Retractable steering column system, vehicle having the same, and method

Information

  • Patent Grant
  • 9828016
  • Patent Number
    9,828,016
  • Date Filed
    Friday, June 10, 2016
    8 years ago
  • Date Issued
    Tuesday, November 28, 2017
    7 years ago
Abstract
A steering column system includes a steering column shaft, a steering input device coupled to the steering column shaft, an air bag operatively arranged with the steering input device, a column adjustment assembly configured to translate the steering column shaft between a retracted position and a driving position, and a first interlock configured to indicate when the steering column shaft is in the driving position and when the steering column shaft is in the retracted position. When the steering column shaft is in the retracted position, the air bag is non-deployable, and when the steering column shaft is in the driving position, the air bag is deployable.
Description
FIELD OF THE INVENTION

The following description relates to steering column assemblies and, more specifically, to a retractable steering column assembly.


BACKGROUND

Vehicle steering wheels are typically used to steer a vehicle. When a vehicle is equipped with an autonomous driving assist systems (“ADAS”), the steering wheel does not need to rotate as the self-driving system turns the road wheels. This non-rotation allows the steering column and wheel to have another use or purpose.


Accordingly, it is desirable to provide a steering column assembly that enables the driver to manipulate the position or purpose of the steering wheel while still providing driver protection.


SUMMARY OF THE INVENTION

In one embodiment of the present disclosure, a steering column system includes a steering column shaft, a steering input device coupled to the steering column shaft, an air bag operatively arranged with the steering input device, a column adjustment assembly configured to translate the steering column shaft between a retracted position and a driving position, and a first interlock configured to indicate when the steering column shaft is in the driving position and when the steering column shaft is in the retracted position. When the steering column shaft is in the retracted position, the air bag is non-deployable, and when the steering column shaft is in the driving position, the air bag is deployable.


In another embodiment of the present disclosure, a steering column system includes a steering column shaft, a steering input device coupled to the steering column shaft, a driver restraint, a column adjustment assembly configured to translate the steering column shaft between a retracted position and a driving position, and a first interlock configured to indicate whether the driver restraint is locked. When the driver restraint is locked, the steering column shaft is retractable, and when the driver restraint is not locked, the steering column shaft is not retractable.


In still another embodiment of the present disclosure, a vehicle includes a steering column system. The steering column system includes a steering column shaft, a steering input device coupled to the steering column shaft, an air bag operatively arranged with the steering input device, a driver restraint, a column adjustment assembly configured to translate the steering column shaft between a retracted position and a driving position, and at least one of a first interlock and a second interlock, the first interlock configured to indicate whether the driver restraint is locked, the second interlock configured to indicate when the steering column shaft is in the driving position and when the steering column shaft is in the retracted position. When the steering column shaft is in the retracted position, the air bag is non-deployable, and when the steering column shaft is in the driving position, the air bag is deployable. When the driver restraint is locked, the steering column shaft is retractable, and when the driver restraint is not locked, the steering column shaft is not retractable.


In yet another embodiment of the present invention, a method of operating a steering column system of a vehicle includes providing a steering column shaft movable between a retracted position and a driving position, moving a driver restraint to one of a locked position and an unlocked position, and, translating a steering column shaft to the retracted position when the driver restraint is in the locked position, and prohibiting the steering column shaft from being in the retracted position when the driver restraint is in the unlocked position.


These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:



FIG. 1 is a schematic view of a vehicle and steering column assembly according to one embodiment of the disclosure;



FIG. 2 is a plan view of an embodiment of a steering wheel for use in the vehicle of FIG. 1 when the steering column assembly of FIG. 1 is in an accessory/utility position;



FIG. 3 is a schematic view of the vehicle of FIG. 1 further demonstrating different modes of the steering column assembly;



FIG. 4 is a schematic view of an operator engaging with an embodiment of the steering wheel for use with the vehicle of FIG. 1;



FIGS. 5A and 5B show a flowchart demonstrating an operation of the vehicle and steering column assembly according to one embodiment of the disclosure; and,



FIGS. 6A and 6B show a flowchart demonstrating an operation of the vehicle and steering column assembly according to one embodiment of the disclosure.





DETAILED DESCRIPTION

Referring now to the Figures, where embodiments will be described, without limiting same, FIG. 1 illustrates an embodiment of a vehicle 10, such as an autonomous driving assisted steering (“ADAS”) equipped vehicle, generally having an instrument panel 12 and a retractable steering column assembly 14. Steering column assembly 14 generally includes a steering column shaft 16 and a steering input device, such as steering wheel 18, coupled thereto.


In the exemplary embodiment, steering column assembly 14 is movable between a retracted position 20, a deployed or driving position 22, and an accessory or utility position 24. In the retracted position 20, portions of assembly 14 such as steering wheel 18 are disposed away from the driver toward or into instrument panel 12, which provides increased space for the driver. In the illustrated embodiment, instrument panel 12 includes one or more receiving compartments or areas 26 to receive some or all of steering column assembly 14. For example, receiving area 26 may be configured to receive steering wheel 18 such that wheel 18 and thus assembly 14 may be retracted within and flush with instrument panel 12. The displacement of the steering column shaft 16 and wheel 18 in retracted position 20 creates additional cabin space for the driver's comfort and convenience to perform non-driving activities including, but not limited to, reading, working, entertaining, eating, texting, etc.


