Retractable stadium roofs and transport mechanism therefor

Information

  • Patent Grant
  • 6367206
  • Patent Number
    6,367,206
  • Date Filed
    Monday, July 3, 2000
    24 years ago
  • Date Issued
    Tuesday, April 9, 2002
    22 years ago
Abstract
A stadium that is adapted for open use during good weather as well as for covered use during poor weather includes a foundation and a pair of movable end roof members that are movable between first, retracted positions and second, operational positions for covering first and second end areas, respectively, of the stadium. The stadium also includes a center roof member that is movable between a retracted position and an operational position for covering a center area of the stadium. All of the roof members are supported for movement between the retracted positions and the operational positions by a guide and support assembly that includes at least one rail member that is secured to the foundation and a plurality of independently suspended follower assemblies that are mounted to the respective roof member. Each of said follower assemblies include a wheel member that is positioned in contact with the rail and a resilient member that is interposed between the wheel member and the roof member, so that each of the wheel members is independently suspended with respect to the other wheel members. This creates a number of advantages, including that it makes alignment easier to achieve and maintain, and that it allows the guide and support assembly to be constructed with a large number of small wheels and to have a relatively low profile, which makes the system attractive from both an aesthetic and a structural standpoint.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention pertains, in general, to the field of retractable covers or roofs for large structures, such as athletic stadiums. More specifically, the invention relates to an improved transport mechanism for such a structure that is more compact, reliable, stable, mechanically simple and inexpensive to construct than comparable mechanisms heretofore known.




2. Description of the Related Technology




It is common these days for athletic stadiums to be constructed with retractable roofs, because this type of construction offers spectators the pleasure of being outdoors on nice days, while providing shelter when necessary against extreme temperatures and inclement weather conditions.




A number of factors must be taken into account in the design of a stadium that has a retractable roof. For instance, the forces created by the exertion of natural forces such as wind, rain snow and even earthquakes on such a large structure can be enormous, and the roof, the underlying stadium structure and the transport mechanism that is used to guide and move the roof between its retracted and operational positions must be engineered to withstand the worst possible confluence of such forces. In addition, for reasons that are both aesthetic and practical, it is desirable to make the structural elements of the roof and the transport mechanism to be as unobtrusive and as space-efficient as possible. It is desirable to make the roof structure and the transport mechanism to be as simple and maintenance-free as possible, and to be constructed so as to be able to open and close as quickly as possible.




Many cities in the United States and elsewhere are now using or building retractable proofed stadiums. The designs of the various stadiums are quite different, but there are a number of deficiencies that seem to be common to all of the designs that have been implemented thus far. For example, the transport mechanisms in most of the stadiums tend to be quite large, being as much as twenty to thirty feet in height. The transport mechanisms further tend to include a relatively small number of very large, heavily loaded wheels and bearings, and a small number of very large motors or actuators to drive the roof between the retracted and operational positions. The small number of large wheels exert very large concentrated loads onto the support structure, which requires the support structure to be heavily reinforced, adding to the cost and complexity of the stadium as a whole. The roof and transport mechanisms in existing designs further tend to be relatively heavy and inflexible, and often experience alignment problems during movement.




A need exists for an improved design for a stadium that has a retractable roof that is more compact, reliable, stable, mechanically simple and inexpensive to construct than comparable mechanisms heretofore known.




SUMMARY OF THE INVENTION




Accordingly, it is an object of the invention to provide an improved design for a stadium that has a retractable roof that is more compact, reliable, stable, mechanically simple and inexpensive to construct than comparable mechanisms heretofore known.




In order to achieve the above and other objects of the invention, a convertible large edifice, such as an athletic stadium, of the type that is equipped with a movable overhead shelter mechanism, includes, according to a first aspect of the invention, foundation structure; at least one overhead shelter assembly positioned above the foundation shelter; and guide and support means for supporting the overhead shelter assembly and guiding the overhead shelter assembly for movement with respect to the foundation structure, the guide and support means including at least one rail member that is secured to one of the foundation structure and the overhead shelter assembly; a plurality of independently suspended follower assemblies that are mounted to the other of the foundation structure and the overhead shelter assembly, each of the follower assemblies including a wheel member that is positioned in contact with the rail, and a resilient member that is interposed between the wheel member and the other of the foundation structure and the overhead shelter assembly whereby each of the wheel members is independently suspended with respect to the other wheel members.




