is positioned to engage, secure, and stabilize a load 24 held by the loadline 18 and guide the load 24 into a desired position. By way of example, the load 24 may be a utility pole wherein the load guide assembly 16 engages and stabilizes the utility pole while the boom 14 lifts and positions the pole to be placed in a hole.
With particular reference to
As used herein, the “front” or “front portion” of the base 26 is the portion of the base 26 that is proximate to and/or engages the load 24. For example, the load engaging elements 36 are located at or near the front of the base 26. Similarly, a “back” or “back portion” of the base 26 is the portion of the base 26 that is opposite or distal the front portion 34. Thus, depending on the position of the boom 14 relative to the vehicle 10, the front of the base 26 may or may not correspond to the front of the vehicle 10.
The arm assembly 20 is secured to the top plate 30 of the base 26 and is operable to engage and secure the load 24 when in use and to be placed in a low-profile, retracted position when not in use. The arm assembly 20 comprises first and second arms 38,42 pivotably connected to a plurality of link elements that allow rotational and translational movement of the arms 38,42 relative to the base 26, such that the arms 38,42 generally act cooperatively and symmetrically when moved between operative and retracted positions. As used herein, “symmetric” movement means movement involving two elements wherein a first element on one side of the arm assembly follows the movement of a corresponding element on an opposite side of the arm assembly, such that the movement of the first element at least partially mirrors the movement of the second element.
The first and second arms 38,42 are in a generally opposed relationship with each arm 38,42 presenting an inwardly-arcuate shape for engaging the load 24. Each arm 38,42 includes a mounting portion 46,48 for attaching to the base 26 and a load engaging portion 50,54 for contacting and engaging the load 24. Each of the load engaging portions 50,54 generally extends from the respective mounting portion 46,48 to an outboard end 52,56. In the exemplary embodiment illustrated in the drawings, each of the mounting portions 46,48 is connected to the corresponding load engaging portion 50 or 54 via a plurality of bolts. It will be appreciated by those skilled in the art that each mounting portion 46,48 may be integrally formed with the corresponding load engaging portion 50 or 54, such that each of the arms 38,42 is a single, monolithic element.
The arms 38,42 are attached to the base 26 through a plurality of link elements that enable rotational and translational movement of the arms 38,42 as the arms 38,42 move between opened, engaged, and retracted positions. More particularly, a first link element 58 and a second link element 60 are each pivotably attached to both the first arm 38 and to the base 26, while a third link element 62 and a fourth link element 64 are each pivotably attached to both the second arm 42 and the base 26.
The first link element 58 generally presents an elongated shape with a first end 66 thereof pivotably connected to the first arm 38 at a pivot point 68 proximate a first end 40 of the first arm 38 that is distal the load engaging portion 50 of the arm 38. The first link element 58 is also pivotably connected to the base 26 at a pivot point 70 that is proximate a second end 72 of the link element 58. An arcuate, toothed edge portion 74 is located, in part, on the second end 72 of the link element 58 and is generally concentric about the point 70. The toothed edge portion 74 defines a lobe that extends inwardly (e.g.,
The second link element 60 generally presents an elongated shape with a first end 76 thereof pivotably connected to the first arm 38 at a point 78 between the first link element 58 and the load engaging portion 50 of the arm 38. More particularly, the second link element 60 may be pivotably connected to the mounting portion 46 of the first arm 38 proximate the load engaging portion 50 of the arm 38. A second end 80 (see
The third link element 62 generally presents an elongated shape with a first end 82 thereof pivotably connected to the second arm 42 at a pivot point 84 proximate a first end 44 of the second arm 42 that is distal the load engaging portion 54 of the arm 42. The third link element 62 is also pivotably connected to the base 26 at a point 86 on the third link element 62 that is proximate a second end 88 thereof. An arcuate, toothed edge portion 90 is located, in part, on the second end 88 of the third link element 62 and is generally concentric about the point 86. The toothed edge portion 90 defines a lobe that extends inwardly (e.g.,
The fourth link element 64 presents an elongated shape with a first end 92 thereof pivotably connected to the second arm 42 at a point 94 between the third link element 62 and the load engaging portion 54 of the arm 42. More particularly, the fourth link element 64 may be pivotably connected to the mounting portion 48 of the second arm 42 proximate the load engaging portion 54 of the arm 42. A second end 96 of the fourth link element 64 is pivotably connected to the base 26 at a point on the base 26 that is generally between the third link element 62 and the front portion 34 of the base 26.
The first 58 and third 62 link elements are positioned with the toothed edge portion 74 of the first link element 58 engaging the toothed edge portion 90 of the third link element 62, such that the elements 58,62 are mechanically entrained and movement of either element causes corresponding, symmetric movement of the other element.