In the driving position 22, steering wheel 18 may be used by a driver to steer the vehicle 10. The steering wheel 18 is positioned closer to the driver 46 (FIG. 3) in the driving position 22 than in the retracted position 20. Also, the steering wheel 18 is distanced further from the instrument panel 12 in the driving position 22 than in the retracted position 20. While only one driving position 22 is shown, a plurality of driving positions 22 may be utilized to comfortably accommodate different drivers 46. In the accessory position 24, portions of assembly 14 such as steering wheel 18 may be used for non-driving activities such as reading, working, or other forms of entertainment. As such, at least a portion of steering wheel 18 is configured to be non-rotatable such that objects like computers or books may be rested thereupon. For example, a tray table or work surface 28 may be coupled to or integrated with steering wheel 18 to enable such activities, as further depicted in FIG. 2. Alternatively, only a rim or hub of the steering wheel 18 is non-rotatable and includes attachments such as hooks to support work surface 28. In other embodiments, an electronic device or the like, such as but not limited to a tablet 44, is integrated into the stationary wheel 18 or work surface 28.


In one embodiment, steering column assembly 14 further includes a steering column adjustment assembly 30, a decoupling assembly 32, a torque interface assembly 34, one or more sensors 36, reversible lock 38, and extension detection device 48. Each of assemblies 30, 32, 34, sensors 36, lock 38, and device 48 are associated with the steering column assembly 14 in each position 20, 22, 24, however, for clarity, one or more of the assemblies 30, 32, 34, sensors 36, lock 38, and device 48 are not depicted in each position 20, 22, 24. Further, any two or more of the assemblies 30, 32, 34, sensors 36, lock 38, and device 48 may be combined into a single system for use with the steering column assembly 14. Adjustment assembly 30 is configured to move steering column assembly 14 for driver comfort (e.g., telescope or rake adjustment) and to move assembly 14 between the retracted position 20 and the driving position 22. Adjustment assembly 30 may include one or more mechanical/electrical mechanisms such as a motor. Adjustment assembly 30 may also include a retraction mechanism that enables a driver to mechanically, electronically, or manually return steering wheel 18 from the retracted position 20 to the driving position 22. The adjustment assembly 30 includes electrical actuators that may move the steering column shaft 16 and steering wheel 18 fore and aft. While depicted separately, the extension detection device 48 may alternatively be incorporated into the adjustment assembly 30.


In one embodiment, decoupling assembly 32 is configured to selectively decouple one or more portions of assembly 14 (e.g., shaft 16) from a vehicle steering gear 31 (shown schematically in FIG. 3) such that steering wheel 18 is in a non-rotatable mode. This decoupling assembly 32 may be mechanically or electrically activatable by a clutch, or by steer-by-wire, or counter-rotated by a servo-actuator, for example. Alternatively or additionally, assembly 32 may provide a counter rotation to wheel 18 to counteract any rotation of wheel 18 caused by the autonomous driver assisted steering system such that wheel 18 functions and appears as non-rotatable.


Further, the decoupling assembly 32 allows the steering column shaft 16 and wheel 18 to be displaced forward in the vehicle 10 to the retracted position 20 because the steering wheel 18 is no longer being used by the driver 46 to guide the vehicle 10. The retracting action may accomplished by, for example, long stroke, electrical actuators responding to the driver's intention through a switch and motor controller, or by the driver 46 manually releasing a clamp and pushing the steering wheel 18 and steering column shaft 16 forward to the retracted position 20. In any case, the embodiments described herein make retraction of the steering column shaft 16 and wheel 18 away from the driver possible in order to provide space for non-driving related activities such as working, reading, and game playing. In the retracted position 20, the steering wheel 18 is a preset distance beyond a normal ergonomic range from the driving position 22. The steering wheel 18 may, for example but not by limitation, be approximately 100 mm forward of the driver's normal driving position 22. The decoupling assembly 32 may also be used to re-couple one or more portions of assembly 14 (e.g., shaft 16) to the vehicle steering gear 31 when the shaft 16 and wheel 18 are in the driving position 22 such that the steering wheel 18 is usable by the driver 46 to guide the vehicle 10, however the decoupling assembly 32 decouples the one or more portions of assembly 14 (e.g., shaft 16) from the vehicle steering gear 31 when the shaft 16 and wheel 18 are in the retracted position 20 or utility position 24, such as shown in FIG. 3.


