The following description relates to steering column assemblies and, more specifically, to a retractable steering column assembly.
Vehicle steering wheels are typically used to steer a vehicle. When a vehicle is equipped with an autonomous driving assist systems (“ADAS”), the steering wheel does not need to rotate as the self-driving system turns the road wheels. This non-rotation allows the steering column and wheel to have another use or purpose.
Accordingly, it is desirable to provide a steering column assembly that enables the driver to manipulate the position or purpose of the steering wheel while still providing driver protection.
In one embodiment of the present disclosure, a steering column system includes a steering column shaft, a steering input device coupled to the steering column shaft, an air bag operatively arranged with the steering input device, a column adjustment assembly configured to translate the steering column shaft between a retracted position and a driving position, and a first interlock configured to indicate when the steering column shaft is in the driving position and when the steering column shaft is in the retracted position. When the steering column shaft is in the retracted position, the air bag is non-deployable, and when the steering column shaft is in the driving position, the air bag is deployable.
In another embodiment of the present disclosure, a steering column system includes a steering column shaft, a steering input device coupled to the steering column shaft, a driver restraint, a column adjustment assembly configured to translate the steering column shaft between a retracted position and a driving position, and a first interlock configured to indicate whether the driver restraint is locked. When the driver restraint is locked, the steering column shaft is retractable, and when the driver restraint is not locked, the steering column shaft is not retractable.
In still another embodiment of the present disclosure, a vehicle includes a steering column system. The steering column system includes a steering column shaft, a steering input device coupled to the steering column shaft, an air bag operatively arranged with the steering input device, a driver restraint, a column adjustment assembly configured to translate the steering column shaft between a retracted position and a driving position, and at least one of a first interlock and a second interlock, the first interlock configured to indicate whether the driver restraint is locked, the second interlock configured to indicate when the steering column shaft is in the driving position and when the steering column shaft is in the retracted position. When the steering column shaft is in the retracted position, the air bag is non-deployable, and when the steering column shaft is in the driving position, the air bag is deployable. When the driver restraint is locked, the steering column shaft is retractable, and when the driver restraint is not locked, the steering column shaft is not retractable.
In yet another embodiment of the present invention, a method of operating a steering column system of a vehicle includes providing a steering column shaft movable between a retracted position and a driving position, moving a driver restraint to one of a locked position and an unlocked position, and, translating a steering column shaft to the retracted position when the driver restraint is in the locked position, and prohibiting the steering column shaft from being in the retracted position when the driver restraint is in the unlocked position.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
Referring now to the Figures, where embodiments will be described, without limiting same,
In the exemplary embodiment, steering column assembly 14 is movable between a retracted position 20, a deployed or driving position 22, and an accessory or utility position 24. In the retracted position 20, portions of assembly 14 such as steering wheel 18 are disposed away from the driver toward or into instrument panel 12, which provides increased space for the driver. In the illustrated embodiment, instrument panel 12 includes one or more receiving compartments or areas 26 to receive some or all of steering column assembly 14. For example, receiving area 26 may be configured to receive steering wheel 18 such that wheel 18 and thus assembly 14 may be retracted within and flush with instrument panel 12. The displacement of the steering column shaft 16 and wheel 18 in retracted position 20 creates additional cabin space for the driver's comfort and convenience to perform non-driving activities including, but not limited to, reading, working, entertaining, eating, texting, etc.
In the driving position 22, steering wheel 18 may be used by a driver to steer the vehicle 10. The steering wheel 18 is positioned closer to the driver 46 (
In one embodiment, steering column assembly 14 further includes a steering column adjustment assembly 30, a decoupling assembly 32, a torque interface assembly 34, one or more sensors 36, reversible lock 38, and extension detection device 48. Each of assemblies 30, 32, 34, sensors 36, lock 38, and device 48 are associated with the steering column assembly 14 in each position 20, 22, 24, however, for clarity, one or more of the assemblies 30, 32, 34, sensors 36, lock 38, and device 48 are not depicted in each position 20, 22, 24. Further, any two or more of the assemblies 30, 32, 34, sensors 36, lock 38, and device 48 may be combined into a single system for use with the steering column assembly 14. Adjustment assembly 30 is configured to move steering column assembly 14 for driver comfort (e.g., telescope or rake adjustment) and to move assembly 14 between the retracted position 20 and the driving position 22. Adjustment assembly 30 may include one or more mechanical/electrical mechanisms such as a motor. Adjustment assembly 30 may also include a retraction mechanism that enables a driver to mechanically, electronically, or manually return steering wheel 18 from the retracted position 20 to the driving position 22. The adjustment assembly 30 includes electrical actuators that may move the steering column shaft 16 and steering wheel 18 fore and aft. While depicted separately, the extension detection device 48 may alternatively be incorporated into the adjustment assembly 30.