According to a second aspect of the invention, a stadium that is adapted for open use during good weather as well as for covered use during poor weather includes foundation structure; a pair of movable end roof members that are movable between first, retracted positions and second, operational positions for covering first and second end areas, respectively, of the stadium; and a center roof member that is movable between a retracted position and an operational position for covering a center area of the stadium; and wherein at least one of the center roof member and the two end roof members are supported for movement between one of the retracted positions and one of the operational positions by a guide and support means that includes at least one rail member that is secured to the foundation structure; and a plurality of independently suspended follower assemblies that are mounted to the respective roof member, each of the follower assemblies including a wheel member that is positioned in contact with the rail, and a resilient member that is interposed between the wheel member and the other of the foundation structure and the overhead shelter assembly, whereby each of the wheel members is independently suspended with respect to the other wheel members.




These and various other advantages and features of novelty that characterize the invention are pointed out with particularity in the claims annexed hereto and forming a part hereof. However, for a better understanding of the invention, its advantages, and the objects obtained by its use, reference should be made to the drawings which form a further part hereof, and to the accompanying descriptive matter, in which there is illustrated and described a preferred embodiment of the invention.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view of a system that is constructed according to a first preferred embodiment of the invention, shown in a first, retracted position;





FIG. 2

is a perspective view of the system shown in

FIG. 1

, shown in a second, operational position;





FIG. 3

is a diagrammatical cross-sectional view depicting a transport mechanism for the system shown in

FIG. 1

;





FIG. 4

is a perspective view depicting the transport mechanism shown in FIG.


3


.





FIG. 5

is an exploded perspective view depicting the transport mechanism shown in

FIG. 3

; and





FIG. 6

is a cross-sectional view depicting one component system of the transport mechanism shown in FIG.


3


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)




Referring now to the drawings, wherein like reference numerals designate corresponding structure throughout the views, and referring in particular to

FIGS. 1 and 2

, an athletic stadium


10


that is adapted for open use during good weather as well as for covered use during poor weather includes a playing field


12


, a spectator seating area


14


, and a foundation


16


. Stadium


10


further includes a roof assembly


18


that is made up of a center roof member


20


that is movable between a retracted position and an operational position for covering the center of the stadium


10


, and first and second end roof members


22


,


24


that are supported for movement between a retracted positions and operational positions for covering first and second end areas, respectively, of the stadium


10


.




Referring now to

FIG. 3

, which is a cross sectional diagrammatical depiction of a transport mechanism that is constructed according to a preferred embodiment of the invention, it will be seen that the transport mechanism includes a first guide and support system


26


for guiding and supporting one side of the center roof member


20


during operation and a similar, second guide and support system


28


for likewise guiding one side of the first and second and roof members


22


,


24


. The first guide and support system


26


is positioned on top of a support surface


30


that is defined in the foundation


16


of the stadium


10


, while the second guide and support system


28


is similarly positioned on top of a support surface


32


that is defined on foundation


16


. As may be seen in

FIGS. 3 and 4

, the first and second guide and support systems


26


,


28


include, respectively, first and second rail members


34


,


38


that are secured to the respective support surfaces


30


,


32


by means of anchor members


36


,


40


, which are of conventional construction.




As may best be seen in

FIG. 4

, each of the guide and support systems


26


,


28


is provided with a plurality of independently suspended follower assemblies


42


that are mounted to the corresponding roof member


20


,


22


,


24


and which each include a steel wheel


52


that is positioned in contact with the respective rail


34


,


38


. For purposes of simplicity, the guide and support systems


26


,


28


will from this point on be described with reference to the first guide and support system


26


, it being clear that the second guide and support system


28


is substantially identical in construction to the first.




As may best be seen in

FIGS. 4 and 6

, each of the follower assemblies


42


is constructed as having a frame


44


that is made up of a pair of side walls


46


and a top wall


48


. The frame


44


of each follower assembly is designed to float within the space that is defined by a pair of guide plates


62


, as may be seen in FIG.