In one embodiment, torque interface assembly 34 is configured to detect and monitor driver torque input (rotational and translational) to steering wheel 18, for example, to determine if the driver 46 is in control of the vehicle 10, such as depicted by FIG. 4. As further shown in FIG. 1, sensors 36 are configured to detect and monitor driver compartment conditions, the driver's condition, the vehicle environment, and/or the vehicle control systems. For example, sensors 36 may: detect objects between the retracted steering wheel 18 and the driver 46 that may cause an unsafe situation for the driver 46 to safely retake control of the vehicle 10; detect if the driver 46 is not in a position to safely retake control of the vehicle 10; and/or detect undesirable vehicle dynamics that require the driver 46 to retake control of the vehicle 10. Whether in the retracted position 20, the deployed/driving position 22, or the accessory/utility position 24, the fore-aft position of the steering column shaft 16 and wheel 18 is known by the ADAS system 98 by detected data from one or more of the torque interface assembly 34, the sensors 36, and extension detection device 48, which may be positioned on the steering column shaft 16 or wheel 18. Sensors may include, but are not limited to switches and potentiometers.


The retracting process of moving the steering column shaft 16 and wheel 18 from the driving position 22 (or accessory/utility position 24) to the retracted position 20 must eventually be reversed to return steering control of the vehicle 10 to the driver 46. In the event that the driver 46 wishes to disengage the self-driving feature, the driver 46 may alert the ADAS system 98 of the desire to self-steer by gripping sensors on the wheel 18, applying steering torque to the wheel 18, or other sensory means that communicates the intention to take over driving the vehicle 10. That is, the driver 46 should be able to reach forward, grip the wheel 18, and be able to relatively quickly bring the wheel 18 to the driving position 22 to resume steering of the vehicle 10. When returned to the driving position 22, the steering column 16 and steering wheel 18 are fixed, at least temporarily, such as by the decoupling assembly 32 and/or the deactivatable, reversible lock 38, in that fore-aft position of the driving position 20. When fixed in the driving position 20, the vehicle 10 provides the ability to reduce the driver's kinetic energy, such as may result from a crash, via an energy absorbing mechanism 40 in the steering column shaft 16, the deformation of the steering wheel 18, and the deployment of the driver's air bag 42. However, if the steering wheel 18 and the air bag 42 are distanced from the driver 46 in the retracted position 20, then the air bag 42 may not be ideally situated for driver protection in the event of a crash, and deployment of the air bag 42 during a crash may not be an effective injury reducing device. Thus, in accordance with embodiments of this disclosure, when the steering column shaft 16 and the steering wheel 18 are retracted away from the normal driving position 22, then provisions are put in place to ensure driver protection.


In one embodiment, as shown in FIG. 1 and further described below with respect to FIGS. 5A and 5B, an electrical interlock 50, shown schematically between a locking portion 52 of a driver restraint 54 and the controller 102, is provided that signals the controller 102 whether or not the driver restraint 54 is properly engaged with the locking portion 52, such as via an activating current or a deactivating current. The controller 102 controls the actuator of the steering column adjustment assembly 30, and prevents the retraction of the steering column shaft 16 and the wheel 18 towards the instrument panel 12 if the driver 46 has not first properly engaged the restraint 54. As illustrated, the restraint 54 may include a seat belt 56 and shoulder harness 58. In addition, if the restraint 54 becomes disconnected from the locking portion 52 while driving, the electrical interlock 50 will signal the controller 102 which can actuate the adjustment assembly 30 to move (motor) the steering wheel 18 and steering column shaft 16 back to the driving position 22. Visual and audible vehicle warnings may also accompany this action. Thus, although the driver's air bag 42 is positioned further from the driver 46 when the steering wheel 18 is in the retracted position 20, driver protection is improved by requiring the restraint 54 be engaged in the locking portion 52.


An operation 100 for the above-described system is described with respect to FIGS. 5A and 5B. A start 104 of the operation 100, as shown in FIG. 5A, may be assessed by a controller 102 of the ADAS system 98, shown diagrammatically in FIG. 1. The controller 102 may receive information (signal(s)) from, but not limited to, one or more of the steering column adjustment assembly 30, decoupling assembly 32, torque interface assembly 34, sensors 36, reversible lock 38, extension detection device 48, as well as any other feature within the vehicle 10 that is communicable with the controller 102. The operation 100 will determine, as demonstrated by block 106 whether the restraint 54 is latched, such as with locking portion 52. If not, then ADAS is not allowed as demonstrated by block 108, and further retraction of wheel 18 is not allowed as demonstrated by block 110. However, if it is determined at block 106 that the restraint 54 is latched, then it will be determined at block 112 whether an ADAS switch of the ADAS system 98 is on. When the ADAS switch is not on, then, as demonstrated by block 114, a driver 46 may provide directional control.


When the ADAS switch is on, then, as demonstrated by block 116, the ADAS system 98 may provide directional control. The controller 102 further determines, as demonstrated by block 118, if the steering column shaft 16 has been decoupled yet, such as by decoupling assembly 32. If not, then as demonstrated by block 120, the driver 46 keeps hands off the steering wheel 18. If the steering column shaft 16 is decoupled, then as demonstrated by block 122, rotation of steering wheel 18 is stopped.


At some point during the operation 100, a driver 46 may wish to retract the steering wheel 18 away from the driving position 22. The controller 102 will determine, such as via receipt of a signal, as demonstrated by block 124, if the column shaft 16 and wheel 18 are retracted during the retracting operation to position 20. If not, then as demonstrated by block 126, the driver 46 will keep hands off the steering wheel 18. However, if the steering column shaft 16 and wheel 18 are retracted, then as demonstrated by block 128, cabin space within the vehicle 10 is enlarged. At this point, the ADAS system 98 still provides directional control, as previously depicted at block 116.


