1. Field of Invention
The present invention relates generally to a retractable nose cone apparatus for use with a hollow helical piling system and terminal helical anchor and methods for placing or installing either (i) reinforced concrete piles in situ without utilizing a pile driver or an auger, without unnecessary sacrifice of materials, and with the opportunity for efficient use of a terminal helical anchor and/or (ii) an electrical grounding system using a copper-bonded helical anchor and grounding grout.
2. Conventional Art
Pilings are often used to support buildings, bridges, antenna structures, and other structures—some of which also require electrical grounding. Pilings are known as either compression or tension pilings depending on whether the pile is designed to withstand forces that tend to push it into the ground (i.e., a compression pile) or pull it out of the ground (i.e., a tension pile). Conventionally, reinforced concrete piles have been placed or poured in the ground by one of two methods. The first method pours a precast reinforced concrete pile into the ground by using a pile driver and hammering the pile into the ground. The second method places a reinforced concrete pile in situ by drilling a circular hole into the ground using an auger, removing the soil, placing a pre-assembled steel reinforcing rod cage into the hole and pouring wet concrete into the hole to encase the steel reinforcing rod cage.
By contrast, conventional helical piling systems typically include one or more hollow metal helical pipes or screws or helices. The metal shaft or casing is rotated via a surface torque motor to force the helical screw downward into the earth until the screw is seated in a region of soil sufficiently strong to support the load or withstand the pull from the structure that it is to support. Additional pilings or metal casings can be attached or spliced to a previously screwed piling or metal casing to increase the depth of the overall piling. To accomplish this, adjacent round or circular ends of the pilings are usually reconfigured to have a generally square shape with rounded corners. The adjacent ends are configured to have male and female cross-sections so that the piles slide together forming a telescoping joint and are spliced to make a continuous piling.
U.S. Pat. No. 6,814,525 issued to Whitsett discloses a conventional helical piling apparatus and installation methods. The Whitsett patent discloses in its Abstract, for example, that an “in-situ pile apparatus includes a helical anchor to which a plurality of elongated generally cylindrically shaped sections can be added. Each of the sections has a specially shaped end portion for connecting to another section. An internal drive is positioned in sections inside the bore of each of the connectable pile sections. The internal drive includes enlarged sections that fit at the joint between pile sections. In one embodiment, the internal drive can be removed to leave a rod behind that defines reinforcement for an added material such as concrete. The rod also allows for a tension rod connection from the anchor tip to an upper portion attachment point.”
Another conventional helical pipe piling apparatus is distributed by MacLean Dixie HFS. It is like a large hollow cylindrical metal screw with a conical nose assembly (“nose cone”). Once seated in the ground, this hollow piling apparatus could be filled with reinforcing rods and wet concrete; however, the valuable steel pipe casings and nose cone would remain in the ground. A conventional helical pipe piling apparatus is disclosed in U.S. Pat. No. 5,833,399 and involves a single or “one [long] extension member” and the use of an expensive, tall, and difficult to transport drilling rig and pump truck. Because of the fact that the wet cementitious material must be applied through the single extension member to the unlined hole under pressure, this complicates the difficulty and expense of connecting multiple sections.
In view of the problems with conventional pilings, a piling method and system which is portable, which does not sacrifice expensive construction materials by leaving them in the ground, and which also permits the installer to independently measure and increase the torque of a terminal helical anchor, are needed in the art.
A method and system for installing a piling include sliding a detachable nose cone device through a coupler section of a pipe. Next, the detachable nose cone device may be coupled to the coupler section of the pipe by activating one or more locking mechanisms. Activating the one or more locking mechanisms may include extending shear pins by rotating a shaft that causes shear pins to extend.
A method and system for installing a piling may include a detachable nose cone device and a coupler section of a pipe. The detachable nose cone device may slidably engage with the coupler section of the pipe. The detachable nose cone device may be coupled to the coupler section of the pipe by one or more locking mechanisms. The system may further include a picking device that is slidably engagable with the detachable nose cone device. The picking device may remove the detachable nose cone device from the coupler section of the pipe by pulling the detachable nose cone device through the coupler section.
The various features, functionalities and practical advantages of the present invention may be more readily understood with reference to the following detailed description taken in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
Disclosed are a retractable nose cone apparatus and a retrieval (or “picker”) apparatus for use with a hollow helical piling system and terminal helical anchor. Also disclosed are methods for placing or installing either (i) reinforced concrete piles and/or (ii) grounding systems into the ground—without utilizing a pile driver or an auger and without unnecessary sacrifice of materials.