4


. In other words, the follower assemblies


42


are free to move vertically with respect to the transport mechanism and the rail


34


. As can also be seen in

FIG. 5

, a number of bearing plates


50


are secured to the side walls


46


of the frame


44


to ease any friction that might otherwise develop between the respective frames


44


on the follower assemblies


42


and the guide plates


62


of the transport mechanism. In addition to the bearing plates, the follower assemblies are guided by the follower assembly alignment screws


59


in the direction that is perpendicular to the rail. These alignment screws


59


provide easy wheel alignment as well as support for lateral load transfer. The combination of the bearing plates and alignment screws provides a positive system for transferring all lateral loads from the roof structure to the follower assemblies and wheels.




One important aspect of the guide and support systems


26


,


28


is the provision of an independent suspension system


54


for each of the follower assemblies


42


. Referring back to

FIG. 3

, it will be seen that each of the follower assemblies


42


is limited in its upward movement by a resilient member


56


that is, as may better be seen in

FIG. 6

, made up all of a plurality of elastomeric disk members


58


and a corresponding plurality of metal plates that are provided between the respective disk members


58


. The provision of an independent suspension system for each of the follower assemblies


42


provided an inexpensive, dependable system for distributing roof loads over a relatively large number of wheels. Thus the wheel loads are smaller and the roof loads are distributed over a larger area of the supporting structure. This results in a construction cost savings for the supporting structure. Although the same advantages could be attained by use of a large, more sophisticated system that incorporates load leveling beams and the like, such a system would be larger, heavier and more expensive. Another advantage of the independent suspension systems that are provided for each of the follower assemblies


42


is that they tend to vibrationally isolate the roof structure from the supporting foundation.




Referring again to

FIGS. 4 and 6

, it will be seen next several of the follower assemblies are provided with a drive and transmission assembly


64


that includes an electric motor


66


, an electric brake


68


, a reduction gear box


70


, a bull gear


72


, and a pinion gear


74


. As may be seen in

FIG. 5

, the electric motor


66


and the electric break


68


are both constructed and arranged to act on a drive shaft that leads into the reduction gear box


70


. An output shaft of the reduction gear box


70


is connected to the pinion gear


74


, which in turn engages the bull gear


72


. The bull gear


72


is secured to rotate the steel wheels


52


that ride upon the rail


34


in the manner that has been described below. Power is supplied to the electric motor


66


and the electric brake


68


by means of a power bus bar


90


, viewable in FIG.


3


. Since a relatively large number of follower assemblies are provided with a drive and transmission assembly, the individual drive components can be of a modest size. This modest size allows components to be common, readily available parts that can be easily handled and replaced. Also, the large number of modestly sized drive components provides mechanical redundancy and reliability. For example, if a few of the drive components fail, the large number of remaining operational drives can continue to drive the roof until it is convenient to service the failed components.




As may be seen in

FIG. 4

, although several of the follower assemblies


42


are provided with electric motors


66


, several other of the follower assemblies


42


are not so provided. However, all of the follower assemblies


42


are provided with the electric brake mechanisms


68


and the other mechanical details that are depicted in

FIG. 5

, such as the reduction gearing. Since all of the follower assemblies are provided with reduction gearing and brakes, a tremendous amount of lateral load can be transferred from the roof to its supporting foundation through wheel traction.




As can also be seen in

FIGS. 3

,


4


and


6


, a number of guard rails


78


are provided one each side of the respective guide and support systems


26


,


28


for the protection of the operator


80


and other personnel that may have occasion to approach the transport mechanism.




As will be evident from viewing the structure of the transport mechanism as has been shown in

FIGS. 4-6

, the construction and shaping of the transport mechanism as a whole will impart significant rigidity and resistance against bending along the axis of the respective guide and support systems


26


. The guide and support system


26


shown in

FIG. 4

is connected to the center roof member


20


by means of a bowstring-type truss


76


that is secured to a pair of longitudinal top cover beams


86


, of the transport mechanism by means of a number of foot plates


82


. The fact that the transport mechanism can act as an integral part of these structural framework of the roof assembly


18


, despite its low profile and small size, is one of the significant advantages of the invention.