The operation 100 extends from block 128 in FIG. 5A to block 130 in FIG. 5B. With reference now to block 130 in FIG. 5B, the operation 100 determines whether the restraint has become unlatched or not, such as by using interlock 50. If not, that is, if the restraint 50 is still latched, then no action is required as demonstrated by block 132. However, as demonstrated by block 134, if it is determined via the interlock 50 that the restraint 54 has become unlatched from the locking portion 52, then the ADAS system 98 may announce the unlatching such as by audible and visual warnings. If the restraint 54 becomes re-latched within a preset time period, such as within seconds, as determined by block 136, then the driver 46 may still keep hands off the wheel 18, as previously demonstrated by block 126 in FIG. 5A. However, if it is determined at block 136 that the restraint 54 has not been re-latched within the preset time period, then, as demonstrated by block 138, the wheel 18 and steering column shaft 16 extend towards the driver 46. The ADAS system 98 may remain active, as demonstrated by bock 140. It is determined at block 142, whether the steering column shaft 16 and steering wheel 18 are at full extension to the driving position 22. If not at full extension, the wheel 18 and steering column shaft 16 will continue to extend as demonstrated by block 138 due to the unlatched status of the restraint 54 as determined by block 136. However, if the steering column shaft 16 and steering wheel 18 are at full extension to the driving position 22, as determined by block 142, then the ADAS system 98 will become inactive and the driver 46 will provide directional control, as demonstrated by block 144. Block 146 indicates an end of operation 100, however it should be understood that the operation 100 may be repeated at block 106 (FIG. 5A).


The transition period of extending the steering column shaft 16 and steering wheel 18 from the retracted position 20 to the driving position 22, or from an interim position to the driving position 22, is longer than a deployment time period for a driver's side air bag 42 should a crash occur. Further, deployment of the air bag 42 when the steering wheel 18 is retracted from the driving position 22 will place a rearward face of the bag 42 at a greater than optimal distance from the seated driver 46 such that the reduction of driver's kinetic energy will be diminished from that of the vehicle design intent. Thus, the steering column shaft 16 is further fitted with an interlock device 60, such as electrical signals from the position switches or potentiometers from the electrical device extension detection device 48 or from the steering column adjustment assembly 30, which may further be in communication with controller 102, to prevent air bag deployment in the event the steering column shaft 16 is not in the driving position 22. However, deployment of airbag 42 is allowed (airbag 42 is active) when the wheel 18 is in the driving position 22. Thus, the air bag 42 is non-deployable when the air bag 42 is inactive, such that the ability to deploy the air bag 42 is prohibited, and the air bag 42 is deployable when the airbag 42 is active, such that the ability to deploy the air bag 42 is enabled.


An operation 200 for the above-described system is described with respect to FIGS. 6A and 6B. A start 204 of the operation 200, as shown in FIG. 6A, may be assessed by a controller 102 of an ADAS system 98. The operation 200 will determine, as demonstrated by block 206 whether an ADAS switch of the ADAS system 98 is on. When the ADAS switch is not on, then, as demonstrated by block 208, a driver 46 may provide directional control, and the air bag 42 is active (deployable in a crash event), as demonstrated by block 210.


When the ADAS switch is on, then, as determined by block 206, the ADAS system 98 may provide directional control, as demonstrated by block 212. At this point, the air bag 42 is still active (deployable in a crash event), as demonstrated by block 214. The controller 102 further determines, as demonstrated by block 216, if the steering column shaft 16 has been decoupled yet, such as by decoupling assembly 32. If not, then as demonstrated by block 218, no action is required. However, if the steering column shaft 16 is decoupled, then as demonstrated by block 220, it will be further determined if the steering wheel 18 is retracted or being retracted. If not, then as demonstrated by block 222, no action is required. However, if the steering wheel 18 has been retracted, then as noted by block 224, the steering wheel 18 and thus the air bag 42 will be distanced from the driver 46 by a distance greater than a distance designed for optimal driver protection.


The operation 200 extends from block 224 in FIG. 6A to block 226 in FIG. 6B. With additional reference to FIG. 6B, it will further be determined if the ADAS switch is off, as demonstrated by block 226, or if the driver 46 grips or torques the wheel 18, as demonstrated by block 230. If the ADAS switch is not off and the driver 46 does not grip or torque the wheel 18, then as demonstrated by blocks 228 and 232, no action is required. However, if the ADAS switch is off and/or the driver 46 grips or torques the wheel 18, then the wheel 18 (and column shaft 16) begins extending as demonstrated by block 234. The ADAS system 98 remains active, as demonstrated by block 236, until it is further determined by block 238 if the column shaft 16 and wheel 18 are fully extended. If the column shaft 16 and wheel 18 are not fully extended to the driving position 22, then the wheel 18 and column shaft 16 continue to extend, as noted in block 234. However, if the column shaft 16 and wheel 18 are fully extended to the driving position 22, then the ADAS system 98 is turned off as noted in block 240, the air bag 42 becomes active (deployable in a crash event) as noted in block 242. Also, with the steering wheel 18 and the air bag 42 in the driving position 22 as noted in block 244, the driver 46 provides directional control as noted in block 208 (FIG. 6A). While block 246 indicates an end of the operation 200, the operation 200 will repeat with the determination of whether or not the ADAS switch is on, as demonstrated by block 206.