An actuator including a hydraulically-actuated piston and cylinder assembly 98 actuates movement of the arm assembly 20 between various positions including a fully-open position (
While the particular length and shape of the components of the arm assembly 20 are not critical and may vary substantially without departing from the scope of the present invention, relative sizes and positions of certain components of an exemplary embodiment of the invention will now be discussed. Furthermore, the first 58 and second 60 link elements and the first arm 38 will be discussed with the understanding that the third 62 and fourth 64 link elements and the second arm 42 may present similar or identical properties. The ratio of the length of the first link element 58 to the second link element 60 is preferably within the range of 0.75 to 1.75 and more preferably within the range of 1.0 to 1.50, and may particularly be about 1.25. The ratio of the length of the first arm 38 to the first link element 58 is preferably within the range of 1.60 to 3.60 and more preferably within the range of 2.10 to 3.10, and may particularly be about 2.60. The ratio of the length of the mounting portion 46 of the first arm 38 to the length of the load engaging portion 50 of the first arm 38 is preferably within the range of 1.25 to 3.25 and more preferably within the range of 1.5 to 3.0, and may particularly be about 1.75.
The ratio of the distance between pivot points 70 and 86 to the distance between pivot points 70 and 68 is preferably within the range of 0.6 to 1.8, more preferably within the range of 0.9 to 1.5, and may particularly be about 1.2. The ratio of the distance between pivot points 68 and 78 to the distance between pivot points 68 and 70 is preferably within the range of 0.6 to 1.8, more preferably within the range of 0.9 to 1.5, and may particularly be about 1.2. The ratio of the distance between pivot point 78 and distal end 52 to the distance between pivot point 68 and pivot point 78 is preferably within the range of 2.0 to 4.0, more preferably within the range of 2.5 to 3.5, and may particularly be about 3.0.
When the arm assembly 20 is in an open position (e.g.,
As illustrated in
Operation and use of the load guide assembly 16 will now be described in greater detail. The arm assembly 20 is placed in an open position as illustrated in
When the load guide assembly 16 is placed in a position to engage a load, the arm assembly 20 is moved from the open position to an engaged position causing the arms 38,42 to engage the load. With particular reference to
The open position and the various engaged positions are referred to herein as “operative positions,” as these are the positions used by the load guide assembly 16 during normal use and operation of the load guide assembly 16. In contrast, the load guide assembly 16 may be placed in a retracted position (described below) when not in use.
As best illustrated in
When the load guide assembly 16 is not in use, it may be desirable to retract the arm assembly 20, thereby reducing the profile or envelope of the load guide assembly 16. This may be desirable, for example, where the boom 14 (but not the load guide assembly 16) is operated in a confined area or in an area with overhead hazards, such as power lines, tree limbs, or the like. If the arm assembly 20 were left in an operative position during such use, the arms 38,42 would be more likely to interfere with the truck's surroundings. Placing the arm assembly 20 in the retracted position greatly reduces the risk of such interference.
With particular reference now to
The rotational movement of the arms 38,42 occurs, at least in part, about points 78 and 94. This rotation about intermediate points (such as points 78 and 94) of the arms facilitates positioning the arms in a reduced envelope. The points 78 and 94 are separated from the first ends 40 and 44, respectively, by a distance that is about one-fourth of a total length of each arm 38,42. Alternatively, pivot points 78 and 94 may be positioned close to a mid-point of each arm 38,42, or even closer to the second ends 52,56 of the arms 38,42.