In accordance with the teachings disclosed herein, a torque generating motor on the surface is used to screw into the ground helical pipe sections or casings with a single nose cone device at their distal end to facilitate penetration into the ground. Eventual removal of the nose cone device through the hollow interior of the pipe sections is accomplished using the retrieval (or “picker”) apparatus. Once the nose cone device is removed with the retrieval apparatus, the installer has multiple options.
On the one hand, a preassembled steel reinforcing rod cage may be placed into the pipe sections in the ground; wet concrete may be poured into the pipe sections to encase the steel reinforcing rod cage; and the helical pipe sections may then be removed. On the other hand, with the compacted earth beneath the hollow pipe sections exposed by the removal of the nose cone device, the installer may choose to insert a helical anchor into the ground from the surface through the hollow center of the pipe sections.
The torque for the helical anchor may be applied and measured separately from that of the larger diameter helical pilings or casings. In such a situation, the continuous and interconnected square or round shaft of the helical anchor that extends all the way to the surface can serve as a reinforcement system in lieu of a steel reinforcing rod cage. The helical anchor with its shaft may also supply potentially valuable electrical grounding capabilities, especially if a copper-bonded helical anchor and grounding grout are employed. Wet concrete may be poured into the pipe sections to encase the round or square shaft of the helical anchor. Meanwhile, the helical pipe sections may then be removed.
Brief Overview of System/Apparatus 10
Referring to the drawing Figures,
Referring briefly to
Main Elements of System/Apparatus 10
Referring now back to
A short square male shaft bar 24 extends from the upper end of the coupler assembly/nose cone device 11 to just below helical flange 23A of the coupler pipe section 21. A removable segmented metal shaft 33 with a terminal magnetized female fitting 7 sits down over short square male shaft bar 24. The removable segmented metal shaft 33 extends from male shaft 24 of the nose cone device 11 to the surface. The removable segmented shaft 33 is generally used after pipe sections 30 have been installed in (rotated into) the ground. The segmented shaft 33 is used to remove the nose cone device 11 as will be described below.
The coupler pipe section 21 is coupled to a pipe section 30 with the standard width helical flanges 23A, 23B. That is, the coupler pipe section 21 as illustrated in
As noted previously, the short square shaft bar 24 of the nose cone device 11 is coupled to a section of square shaft bar 33 that extends through the pipe section 30. Additional pipe sections 30 are coupled together as required to achieve the desired depth in the ground. A final pipe section 34 as illustrated in
Referring briefly now to
A plurality of transversely slidable shear pins 44 are designed to slide inside the thrust guide plates 41. The thrust guide plates 41 channel the shear pins into the shear pin holes 45 in the exterior wall 42 of the coupler assembly.
The shear pins 44 are attached to the shear pin positioning arms 52. The shear pins 44 with the assistance of the thrust guide plates 41 are aligned with a corresponding plurality of shear pin holes 45 in the exterior wall 42. In addition, the shear pin holes 45 in the exterior wall 42 are aligned with the elongated shear pin holes 50 in splice ring 22.
Referring briefly to
In
As understood by one of ordinary skill in the art, any number of shear pins 44 and corresponding shear pin holes 45 of the coupler assembly and holes 50 of the splice ring may be employed. The actual number of shear pins 44 and shear pin holes 45 and 50 may vary depending on a particular overall design.
Referring now back to
The integral coupler assembly/nose cone device 11 is lowered down into coupler section 20 and oriented such that the shear pins 44 are aligned with the shear pin holes 50 in the inner splice ring 22. Horizontal movement of the shear pins 44 is controlled by rotating the threaded rod 48 via the square male shaft bar 24. Clockwise movement of the threaded rod 48 will cause the upper coupler plate 46A to lower and the lower coupler plate 46B to rise and force the shear pins 44 outward, and vice versa. This relative movement of the plates 46A, B and shear pins 44 is illustrated in
As understood by one of ordinary skill in the art, any number of pins 702 or a similar engagement mechanism may be employed, depending on the particular overall design.
However, other types of fluid pressure devices 98 may be used as understood by one of ordinary skill in the art. For example, a water pump or other type of fluid pump may be used to create the fluid pressure needed to force the concrete 66 down into the cavity formed by the piling system 10. The fluid pressure device 98 may create a significant amount of pressure that causes the opening 96 below the piling to have a “mushroom” shape. When the opening 96 has a dimension which is greater than the cavity formed by the piling system 10, this opening 96 having a greater surface area will further provide additional reinforcement for the piling as understood by one of ordinary skill in the art.