Thus, operations 100 and 200 ensure that the driver 46 is prohibited from retracting the steering column shaft 16 until the driver restraint 54 is secured, and the air bag 42 is operational when the steering wheel 18 is in the driving position 22. Either or both operations 100 and 200 may be used in the same vehicle 10.


While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Further, it should further be noted that the terms “first,” “second,” and the like herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description.

Claims
  • 1. A steering column system comprising: a steering column shaft;a steering input device coupled to the steering column shaft;an air bag operatively arranged with the steering input device;a column adjustment assembly configured to translate the steering column shaft between a retracted position and a driving position;a first interlock configured to indicate when the steering column shaft is in the driving position and when the steering column shaft is in the retracted position; andwhen the steering column shaft is in the retracted position, the air bag is non-deployable, and when the steering column shaft is in the driving position, the air bag is deployable.
  • 2. The steering column system of claim 1, further comprising a driver restraint and a second interlock, the second interlock configured to indicate whether the driver restraint is locked, wherein when the driver restraint is locked, the steering column shaft is retractable, and when the driver restraint is not locked, the steering column shaft is not retractable.
  • 3. The steering column system of claim 2, wherein the driver restraint includes at least one of a seat belt and a shoulder harness.
  • 4. The steering column system of claim 2, further comprising a locking portion configured to lock the driver restraint, wherein the second interlock is communicable with the locking portion.
  • 5. A steering column system comprising: a steering column shaft;a steering input device coupled to the steering column shaft;a driver restraint;a column adjustment assembly configured to translate the steering column shaft between a retracted position and a driving position;a first interlock configured to indicate whether the driver restraint is locked; andwhen the driver restraint is locked, the steering column shaft is retractable, and when the driver restraint is not locked, the steering column shaft is not retractable.
  • 6. The steering column system of claim 5, wherein, when the steering column shaft is in the retracted position and the first interlock indicates the driver restraint is not locked, the column adjustment assembly returns the steering column shaft to the driving position.
  • 7. The steering column system of claim 5, further comprising an air bag operatively arranged with the steering input device.
  • 8. The steering column system of claim 6, further comprising a second interlock, the second interlock configured to indicate when the steering column shaft is in the driving position and when the steering column shaft is in the retracted position, wherein, when the steering column shaft is in the retracted position, the air bag is non-deployable, and when the steering column shaft is in the driving position, the air bag is deployable.
  • 9. The steering column system of claim 5, further comprising a decoupling assembly configured to decouple the steering input device from a steering gear.
  • 10. The steering column system of claim 5, further comprising a torque interface assembly configured to detect a torque input into the steering input device.
  • 11. The steering column system of claim 5, further comprising at least one sensor configured to monitor at least one of driver compartment conditions, a driver's condition, a vehicle environment, and a vehicle control system.
  • 12. The steering column system of claim 5, wherein at least a portion of the steering input device is non-rotatable.
  • 13. The steering column system of claim 12, further comprising a work surface coupled to or integrated with the steering input device.
  • 14. A vehicle comprising a steering column system, the steering column system including: a steering column shaft;a steering input device coupled to the steering column shaft;an air bag operatively arranged with the steering input device;a driver restraint;a column adjustment assembly configured to translate the steering column shaft between a retracted position and a driving position;at least one of a first interlock and a second interlock, the first interlock configured to indicate whether the driver restraint is locked, the second interlock configured to indicate when the steering column shaft is in the driving position and when the steering column shaft is in the retracted position;when the steering column shaft is in the retracted position, the air bag is non-deployable, and when the steering column shaft is in the driving position, the air bag is deployable; and,when the driver restraint is locked, the steering column shaft is retractable, and when the driver restraint is not locked, the steering column shaft is not retractable.
  • 15. The vehicle of claim 14, further comprising an autonomous driving assisted steering system having a controller, the controller configured to receive a signal from the at least one of the first interlock and the second interlock.
  • 16. The vehicle of claim 14, further comprising an instrument panel including at least one receiving compartment configured to receive at least a portion of the steering column system when the steering column system is in the retracted position.
  • 17. A method of operating a steering column system of a vehicle, the method comprising: providing a steering column shaft movable between a retracted position and a driving position;moving a driver restraint to one of a locked position and an unlocked position; and,translating a steering column shaft to the retracted position when the driver restraint is in the locked position, and prohibiting the steering column shaft from being in the retracted position when the driver restraint is in the unlocked position.
  • 18. The method of claim 17, further comprising enabling an air bag when the steering column shaft is in the driving position, and disabling the air bag when the steering column shaft is in the retracted position.
  • 19. The method of claim 17, wherein prohibiting the steering column shaft from being in the retracted position when the driver restraint is in the unlocked position includes either returning the steering column shaft from the retracted position to the driving position or blocking the steering column shaft from translating from the driving position to the retracted position.
CROSS-REFERENCES TO RELATED APPLICATIONS

This patent application claims priority to U.S. Provisional Patent Application Ser. No. 62/183,963, filed Jun. 24, 2015 which is incorporated herein by reference in its entirety.