The transport mechanism is controlled by a sophisticated system of sensors, controls, computers, and operator interfaces. The travel speed and position are monitored and controlled by a network of sensors and computer logic.




It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.



Claims
  • 1. A convertible large edifice, such as an athletic stadium, of the type that is equipped with a movable overhead shelter mechanism, comprising:foundation structure; at least one overhead shelter assembly positioned above said foundation structure; and guide and support means for supporting said overhead shelter assembly and guiding said overhead shelter assembly for movement with respect to said foundation structure, said guide and support means comprising: at least one rail member that is secured to one of said foundation structure and said overhead shelter assembly; a plurality of follower assemblies that are mounted to the other of said foundation structure and said overhead shelter assembly, each of said follower assemblies including a wheel member that is positioned in contact with said rail, and a resilient member that is interposed between said wheel member and said other of said foundation structure and said overhead shelter assembly, said resilient member comprising a plurality of elastomeric members and a plurality of separator plates that are positioned between the respective elastomeric members.
  • 2. An edifice according to claim 1, wherein said elastomeric members are disc-shaped.
  • 3. An edifice according to claim 1, wherein said separator plates are metal.
  • 4. An edifice according to claim 1, wherein said separator plates are metal.
Parent Case Info

This is a continuation of Ser. No. 09/140,718, filed Aug. 27, 1998, now U.S. Pat. No. 6,082,054.

US Referenced Citations (48)
Number Name Date Kind
2052217 Sibour et al. Aug 1936 A
2603171 Smith Jul 1952 A
2642162 Tobias Jun 1953 A
3009211 Hansen et al. Nov 1961 A
3213571 Olson Oct 1965 A
3288158 Gugliotta Nov 1966 A
3534511 Cappella Oct 1970 A
3608252 Bisson Sep 1971 A
3766691 Ray Oct 1973 A
4175361 Kumode Nov 1979 A
4257199 Kuboyama Mar 1981 A
4587775 Lewis et al. May 1986 A
4616451 Glick Oct 1986 A
4676033 Allen et al. Jun 1987 A
4682449 Berger Jul 1987 A
4706419 Adachi et al. Nov 1987 A
4716691 Allen et al. Jan 1988 A
4727688 Kida et al. Mar 1988 A
4738057 Logan Apr 1988 A
4751800 Kida et al. Jun 1988 A
4802314 Schildge, Jr. Feb 1989 A
4831792 Berger May 1989 A
4833837 Bonnean May 1989 A
4920707 Moskaliuk et al. May 1990 A
4936060 Gelinas et al. Jun 1990 A
4942698 Kumagai Jul 1990 A
4995203 Brisbin et al. Feb 1991 A
5007214 Itami et al. Apr 1991 A
5010695 Schildge, Jr. Apr 1991 A
5027565 Sugizaki Jul 1991 A
5035093 Parazader et al. Jul 1991 A
5058332 Masuyama et al. Oct 1991 A
5062243 Kumagai Nov 1991 A
5063730 Muramoto et al. Nov 1991 A
5103600 Geiger et al. Apr 1992 A
5117594 Muramoto et al. Jun 1992 A
5167097 Robbie et al. Dec 1992 A
5167341 Morton et al. Dec 1992 A
5203125 Sugizaki Apr 1993 A
5257481 Reppas et al. Nov 1993 A
5257485 Kawaguchi et al. Nov 1993 A
5355641 Levy Oct 1994 A
5371983 Kawaguchi et al. Dec 1994 A
5394660 Haris Mar 1995 A
5653066 Schildge, Jr. Aug 1997 A
5778603 Reppas Jul 1998 A
5896708 Doi et al. Apr 1999 A
5983575 Reppas Nov 1999 A
Foreign Referenced Citations (6)
Number Date Country
2-217539 Aug 1990 JP
2-269237 Nov 1990 JP
3-87434 Apr 1991 JP
3-115632 May 1991 JP
4-323446 Nov 1992 JP
8006712 Jul 1982 NL
Continuations (1)
Number Date Country
Parent 09/140718 Aug 1998 US
Child 09/609727 US