The present application claims priority from Australian Provisional Patent Application No. 2017904402 filed 30 Oct. 2017, the entire content of which is incorporated herein by reference.
The present invention relates generally to architectural structures, such as roofs and walls, and in particular, to a retractable roof/wall structure comprising a plurality of louvres that are moveable and retractable to open/close and retract as desired.
Modern architecture generally seeks to combine indoor and outdoor living in away that maximises the enjoyment of sunshine and light but which also provides a degree of privacy and protection from the elements. It is the ability to provide a degree of control over the amount by which outdoor elements can be permitted into an indoor space which provides the most successful combination of such spaces.
Many homes and offices seek to make use of outdoor spaces by building pergolas or decks which are generally exposed to the elements but which may incorporate retractable roofing or walls which can be employed to provide a degree of protection from the elements if desired. Similarly, such spaces often employ louvres or shutters to enable a degree of control over the amount of sunlight that may enter the structure to provide a desired degree of comfort for those enjoying the space, whilst maximising a view or exposure to sunlight.
Thus there have been proposed wall and roof structures which incorporate moveable louvres to control the amount of light that passes therethrough and which can be fully retracted to open a space as desired. However, many such proposals have incorporated a variety of complicated and intricate control mechanisms to collectively move the louvres and to control the angle of the louvres which are difficult to maintain and expensive to manufacture. Due to the intricate control required to collectively control the state of each louvre present in such a structure, it is common from many structures to fail to open/close correctly over time, resulting in the need for constant servicing and replacement of moving parts.
Thus, there is a need to provide a system for providing enhances control of such structures incorporating movable and retractable louvres and which is simple and effective to operate.
The above references to and descriptions of prior proposals or products are not intended to be, and are not to be construed as, statements or admissions of common general knowledge in the art. In particular, the above prior art discussion does not relate to what is commonly or well known by the person skilled in the art, but assists in the understanding of the inventive step of the present invention of which the identification of pertinent prior art proposals is but one part.
The invention according to one or more aspects is as defined in the independent claims. Some optional and/or preferred features of the invention are defined in the dependent claims.
According to a first aspect, the present invention provides an architectural structure comprising retractable and moveable louvres comprising:
a frame having a rear end, a front end and a pair of side walls connecting the front end and the rear end;
a plurality of louvres extending substantially between the side walls, at least one end of the louvres being mounted to a gearbox member for controlling the angular orientation of the louvre, each gearbox member is mounted upon a track extending substantially along a length of at least one side wall and at least one of the gearbox members is mounted to a belt driven by a drive pulley to move said at least one gearbox member along said track;
wherein, each gearbox member is attached to an adjacent gearbox member by way of a connector with a length of the connector extending between adjacent gearbox members being constant such that when the louvres are in an extended position, the spacing between the louvres is maintained at a predetermined distance.
In one embodiment, the connector is a belt and the pitch of the belt extending between adjacent gearboxes is controlled to maintain the spacing between louvres when in the extended position at a predetermined distance.
Each gearbox member may be mounted to the track so as to facilitate longitudinal movement of the gearbox along said track and rotational movement of the gearbox about the longitudinal axis of the track. The track may be substantially circular in cross-section and each gearbox may be mounted to the track by way of at least two opposing V-wheels which engage with the track. In one preferred form, each gearbox may be mounted to the track by way of three V-wheels, two of the V-wheels being laterally disposed to engage with an upper surface of the track and one V-wheel engaging with a lower surface of the track.
Each of the louvres may be mounted at one common end to an operational gearbox that is controllable to vary the angular orientation of the louvre and at the other end to an idler gearbox that supports the louvre and facilitates angular movement of the louvre under action of the operational gearbox.
Reference throughout this specification to ‘one embodiment’ or ‘an embodiment’ means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearance of the phrases ‘in one embodiment’ or ‘in an embodiment’ in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristic described herein may be combined in any suitable manner in one or more combinations.
The invention may be better understood from the following non-limiting description of preferred embodiments, in which:
Preferred features of the present invention will now be described with particular reference to the accompanying drawings. However, it is to be understood that the features illustrated in and described with reference to the drawings are not to be construed as limiting on the scope of the invention.
The present invention will be described below in relation to its application to wall or roof structure. However, it will be appreciated that the present invention could be equally applied to a variety of different structures and purposes where there is a need to control the angle of individual louvres with respect to each other and the location of the individual louvres with respect to each other, as will be appreciated by those skilled in the art.
Turning to
The roofing structure 10 comprises a rear support 12, in the form of a wall or the like and a pair of front supports 14, in the form of piers or pylons. A frame 16 is mounted to the rear support 12 along a rear end 16a thereof and has a pair of sides 16b, 16c extending orthogonally from opposing ends of the rear end 16a to be supported at their distal ends by the front supports 14. In the embodiment as depicted, the frame 16 has an open front end 16d. However, it will be appreciated that the front end 16d may be closed by way of a front panel (not shown) that extends between the front supports 14.