US Referenced Citations (216)
Number Name Date Kind
3782492 Hollins Jan 1974 A
4315117 Kokubo et al. Feb 1982 A
4337967 Yoshida et al. Jul 1982 A
4503300 Lane, Jr. Mar 1985 A
4503504 Suzumura et al. Mar 1985 A
4561323 Stromberg Dec 1985 A
4691587 Farrand et al. Sep 1987 A
4836566 Birsching Jun 1989 A
4921066 Conley May 1990 A
4962570 Hosaka et al. Oct 1990 A
4967618 Matsumoto et al. Nov 1990 A
4976239 Hosaka Dec 1990 A
5240284 Takada et al. Aug 1993 A
5295712 Omura Mar 1994 A
5319803 Allen Jun 1994 A
5488555 Asgari et al. Jan 1996 A
5618058 Byon Apr 1997 A
5668721 Chandy Sep 1997 A
5690362 Peitsmeier et al. Nov 1997 A
5765116 Wilson-Jones et al. Jun 1998 A
5893580 Hoagland et al. Apr 1999 A
5911789 Keipert et al. Jun 1999 A
6070686 Pollmann Jun 2000 A
6170862 Hoagland et al. Jan 2001 B1
6227571 Sheng et al. May 2001 B1
6301534 McDermott, Jr. et al. Oct 2001 B1
6354622 Ulbrich et al. Mar 2002 B1
6360149 Kwon et al. Mar 2002 B1
6373472 Palalau et al. Apr 2002 B1
6381526 Higashi et al. Apr 2002 B1
6390505 Wilson May 2002 B1
6578449 Anspaugh et al. Jun 2003 B1
6612393 Bohner et al. Sep 2003 B2
6819990 Ichinose Nov 2004 B2
7021416 Kapaan et al. Apr 2006 B2
7048305 Muller May 2006 B2
7062365 Fei Jun 2006 B1
7295904 Kanevsky et al. Nov 2007 B2
7308964 Hara et al. Dec 2007 B2
7428944 Gerum Sep 2008 B2
7461863 Muller Dec 2008 B2
7495584 Sorensen Feb 2009 B1
7628244 Chino et al. Dec 2009 B2
7719431 Bolourchi May 2010 B2
7735405 Parks Jun 2010 B2
7793980 Fong Sep 2010 B2
7862079 Fukawatase et al. Jan 2011 B2
7894951 Norris et al. Feb 2011 B2
7909361 Oblizajek et al. Mar 2011 B2
8002075 Markfort Aug 2011 B2
8027767 Klein et al. Sep 2011 B2
8055409 Tsuchiya Nov 2011 B2
8069745 Strieter et al. Dec 2011 B2
8079312 Long Dec 2011 B2
8146945 Born et al. Apr 2012 B2
8170725 Chin et al. May 2012 B2
8260482 Szybalski et al. Sep 2012 B1
8352110 Szybalski et al. Jan 2013 B1
8479605 Shavrnoch et al. Jul 2013 B2
8548667 Kaufmann Oct 2013 B2
8606455 Boehringer et al. Dec 2013 B2
8634980 Urmson et al. Jan 2014 B1
8650982 Matsuno et al. Feb 2014 B2
8670891 Szybalski et al. Mar 2014 B1
8695750 Hammond et al. Apr 2014 B1
8818608 Cullinane et al. Aug 2014 B2
8825258 Cullinane et al. Sep 2014 B2
8825261 Szybalski et al. Sep 2014 B1
8843268 Lathrop et al. Sep 2014 B2
8874301 Rao et al. Oct 2014 B1
8880287 Lee et al. Nov 2014 B2
8881861 Tojo Nov 2014 B2
8899623 Stadler et al. Dec 2014 B2
8909428 Lombrozo Dec 2014 B1
8948993 Schulman et al. Feb 2015 B2
8950543 Heo et al. Feb 2015 B2
8994521 Gazit Mar 2015 B2
9002563 Green et al. Apr 2015 B2
9031729 Lathrop et al. May 2015 B2
9032835 Davies et al. May 2015 B2
9045078 Tovar et al. Jun 2015 B2
9073574 Cuddihy et al. Jul 2015 B2
9092093 Jubner et al. Jul 2015 B2
9108584 Rao et al. Aug 2015 B2
9134729 Szybalski et al. Sep 2015 B1
9150200 Urhahne Oct 2015 B2
9150224 Yopp Oct 2015 B2
9164619 Goodlein Oct 2015 B2
9174642 Wimmer et al. Nov 2015 B2
9186994 Okuyama et al. Nov 2015 B2
9193375 Schramm et al. Nov 2015 B2
9199553 Cuddihy et al. Dec 2015 B2
9227531 Cuddihy et al. Jan 2016 B2
9233638 Lisseman et al. Jan 2016 B2
9235111 Yamaguchi Jan 2016 B2
9235987 Green et al. Jan 2016 B2
9238409 Lathrop et al. Jan 2016 B2
9248743 Enthaler et al. Feb 2016 B2
9260130 Mizuno Feb 2016 B2
9290174 Zagorski Mar 2016 B1
9290201 Lombrozo Mar 2016 B1
9298184 Bartels et al. Mar 2016 B2
9308857 Lisseman et al. Apr 2016 B2
9308891 Cudak et al. Apr 2016 B2
9333983 Lathrop et al. May 2016 B2
9352752 Cullinane et al. May 2016 B2
9360865 Yopp Jun 2016 B2