Placing the arms 38,42 in the retracted position reduces the profile of the arm assembly 20. As illustrated in
It should also be noted that when the arm assembly 20 is in the retracted position, the forward and outward facing portions of the arms 38,42 present relatively smooth, inwardly-curved outer edges, as best illustrated in
A load guide 200 with a retractable arm assembly 202 constructed according to another embodiment of the invention is illustrated in
A first side plate 204 is positioned on a first side of the boom 14 proximate the boom tip and a second side plate 206 is positioned on a second side of the boom 14 opposite the first side plate 204. Each side plate 204,206 includes a neck portion 216 (not shown on the second side plate 206) generally adjacent the boom 14 and a load engaging portion 218,220 extending outwardly and upwardly (that is, in the direction of the boom tip) from the boom 14. The load engaging portions 218,220 include longitudinally arcuate outwardly directed outer edge portions 222,224 that are transversely flared outwardly in opposite directions to present inwardly facing convex surfaces for engaging the surface of a load 226, as illustrated in
The arm assembly 202 includes first 228 and second 230 inwardly arcuate arms each pivotably mounted on a generally planar arm assembly platform 232, such that the arms 228,230 are in an opposing relationship one with the other. The platform 232 is defined by a front edge 234, a back edge 236, a first side 238 and a second side 240. A first end 242 of the first arm 228 is pivotably mounted at a single point proximate the front edge 234 of the arm assembly platform 232. Similarly, a first end 244 of the second arm 230 is pivotably mounted at a separate, single point proximate the front edge 234 of the arm assembly platform 232. A second end 246,248 of each arm 228,230 distal the first end 242,244 swings about the first end 242,244 along a curved path when the arms 228,230 move between closed (e.g.,
A first actuator 252, such as a hydraulic cylinder assembly, is connected to the platform 232 and to the second arm 230 and operates to move the arms 228,230 between the closed position illustrated in
The linking bars 208,210,212,214 are pivotably connected to the arm assembly platform 232 and to the side plates 204,206 and guide movement of the arm assembly 202 between a stowed position, illustrated in
The illustrated embodiment includes two linking bars on each side of the load guide 200. Linking bars 208 and 210 will be described in detail with the understanding that linking bars 212 and 214 may be configured similarly to linking bars 208 and 210.
A first end 258 of the first linking bar 208 is rotatably connected to the platform 232 proximate the back edge 236 and the first side 238, and a second end 260 of the first linking bar 208 is rotatably connected to a first point on the first side plate 204. A first end 262 of the second linking bar 210 is rotatably connected to the platform 232 near the front edge 234 and the first side 238, and a second end 264 of the second linking bar 210 is rotatably connected to a second point on the first side plate 204. The second end 260 of the first linking bar 208 and the second end 264 of the second linking bar 210 may be positioned on a line that is perpendicular or nearly perpendicular to a longitudinal axis of the boom 14. A second actuator 266, such as a hydraulic cylinder assembly, is connected to the first side plate 204 and to the first linking bar 208 and operates to move the arm assembly 202 between the stowed and operative positions by rotating the first linking bar 208 relative to the first side plate 204. A pair of spacer elements 268 separate the second linking bar 210 from the first side plate 204 by a space to accommodate the second actuator 266.
While the particular length and shape of the various components of the load guide 200 are not critical and may vary substantially without departing from the scope of the present invention, the sizes and positions of certain components of an exemplary embodiment of the load guide 200 will now be discussed. The length of the first arm 228 is preferably within the range of from about six inches to about four feet and more preferably within the range of from about one foot to about three feet. In particular, the length of the first arm 228 may be approximately one foot, one and one-half feet, two feet, two and one-half feet, or three feet. The second arm 230 may be similarly configured.
The first linking bar 208 and the second linking bar 210 may be the same length or nearly the same length, and the distance between the first end 258 of the first bar 208 and the first end 262 of the second bar 210 may be approximately one-third of the length of either linking bar 208,210. The distance between the second end 260 of the first bar 208 and the second end 264 of the second bar 210 may be approximately one-fourth of the length of either bar 208,210. The length of the first linking bar 208 and of the second linking bar 210 may be within the range of from about six inches to about four feet and more preferably within the range of from about one foot to about three feet. In particular, the length of each of the first linking bar 208 and the second linking bar 210 may be approximately one foot, one and one-half feet, two feet, two and one-half feet, or three feet. The third 212 and fourth 214 linking bars may be similarly configured.
A load guide 300 constructed according to another embodiment of the invention is illustrated in
The first and second pivot arms 302,304 guide the arm assembly 202 between a retracted position, illustrated in
A first end 306 of the first pivot arm 302 is rotatably connected to the platform 232 at or proximate the back edge 236 and the first side 238 of the platform 232. A second end 308 of the first pivot arm 302 is rotatably connected to the neck portion 216 of the first side plate 204. A first end 310 of the second pivot arm 304 is rotatably connected to the platform 232 at a single point at or proximate the second side 240 and the back edge 236 of the platform 232. A second end (not illustrated) of the second pivot bar 304 is rotatably connected to the neck portion of the second side plate 206.
The first pivot arm 302 includes two bar elements 312,314 separated by a space to accommodate second 316 and third 318 actuators. The second actuator 316 may be a hydraulic cylinder assembly and is pivotably connected to the first side plate 204 and to the first pivot arm 302. The second actuator 316 operates to move the arm assembly 202 between the stowed and operative positions. The third actuator 318 may be a hydraulic cylinder assembly and is pivotably connected to the first pivot arm 302 and to the arm assembly platform 232 and operates to pivot the platform 232 relative to the pivot arms 302,304. Thus, the second 316 and third 318 actuators cooperate to move the arm assembly 202 between the stowed and operative positions and to pivot the arm assembly 202 into position to engage the load 226.