The second shaft 33B may have more or less strength relative to the first shaft 33A depending on the torque requirements to rotate the anchor 16. Since the second shaft 33B may have less strength, it may be made with cheaper or less expensive materials relative to the materials used to produce the first shaft 33A. According to this exemplary embodiment, the second shaft 33B may be designed to be left into the ground 90 after the anchor 16 has been rotated for insertion into the ground 90.
At this stage as illustrated in
The resulting concrete piling has a capacity in compression and tension that is based on the friction between the soil/ground 90 and the concrete 66 along the length of the concrete piling plus the bearing capacity of the soil 90 below or the tensioning capacity of the soil above the mushroom 96 or the helical screw anchor 16.
The coupler assembly/nose cone device 11 may be outfitted with an internal round metal shaft projecting through the tip 19 of the nose cone device 11 and terminating in a slip connection 18 that engages (when rotated in a clockwise direction) a projecting bar (See
A first surface torque motor 99A is used to rotate the entire pipe section 30 to penetrate the ground 90. Exemplary motors 99A include, but are not limited to, combustion engine types, electric motors, pneumatic motors, and hydraulic motors.
The second shaft 33B may have more or less strength relative to the first shaft 33A depending on the torque requirements to rotate the anchor 16. Since the second shaft 33B may have less strength, it may be made with cheaper or less expensive materials relative to the materials used to produce the first shaft 33A. According to this exemplary embodiment, the second shaft 33B may be designed to be left into the ground 90 after the anchor 16 has been rotated for insertion into the ground 90.
Thus,
In view of
The resulting concrete piling has a capacity in compression and tension that is based on the friction between the soil/ground 90 and the concrete 66 along the length of the concrete piling plus the bearing capacity of the soil 90 below or the tensioning capacity of the soil above the mushroom 96 or the helical screw anchor 16.
Referring generally now to
The integral coupler assembly/nose cone device 11 is lowered down through coupler section 20 until seated against the lower internal flange on splice ring 22 (Block 1405) and oriented such that the shear pins 44 are aligned with the elongated shear pin holes 50 in splice ring 22 (Block 1410).
The magnetized lower female end of segmented square shaft 33 is removably inserted over and around the smaller male end of short square shaft bar 24, which is welded to the threaded rod 48 (Block 1415). The short square shaft bar 24 is then rotated clockwise (Block 1420). The clockwise rotation of the threaded rod 48 forces the upper coupler plate 46 and welded nut 47A downward and the lower coupler plate 46 and welded nut 47B upward, which in turn causes the shear pin positioning arms 52 to push the shear pins 44 through circular shear pin holes 45 in exterior wall 42 and then through the elongated shear pin holes 50 in splice ring 22.
Once the shear pins 44 protrude through elongated shear pin holes 50 and are fully extended, further torque will cause the integral coupler assembly/nose cone device 11 to rotate slightly so that the shear pins 44 lodge tightly at the narrow end of the elongated shear pin holes in splice ring 22 that is part of coupler section 20.
At this stage, square shaft 33 is removed and set aside (Block 1425). A pipe section 30 with the standard width helices 32 is then bolted to the coupler section 20 containing the firmly seated integral couple assembly/nose cone device 11 (Block 1430). All of the pipe sections, 20 & 30, have helical flanges 23A,B at each end. These flanges 23 serve at least two purposes. The first is for splicing of the pipe sections 20 & 30. The second is for when the pipe sections 20 & 30 are required to be inserted in the ground or removed.
Clockwise and counterclockwise torque, respectively, can then be applied to the pipe sections 20 and 30 using a torque motor 99 at the surface end of the entire piling assembly; and the helical flanges 23 will cause the pipe sections 20, 30 to “screw” themselves unto the ground 90 or “unscrew” themselves out of the ground 90, as the case may be (Block 1435).
The torque required for installation and removal is always applied to the surface end of pipe sections 20 & 30. Because the helical flanges 23 are typically narrow, approximately two inches in width, larger width helices 32 may be required for the removal of the pipe sections 20 & 30. Larger width helices 32 may be bolted to helical flanges 23 when they are assembled together at the surface. In short, one or more pipe sections 30 may require the addition of larger width helices 32 to assist with the surface area needed to screw in or back out all of the pipe sections 20 & 30, depending on pipe width and depth and soil type.
Once all of the pipe sections 20 & 30 have been extended or screwed into the ground to a desired depth (see
To keep the integral coupler assembly/nose cone device 11 stable while surrounding coupler section 20 is being counter-rotated, the exterior of the nose cone device 11, in addition to small helices 32, may be outfitted with a number of hinged flaps (not illustrated), which will deploy and impede any counterclockwise rotation of the integral coupler assembly/nose cone device 11.