20030046012 Yamaguchi Mar 2003 A1
20030094330 Boloorchi et al. May 2003 A1
20030188598 Cartwright Oct 2003 A1
20030227159 Muller Dec 2003 A1
20040016588 Vitale et al. Jan 2004 A1
20040046346 Eki et al. Mar 2004 A1
20040046379 Riefe Mar 2004 A1
20040099468 Chernoff et al. May 2004 A1
20040129098 Gayer et al. Jul 2004 A1
20040204808 Satoh et al. Oct 2004 A1
20040262063 Kaufmann et al. Dec 2004 A1
20050001445 Ercolano Jan 2005 A1
20050081675 Oshita et al. Apr 2005 A1
20050197746 Pelchen et al. Sep 2005 A1
20050275205 Ahnafield Dec 2005 A1
20060186658 Yasuhara et al. Aug 2006 A1
20060224287 Izawa et al. Oct 2006 A1
20060244251 Muller Nov 2006 A1
20070021889 Tsuchiya Jan 2007 A1
20070029771 Haglund et al. Feb 2007 A1
20070046003 Mori et al. Mar 2007 A1
20070046013 Bito Mar 2007 A1
20070241548 Fong Oct 2007 A1
20070284867 Cymbal et al. Dec 2007 A1
20080009986 Lu et al. Jan 2008 A1
20080238068 Kumar et al. Oct 2008 A1
20090024278 Kondo et al. Jan 2009 A1
20090256342 Cymbal et al. Oct 2009 A1
20090276111 Wang et al. Nov 2009 A1
20090292466 McCarthy et al. Nov 2009 A1
20100152952 Lee et al. Jun 2010 A1
20100218637 Barroso Sep 2010 A1
20100222976 Haug Sep 2010 A1
20100228417 Lee et al. Sep 2010 A1
20100228438 Buerkle Sep 2010 A1
20100280713 Stahlin et al. Nov 2010 A1
20100286869 Katch et al. Nov 2010 A1
20100288567 Bonne Nov 2010 A1
20110098922 Ibrahim Apr 2011 A1
20110153160 Hesseling et al. Jun 2011 A1
20110167940 Shavrnoch et al. Jul 2011 A1
20110187518 Strumolo et al. Aug 2011 A1
20110266396 Abildgaard et al. Nov 2011 A1
20110282550 Tada et al. Nov 2011 A1
20120136540 Miller May 2012 A1
20120205183 Rombold Aug 2012 A1
20120209473 Birsching et al. Aug 2012 A1
20120215377 Takemura et al. Aug 2012 A1
20130002416 Gazit Jan 2013 A1
20130087006 Ohtsubo et al. Apr 2013 A1
20130158771 Kaufmann Jun 2013 A1
20130199866 Yamamoto et al. Aug 2013 A1
20130218396 Moshchuk et al. Aug 2013 A1
20130233117 Read et al. Sep 2013 A1
20130325202 Howard et al. Dec 2013 A1
20140028008 Stadler Jan 2014 A1
20140046542 Kauffman et al. Feb 2014 A1
20140046547 Kaufmann et al. Feb 2014 A1
20140111324 Lisseman et al. Apr 2014 A1
20140277896 Lathrop Sep 2014 A1
20140300479 Wolter et al. Oct 2014 A1
20140309816 Stefan et al. Oct 2014 A1
20150002404 Hooton Jan 2015 A1
20150014086 Eisenbarth Jan 2015 A1
20150032322 Wimmer Jan 2015 A1
20150051780 Hahne Feb 2015 A1
20150060185 Feguri Mar 2015 A1
20150120142 Park et al. Apr 2015 A1
20150137492 Rao et al. May 2015 A1
20150203145 Sugiura et al. Jul 2015 A1
20150210273 Kaufmann et al. Jul 2015 A1
20150246673 Tseng et al. Sep 2015 A1
20150251666 Attard et al. Sep 2015 A1
20150283998 Lind et al. Oct 2015 A1
20150324111 Jubner et al. Nov 2015 A1
20160009332 Sirbu Jan 2016 A1
20160075371 Varunkikar et al. Mar 2016 A1
20160082867 Sugioka et al. Mar 2016 A1
20160185387 Kuoch Jun 2016 A1
20160200246 Lisseman et al. Jul 2016 A1
20160200343 Lisseman et al. Jul 2016 A1
20160200344 Sugioka et al. Jul 2016 A1
20160207538 Urano et al. Jul 2016 A1
20160209841 Yamaoka et al. Jul 2016 A1
20160229450 Basting et al. Aug 2016 A1
20160231743 Bendewald et al. Aug 2016 A1
20160244070 Bendewald Aug 2016 A1
20160318540 King Nov 2016 A1
20160318542 Pattok et al. Nov 2016 A1
20160347347 Lubischer et al. Dec 2016 A1
20160347348 Lubischer Dec 2016 A1
20160362084 Martin et al. Dec 2016 A1
20160362117 Kaufmann et al. Dec 2016 A1
20160362126 Lubischer Dec 2016 A1
20160368522 Lubischer Dec 2016 A1
20160375770 Ryne et al. Dec 2016 A1
20160375860 Lubischer Dec 2016 A1