While the particular length and shape of the various components of the load guide 300 are not important and may vary substantially without departing from the scope of the present invention, the length of each of the first 302 and second 304 pivot arms may be within the range of from about six inches to about four feet and more preferably within the range of from about one foot to about three feet. In particular, the length of each of the first 302 and second 304 pivot arms may be approximately one foot, one and one-half feet, two feet, two and one-half feet, or three feet.
In operation, the arm assembly 202 is placed in the stowed position when not in use, wherein the first actuator 252 is extended to rotate the arms 228,230 to the closed position, the second actuator 316 is extended to rotate the first pivot arm 302 and the arm assembly 202 away from the boom tip, the third actuator 318 is retracted to pivot the arm assembly 202 downward relative to the pivot arms 302,304 and to the boom 14, as illustrated in
A load guide 400 constructed according to another embodiment of the invention is illustrated in
The track assembly 402 includes a pair of V-shaped pivot arms 404,406 rotatably attached to the side plates 204,206. More particularly, a first end 408 of a first pivot arm 404 is rotatably attached to the first side plate 204, and a second end 410 of the first pivot arm 404 is fixedly attached to a track assembly base 412. The second pivot arm 406 is rotatably attached to the second side plate 206 and fixedly attached to the track assembly base such that the pivot arms 404,406 guide movement of the track assembly base 412 relative to the side plates 204,206. A pair of rails 414,416 are mounted on the track assembly base 412 and generally extend rearward from the base 412, or away from the tip of the boom. A plurality of sliders 418 are mounted to an undercarriage of the arm assembly 202 and slidably engage the rails 414,416. It will be appreciated that a different number of rails or other slide mechanisms may be employed without departing from the spirit or scope of the invention. By way of example, configurations may be adapted that include three, four, five or more rails. Furthermore, in some circumstances a single rail may be used.
A second actuator 420, such as a hydraulic cylinder assembly, is pivotably connected to the first side plate 204 and to the first rotator arm 404 and pivots the track assembly 402 and the arm assembly 202 about the ends of the rotator arms 404,406 that are rotatably connected to the side plates 204,206. A third actuator 422, such as a hydraulic cylinder assembly, is attached to both the track assembly 402 and the arm assembly 202 and moves the arm assembly 202 forward and backward along the rails 414,416.
In operation, the arm assembly 202 is placed in the stowed position when not in use, wherein the arm assembly 202 is moved toward the end of the rails 414,416 opposite the track assembly base 412, and the arms 228,230 are placed in a closed position, as illustrated in
Although the invention has been described with reference to the exemplary embodiments illustrated in the attached drawings, it is noted that equivalents may be employed and substitutions made herein without departing from the scope of the invention as recited in the claims. For example, while the arm assembly has been illustrated and described as being attached to the top plate of the load guide base, it will be appreciated that the arm assembly may alternatively be attached to the bottom plate of the base or otherwise attached to the base. Furthermore, the interlocked toothed edge portions 74,74 of the first and third link elements 58,62 represent one, exemplary method of mechanically entraining the two elements 58,62. Other methods may be used without departing from the scope of the invention including, for example, a chain and sprocket assembly.
Number | Name | Date | Kind |
---|---|---|---|
3036372 | Vigneron | May 1962 | A |
3071405 | Koehler | Jan 1963 | A |
3112830 | Podlesak | Dec 1963 | A |
3147993 | Broderson et al. | Sep 1964 | A |
3627351 | Zimmerman et al. | Dec 1971 | A |
3628675 | Balogh | Dec 1971 | A |
3631991 | Wacht et al. | Jan 1972 | A |
3933261 | Marostica et al. | Jan 1976 | A |
3933389 | Korbel | Jan 1976 | A |
4047626 | Meisel, Jr. | Sep 1977 | A |
5108140 | Bartholet | Apr 1992 | A |
5112184 | Tapper et al. | May 1992 | A |
5354150 | Canales | Oct 1994 | A |
6592316 | Hensler | Jul 2003 | B2 |
6755604 | Schaeff | Jun 2004 | B1 |
7137616 | Kysely | Nov 2006 | B2 |
7445260 | Nihei et al. | Nov 2008 | B2 |
7618230 | Sallen Rosello et al. | Nov 2009 | B2 |
7699574 | Ferrara | Apr 2010 | B2 |
Number | Date | Country | |
---|---|---|---|
20130216346 A1 | Aug 2013 | US |