Next, the segmented square shaft 33, with its magnetized lower female end, is extended from the surface down through pipe sections 30 & 20 until its female end is again removably inserted over and around the smaller male end of short square shaft bar 24 (Block 1445). To facilitate that process, small projecting fins or guides (not illustrated) may be welded to the female end of segmented square shaft 33 so as to keep it positioned at or near the center of pipe sections 30 & 20 during its descent. Once they are reconnected, the square shaft bars 33 & 24 are rotated counterclockwise (Block 1450). The resultant counterclockwise rotation of the threaded rod 48 in the coupler assembly forces the upper coupler plate 46 and welded nut 47A upward and the lower coupler plate and welded nut 47B downward, which in turn causes the shear pin positioning arms 52 to pull or retract the shear pins 44 out of the shear pin holes 45 & 50, disengaging pipe sections 20 & 30 from the integral coupler assembly/nose cone device 11. The square segmented shaft bar 33 is then pulled up through the pipe sections 20 & 30 and set aside (Block 1455).
The picker device 12 shown in
Steel reinforcing rods 65 may then be placed into pipe sections 20 & 30 (Block 1475) (see
This may be done by intermittently adding more concrete until all of the pipe sections 20, 30 have been removed so that the hole previously occupied by the pipe sections 20, 30 is completely filled with wet concrete (see
During the process of filling pipe sections 20 & 30 with wet concrete, a special cap (not illustrated) may be attached to helical flange 23 on uppermost pipe section 34 with a connection for an air nozzle. This air nozzle may permit fluid pressure such as from air to be applied with a fluid pressure device 98 to the interior of the hollow pipe sections 30. The air pressure applied on top of the wet concrete column will force the bottom of the wet concrete column into the space 96 vacated by the integral coupler assembly/nose cone device 11.
This forcing of concrete 66 into surrounding soils may result in a mushroom effect that increases the surface area at the end of the piling, creating additional horizontal load bearing capacity once the wet concrete is set. This method of applying fluid pressure can be employed before any of the pipe sections 20 & 30 are removed, though partial removal of the lowest pipe sections usually increases the mushroom effect as understood by one of ordinary skill in the art.
Alternatively, once the integral coupler assembly/nose cone device 11 is removed using the picker device 12, a conventional helical screw anchor 16 and a segmented extension shaft 33B coupled to the helical screw anchor 16 can be screwed into the ground 90 exposed by the removal of the nose cone device 11 and directly beneath the vertical column of air within pipe sections 20 & 30. This would allow the installer of the round or square shaft helical anchor 16 to monitor the helical anchor 16 for installation torque independently of the torque required to install pipe sections 20 & 30. Likewise, the segmented metal round shaft 33B or a square shaft can be left in place in lieu of steel reinforcing rod 65 to reinforce the concrete column 66 and/or to provide electrical grounding.
As a further alternative, the integral coupler assembly/nose cone 11 may be outfitted with an integral round metal shaft 15 with a slip connection 18 at the end as depicted in
The resulting concrete piling has a capacity in compression and tension that is based on the friction between the soil and the concrete 66 along the length of the concrete piling plus the bearing capacity of the soil below or the tensioning capacity of the soil above the mushroom or the helical screw anchors 16.
As described above, many of the parts of the system 10 are manufactured from materials such as metal. However, other materials are included with the scope of the system 10. Other materials include, but are not limited to, ceramics, plastics, etc., as understood by one of ordinary skill in the art.
In addition to the above-described procedure or method 1400 for installing the reinforced concrete piling apparatus 10, a method of improved electrical grounding associated with either a tension or compression pile utilizing the above helical anchor oriented method 1400 is also disclosed. In situations where electrical grounding is a prime consideration, the installer may want to use a copper bonded helical anchor 16 and may want to apply so-called grounding grout in the bottom of the hollow vertical column formed by pipe sections 20 & 30 prior to filling the remainder of the column with wet concrete 66. A round or square segmented extension shaft 33B extending to the surface that was used to screw in the helical anchor 16 may be left in the ground 90 for purposes of both conductivity and structural reinforcement of the concrete pile.
In view of the above system 10 and method 1400, advantages over those methods utilizing a pile driver have been realized and include, but are not limited to: no pile-driving greatly reduces noise and vibrations that affect surrounding buildings and upset neighbors; no jetting—avoids run-off and water contamination; and the system 10 can be installed using much smaller equipment relative to methods using a pile driver.
