The present disclosure relates in general to the field of enclosures, and more particularly, to enclosures that include a selectively retractable roof.
Some enclosures for use outdoors are typically constructed to cover a predetermined area to protect the predetermined area from exposure to the elements. These enclosures suffer from a number of disadvantages. For instance, such enclosures are typically constructed so as to permanently cover the predetermined area. This may be undesirable where coverage for the predetermined area is only necessary or desired for a given period of time and where exposure to the elements may be desired on occasion. Further, such enclosures are generally not selectively configurable and are permanent in nature.
Some other such enclosures are configured for temporary use whereby they may be constructed to cover the predetermined area and taken down after use thereof. However, such enclosures are typically generally not capable of withstanding a wide variety of weather conditions such as wind, rain, and snow.
The present application incorporates by reference U.S. Pat. No. 9,915,062 to Forsland et al., issued Mar. 13, 2018, in its entirety. The incorporated patent discloses various examples of convertible enclosures, including enclosures having retractable roof systems.
The frame 111 defines a fixed rectangular boundary or perimeter corresponding to the enclosable space of the enclosure 110 (i.e., the space defined inside the ends 112 and sides 114 of the enclosure). The frame 111 includes a plurality of fixed vertical posts that can be supported on footings such as Sonotubes, a floating cement slab, frost wall footings, an existing deck or patio or other suitable foundation. The vertical posts include corner posts 500 positioned at the corners of the enclosable space, and intermediate posts 502 positioned at the sides and ends of the enclosure adjacent mid-points between the corner posts. The frame 111 also includes horizontal beams supported on top of the vertical posts at roof level. The horizontal beams are preferably supported at a height above head level (e.g., at a height of at least 7 feet and preferably about 8 or 9 feet). The horizontal beams include side beams 504 that extend along the sides 114 of the enclosure and end beams 506 that extend along the ends 112 of the enclosure. The side beams 504 include end portions 508 that extend outwardly beyond the end walls and corner posts 500 of the enclosure 110. The end portions 508 are supported by further posts (e.g., supports 123) located outside the perimeter of the enclosable space of the enclosure.
The enclosure 110 further includes a roof 120 comprising a plurality of independently movable roof panels 124. The roof panels 124 comprise unitary structures configured to span the width of enclosure 110, and each roof panel 124 comprises a pair of sides that are pitched so as to meet at a medial position along the width of the enclosure 110 to define a peak 125. The roof panels 124 are positioned immediately laterally adjacent to one another so as to cooperate with one another to form a pitched roof 120. A lower portion of each of roof panels 124 is movably coupled to an upper track assembly 121. Upper track assembly 121 comprises a pair of laterally spaced tracks 121a and 121b, respectively in which each of the laterally spaced tracks 121a and 121b are supported by a pair of longitudinally spaced supports 123a and 123b and 123c and 123d (collectively supports 123), respectively. Specifically, the tracks are mounted on top of the horizontal side beams 504 so as to be elevated above head level. Supports 123 are positioned at points extending beyond each of end walls 112 of enclosure 110. Understandably, tracks 121 may extend beyond an end of only one of end walls 112 or both and supports 123 may be arranged correspondingly. In this manner, roof panels 124 are afforded a full range of motion along a full length of the frame of the enclosure 110. Further, when the roof panels 124 are in an open position as shown in
The roof is formed by a plurality of roof sections that are slideable relative to one another.
A load transfer structure 630 is configured for transferring load from the frame of the second roof section 600b downwardly through the frame and truss structure of the first roof section 600a to the first and second roof support structures.
In the illustrated example, the load transfer structure 600 includes a roller 640. The roller is vertically adjustable relative to the first or second roof sections to adjust a magnitude of load transferred from the second roof section to the first roof section.
As shown in
The load transfer structure 630 includes a first load transfer element 640a attached to the second roof section 600b including a first roller 640a that mounts over and rides along the peak of the first roof section when the second roof section is moved between the extended and retracted positions, and wherein the load transfer structure includes a second load transfer element attached to the first roof section including a second roller 640b that mounts under and rides along the peak of the second roof section 600b when the second roof section is moved between the extended and retracted positions. The first roller is vertically adjustable relative to the second roof section and the second roller is vertically adjustable relative to the first roof section to adjust the amount of load transferred from the second roof section to the first roof section.
Further, in some examples, a third roof section is supported on the first and second roof support structures. The third roof section has a length dimension that extends between opposite first and second ends of the third roof section, the third roof section also has a width dimension that extends between opposite first and second sides of the third roof section. The width dimension of the third roof section is perpendicular relative the length dimension of the third roof section, and the third roof section is oriented such that the width dimension of the third roof section extends across the span distance. As with the first and second roof sections, the third roof section has a frame that supports panels of the third roof section. The frame of the third roof section has a truss structure positioned at the first end of the third roof section, and the truss structure of the third roof section extends along the width of the third roof section and is configured to reinforce the frame of the third roof section across the span distance. The truss structure of the third roof section at least partially obstructs the first end of the third roof section, and the third roof section is configured to nest over the second roof section with the first end of the second roof section received through the second end of the third roof section. The third roof section is movable in the length dimension along the first and second support structures between extended and retracted positions relative to the second roof section. A load transfer structure is provided for transferring load from the frame of the third roof section downwardly through the frame and truss structure of the second roof section to the first and second roof support structures.
It is specifically intended that the present invention not be limited to the embodiments and illustrations contained herein, but include modified forms of those embodiments including portions of the embodiments and combinations of elements of different embodiments as come within the scope of the following claim.
This application is a continuation of application Ser. No. 16/515,126, filed Jul. 18, 2019, now U.S. Pat. No. 10,934,708, which application claims the benefit of provisional application Ser. No. 62/701,330, filed Jul. 20, 2018, which applications are incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3815299 | Sorensen | Jun 1974 | A |
4271644 | Rilliet | Jun 1981 | A |
4426744 | Love | Jan 1984 | A |
4616451 | Glick | Oct 1986 | A |
4682449 | Berger | Jul 1987 | A |
5167341 | Morton | Dec 1992 | A |
5297368 | Okada | Mar 1994 | A |
8381452 | Forsland et al. | Feb 2013 | B1 |
8701356 | Forsland et al. | Apr 2014 | B2 |
8707632 | Forsland et al. | Apr 2014 | B2 |
9915062 | Forsland et al. | Mar 2018 | B2 |
10151109 | Forsland | Dec 2018 | B2 |
10934708 | Forsland | Mar 2021 | B2 |
20030000154 | Ignazio | Jan 2003 | A1 |
20110308173 | Forsland | Dec 2011 | A1 |
20130042541 | Forsland | Feb 2013 | A1 |
20140338270 | Forsland | Nov 2014 | A1 |
20150013238 | Castel | Jan 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20210285211 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
62701330 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16515126 | Jul 2019 | US |
Child | 17183722 | US |