A plurality of louvres 15 are mounted within the frame 16 so as to be substantially parallel with the rear end 16a. As will be discussed in more detail below, each of the louvres 15 may be arranged between a retracted position and an extended position as shown in
The wall structure 20 if
Referring to
In this regard,
Referring to
A track member 36, in the form of a circular tube, extends substantially the length of the box 17. A plurality of gearboxes 32 are mounted to travel along the track member 36 in the manner as shown in
It will be appreciated that for each length of louvre, the angle of orientation of the associated gearbox may change. If there is a degree of misalignment between the gearboxes 32 and the louvre, this can cause forces to build up within the gearbox 32 which can cause premature wear and failure of the gearboxes. However, as the V-wheels 37 engage about the track member 36 in a manner which allows a degree of rotation of the gearboxes 32 with respect to the track member 36, the gearboxes 32 can rotate to match the angle of the louvre which is governed by the angle of the length and fall of the louvre, thus minimising unwanted forces building up within the gearbox and maximising gearbox life.
Further to this, as the track member 36 is mounted within the structure, over time it will be exposed to dust and dirt collecting along the surface thereof. Due to the action of the V-Wheels 37 travelling along the track member 36 and being able to rotate in relation thereto, the V-wheels 37 are able to act as a self-cleaning mechanism that continually cleans the tracks and does not allow dirt and dust to build up, as is a common problem with most existing C-channel tracks employed for similar purposes.
The provision of three V-wheels 27 to engage with the track member 36, namely with two V-wheels located on the top and one V-wheel located underneath, enables the system to be simply adjusted to ensure that the engagement of the V-wheels with the track is snug. This can then prevent rotation of the gearboxes 32 and prevent any upward or downward movement of the louvres due to wing loading events and the like.
As mentioned previously, each gearbox 32 is a low friction gearbox and is mounted to an end of a louvre 25 by way of the mounting member 38 that extends from a slot 18 in the box 17. This is shown in
It will be appreciated that, as each gearbox 32 is a low friction gearbox, it requires very low torque to rotate each of the louvres 25 as provided by the actuation carriage 60. This allows the electrical control system of the actuator 62 to detect an amperage increase during opening/closing the louvres which is indicative of the presence of an obstacle between the louvres, such as a person's fingers or a body part, preventing louvre movement. Through being able to detect such changes in amperage, the present system is able to cut/off the actuator 62 as a safety mechanism should the amperage reach a present level. It will be appreciated that if the gearbox friction is too high, a larger motor is required in the actuator 62 to rotate the multiple louvres. As such, the sensitivity of the system is significantly reduced and detection of changes in amperage within the control system is no longer possible with any precision. Thus, the present invention is configured to enable such detection due to the configuration of the gearboxes and the manner in which they are actuated. The low friction gearboxes 32 also enable a much smaller motor to be used in the actuator 62 to rotate the louvres.
The manner in which the gearboxes 32 are able to be extended and retracted is depicted in
When retracted, there is a degree of slack in the timing belt 40 between adjacent gearboxes 32, as shown in
In order to retract the louvres 25, the drive pulley 31 is merely reversed such that the leading gearbox 32 is caused to move back towards the drive pulley 31. As each of the gearboxes 32 have a stopper 42 that projects from a trailing end thereof, as the leading gearbox 32 is brought towards the trailing gearbox, the timing belt 40 slackens until the stopper 42 contacts the leading face of the trailing gearbox thereby pushing that gearbox 42 back towards the drive pulley 31. This creates a concertina effect thereby retracting the louvres and pushing the louvres 25 towards one end of the roofing structure. It will be appreciated that prior to retraction of the louvres, the gearboxes will cause the louvres to rotate into a vertical position to ensure maximum retraction.
As the gearboxes 32 travel along the track member 36 by way of the V-wheels 37, this arrangement enables a degree of swivel movement of the gearbox 32 with respect to the track member 36. In this regard, as the gearboxes adjust the orientation of the louvres, for different lengths of louvres the angular orientation of the gearbox will change. As the V-wheels 37 clamp about the track member 36, there is a wide scope of angular adjustment available to accommodate different angles of the louvres, which is also assisted due to the round nature of the track member 36. Such a means for moving the gearboxes also enables a degree of self-cleaning of the track member 36 due to the swivel nature cleaning the track surfaces.
It will be appreciated that each gearbox 32 is connected to an end of a louvre 25 with the other end of the louvre 25 being connected to an idler carriage of an identical retraction system. The idler carriage also contains a timing belt 40 to set the pitch between idler carriages. The idler carriage also functions to accommodate any misalignment between the two carriages as the shaft of the idler carriage slides in and out of a simple housing. It will be appreciated that, in such an arrangement, both drive pulleys can be controlled in unison to provide a controlled louvre retraction and extension arrangement, with minimal likelihood of jamming of the louvres due to misalignment. To accommodate small misalignments between the opposing tracks, the idler carriage has a free floating shaft that connects to the louvre.
Similarly, as the spacings between the louvres when extended are set by the timing chain, the louvres can be simply and effectively moved in to an abutting manner that provides a sealed and enclosed roofing structure. The ability to control both ends of the louvre movement in such a finite manner ensures that the louvres are continually moved in a controlled manner to minimise misalignment of louvres and potential leakages in the roof structure.
Through-out the specification and claims the word “comprise” and its derivatives is intended to have an inclusive rather than exclusive meaning unless the context requires otherwise.
Orientational terms used in the specification and claims such as vertical, horizontal, top, bottom, upper and lower are to be interpreted as relational and are based on the premise that the component, item, article, apparatus, device or instrument will usually be considered in a particular orientation, typically with the assembly uppermost.
It will be appreciated by those skilled in the art that many modifications and variations may be made to the methods of the invention described herein without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2017904402 | Oct 2017 | AU | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AU2018/000211 | 10/30/2018 | WO | 00 |