20160375923 Schulz Dec 2016 A1
20160375924 Bodtker et al. Dec 2016 A1
20160375925 Lubischer et al. Dec 2016 A1
20160375926 Lubischer et al. Dec 2016 A1
20160375927 Schulz Dec 2016 A1
20160375928 Magnus Dec 2016 A1
20160375929 Rouleau Dec 2016 A1
20160375931 Lubischer et al. Dec 2016 A1
20170029009 Rouleau Feb 2017 A1
20170029018 Lubischer Feb 2017 A1
20170113589 Riefe Apr 2017 A1
20170113712 Watz Apr 2017 A1
Foreign Referenced Citations (29)
Number Date Country
1722030 Jan 2006 CN
1736786 Feb 2006 CN
101037117 Sep 2007 CN
101041355 Sep 2007 CN
101596903 Dec 2009 CN
102452391 May 2012 CN
103419840 Dec 2013 CN
19923012 Nov 2000 DE
10212782 Oct 2003 DE
102005032528 Jan 2007 DE
102005056438 Jun 2007 DE
102006025254 Dec 2007 DE
1020081057313 Oct 2009 DE
102010025197 Dec 2011 DE
1559630 Aug 2005 EP
1783719 May 2007 EP
1932745 Jun 2008 EP
2384946 Nov 2011 EP
2426030 Mar 2012 EP
2489577 Aug 2012 EP
2604487 Jun 2013 EP
1606149 May 2014 EP
2862595 May 2005 FR
3016327 Jul 2015 FR
H05162652 Jun 1993 JP
20100063433 Jun 2010 KR
2006099483 Sep 2006 WO
2010082394 Jul 2010 WO
2010116518 Oct 2010 WO
Non-Patent Literature Citations (21)
Entry
China Patent Application No. 201510204221.5 Second Office Action dated Mar. 10, 2017, 8 pages.
CN Patent Application No. 201210599006.6 First Office Action dated Jan. 27, 2015, 9 pages.
CN Patent Application No. 201210599006.6 Second Office Action dated Aug. 5, 2015, 5 pages.
CN Patent Application No. 201310178012.9 First Office Action dated Apr. 13, 2015, 13 pages.
CN Patent Application No. 201310178012.9 Second Office Action dated Dec. 28, 2015, 11 pages.
CN Patent Application No. 201410089167 First Office Action and Search Report dated Feb. 3, 2016, 9 pages.
EP Application No. 14156903.8 Extended European Search Report, dated Jan. 27, 2015, 10 pages.
EP Application No. 14156903.8 Office Action dated Nov. 16, 2015, 4 pages.
EP Application No. 14156903.8 Office Action dated May 31, 2016, 5 pages.
EP Application No. 14156903.8 Partial European Search Report dated Sep. 23, 2014, 6 pages.
EP Application No. 15152834.6 Extended European Search Report dated Oct. 8, 2015, 7 pages.
European Application No. 12196665.9 Extended European Search Report dated Mar. 6, 2013, 7 pages.
European Search Report for European Application No. 13159950.8; dated Jun. 6, 2013; 7 pages.
European Search Report for related European Application No. 15152834.6, dated Oct. 8, 2015; 7 pages.
Gillespie, Thomas D.; “Fundamentals of Vehicle Dynamics”; Society of Automotive Enginers, Inc.; published 1992; 294 pages.
Kichun, et al.; “Development of Autonomous Car-Part II: A Case Study on the Implementation of an Autonomous Driving System Based on Distributed Architecture”; IEEE Transactions on Industrial Electronics, vol. 62, No. 8, Aug. 2015; 14 pages.
Office Action dated Aug. 29, 2016.
Partial European Search Report for related European Patent Application No. 14156903.8, dated Sep. 23, 2014, 6 pages.
Van Der Jagt, Pim; “Prediction of steering efforts during stationary or slow rolling parking maneuvers”; Jul. 2013, 20 pages.
Varunjikar, Tejas; Design of Horizontal Curves With DownGrades Using Low-Order Vehicle Dynamics Models; A Theisis by T. Varunkikar; 2011; 141 pages.
Van der Jagt, Pim; “Prediction of Steering Efforts During Stationary or Slow Rolling Parking Maneuvers”; Ford Forschungszentrum Aachen GmbH.; Oct. 27, 1999; 20 pages.
Related Publications (1)
Number Date Country
20160375860 A1 Dec 2016 US
Provisional Applications (1)
Number Date Country
62183963 Jun 2015 US