In view of the above system 10 and method 1400, advantages over those methods utilizing an auger have been realized and include, but are not limited to: Helical systems 10 eliminate the mess and high cost of spoils removal; unlike augering, helical systems 10 increase soil compaction and load capacities; and helical systems 10 can be installed using much smaller equipment relative to methods using an auger.
The installer of a reinforced concrete piling, through the use of a decoupling apparatus as provided in this system, has the ability, after pouring the reinforced concrete piling in place, to remove all of the helical pipe sections or casings connected to one another by the use of helical flanges.
The inventive system described has cylindrical hollow metal pipe sections of uniform width which overcomes the problem of insertion and removal torque by (i) joining the removable pipe sections by bolting them together via their helical flanges so as to provide for easy assembly and disassembly and to eliminate the friction of connection joints and by (ii) use of modern torque-generating devices.
With the inventive system, conventional torque devices may be inexpensively outfitted on a relatively small and portable rubber track excavator or similar machine, so that there are tremendous cost savings with this inventive system—irrespective of any “head room” issues—to utilizing a so-called “plurality of interconnected sections”, such that the length of the lower section can be built up as it progresses down the hole.
What has been disclosed is a reinforced concrete piling system that can not only be installed in the ground without requiring a pile driver or an auger, with the ability to use small equipment in environmentally sensitive areas or those with limited access, and without the necessity of leaving in the ground and sacrificing all of the expensive helical pipe sections or casings themselves. The inventive system also allows (i) the removal and reuse of the expensive nose cone and (ii) the opportunity to (a) access from the surface the region of compacted soil vacated by the removed nose cone for purposes of screwing a conventional helical anchor directly into that soil from the surface by communicating torque from a surface motor via a round or square shaft extending down from the surface through the hollow column formed by the helical casings and (b) accurately measure the torque (and hence the additional “load” bearing or “pull” resisting capacity) of the helical anchor itself (as opposed to the entire superjacent helical pipe assembly) where needed for additional support or “tensioning” capacity to complement the eventual superjacent concrete piling, with the round or square shaft of the helical anchor being left in place for reinforcement and/or for electrical grounding purposes.
Thus, apparatus and methods for installing either (i) reinforced concrete piles and/or (ii) grounding systems into the ground, without utilizing a pile driver or an auger, without unnecessary sacrifice of materials, and with the opportunity for efficient use of a terminal helical anchor, have been disclosed. It is to be understood that the above-described embodiments are merely illustrative of some of the many specific embodiments that represent applications of the principles discussed above. Clearly, numerous other arrangements can be readily devised by those skilled in the art without departing from the scope of the methods and systems described.
The word “exemplary” is used in this description to mean “serving as an example, instance, or illustration.” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
Certain steps in the processes or process flows described in this specification naturally precede others for the invention to function as described. However, the invention is not limited to the order of the steps described if such order or sequence does not alter the functionality of the invention. That is, it is recognized that some steps may performed before, after, or parallel (substantially simultaneously with) other steps without departing from the scope and spirit of the invention. In some instances, certain steps may be omitted or not performed without departing from the invention. Further, words such as “thereafter”, “then”, “next”, etc. are not intended to limit the order of the steps. These words are simply used to guide the reader through the description of the exemplary method.
Although selected aspects have been illustrated and described in detail, it will be understood that various substitutions and alterations may be made therein without departing from the spirit and scope of the present invention, as defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
51801 | Castle | Jan 1866 | A |
234151 | Vaughn | Nov 1880 | A |
872093 | Stewart | Nov 1907 | A |
1969251 | Bald | Aug 1934 | A |
3628337 | Stepanich et al. | Dec 1971 | A |
3894589 | Ciraud | Jul 1975 | A |
4708530 | Faber | Nov 1987 | A |
5088681 | Procaccianti et al. | Feb 1992 | A |
5257559 | Cannetti | Nov 1993 | A |
5683207 | Mauer | Nov 1997 | A |
5833399 | Bullivant | Nov 1998 | A |
5927905 | Van Halteren | Jul 1999 | A |
6341614 | Tucker et al. | Jan 2002 | B1 |
6652195 | Vickers et al. | Nov 2003 | B2 |
6814525 | Whitsett | Nov 2004 | B1 |
6824331 | Parker | Nov 2004 | B2 |
7004683 | Rupiper | Feb 2006 | B1 |
7731454 | Watson et al. | Jun 2010 | B1 |
20060127188 | Francis | Jun 2006 | A1 |
20100319272 | Kellner | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
185402 | Jun 1986 | EP |
04343913 | Nov 1992 | JP |