In one embodiment, decoupling assembly 32 is configured to selectively decouple one or more portions of assembly 14 (e.g., shaft 16) from a vehicle steering gear 31 (shown schematically in
Further, the decoupling assembly 32 allows the steering column shaft 16 and wheel 18 to be displaced forward in the vehicle 10 to the retracted position 20 because the steering wheel 18 is no longer being used by the driver 46 to guide the vehicle 10. The retracting action may accomplished by, for example, long stroke, electrical actuators responding to the driver's intention through a switch and motor controller, or by the driver 46 manually releasing a clamp and pushing the steering wheel 18 and steering column shaft 16 forward to the retracted position 20. In any case, the embodiments described herein make retraction of the steering column shaft 16 and wheel 18 away from the driver possible in order to provide space for non-driving related activities such as working, reading, and game playing. In the retracted position 20, the steering wheel 18 is a preset distance beyond a normal ergonomic range from the driving position 22. The steering wheel 18 may, for example but not by limitation, be approximately 100 mm forward of the driver's normal driving position 22. The decoupling assembly 32 may also be used to re-couple one or more portions of assembly 14 (e.g., shaft 16) to the vehicle steering gear 31 when the shaft 16 and wheel 18 are in the driving position 22 such that the steering wheel 18 is usable by the driver 46 to guide the vehicle 10, however the decoupling assembly 32 decouples the one or more portions of assembly 14 (e.g., shaft 16) from the vehicle steering gear 31 when the shaft 16 and wheel 18 are in the retracted position 20 or utility position 24, such as shown in
In one embodiment, torque interface assembly 34 is configured to detect and monitor driver torque input (rotational and translational) to steering wheel 18, for example, to determine if the driver 46 is in control of the vehicle 10, such as depicted by
The retracting process of moving the steering column shaft 16 and wheel 18 from the driving position 22 (or accessory/utility position 24) to the retracted position 20 must eventually be reversed to return steering control of the vehicle 10 to the driver 46. In the event that the driver 46 wishes to disengage the self-driving feature, the driver 46 may alert the ADAS system 98 of the desire to self-steer by gripping sensors on the wheel 18, applying steering torque to the wheel 18, or other sensory means that communicates the intention to take over driving the vehicle 10. That is, the driver 46 should be able to reach forward, grip the wheel 18, and be able to relatively quickly bring the wheel 18 to the driving position 22 to resume steering of the vehicle 10. When returned to the driving position 22, the steering column 16 and steering wheel 18 are fixed, at least temporarily, such as by the decoupling assembly 32 and/or the deactivatable, reversible lock 38, in that fore-aft position of the driving position 20. When fixed in the driving position 20, the vehicle 10 provides the ability to reduce the driver's kinetic energy, such as may result from a crash, via an energy absorbing mechanism 40 in the steering column shaft 16, the deformation of the steering wheel 18, and the deployment of the driver's air bag 42. However, if the steering wheel 18 and the air bag 42 are distanced from the driver 46 in the retracted position 20, then the air bag 42 may not be ideally situated for driver protection in the event of a crash, and deployment of the air bag 42 during a crash may not be an effective injury reducing device. Thus, in accordance with embodiments of this disclosure, when the steering column shaft 16 and the steering wheel 18 are retracted away from the normal driving position 22, then provisions are put in place to ensure driver protection.
In one embodiment, as shown in
An operation 100 for the above-described system is described with respect to
When the ADAS switch is on, then, as demonstrated by block 116, the ADAS system 98 may provide directional control. The controller 102 further determines, as demonstrated by block 118, if the steering column shaft 16 has been decoupled yet, such as by decoupling assembly 32. If not, then as demonstrated by block 120, the driver 46 keeps hands off the steering wheel 18. If the steering column shaft 16 is decoupled, then as demonstrated by block 122, rotation of steering wheel 18 is stopped.
At some point during the operation 100, a driver 46 may wish to retract the steering wheel 18 away from the driving position 22. The controller 102 will determine, such as via receipt of a signal, as demonstrated by block 124, if the column shaft 16 and wheel 18 are retracted during the retracting operation to position 20. If not, then as demonstrated by block 126, the driver 46 will keep hands off the steering wheel 18. However, if the steering column shaft 16 and wheel 18 are retracted, then as demonstrated by block 128, cabin space within the vehicle 10 is enlarged. At this point, the ADAS system 98 still provides directional control, as previously depicted at block 116.
The operation 100 extends from block 128 in
The transition period of extending the steering column shaft 16 and steering wheel 18 from the retracted position 20 to the driving position 22, or from an interim position to the driving position 22, is longer than a deployment time period for a driver's side air bag 42 should a crash occur. Further, deployment of the air bag 42 when the steering wheel 18 is retracted from the driving position 22 will place a rearward face of the bag 42 at a greater than optimal distance from the seated driver 46 such that the reduction of driver's kinetic energy will be diminished from that of the vehicle design intent. Thus, the steering column shaft 16 is further fitted with an interlock device 60, such as electrical signals from the position switches or potentiometers from the electrical device extension detection device 48 or from the steering column adjustment assembly 30, which may further be in communication with controller 102, to prevent air bag deployment in the event the steering column shaft 16 is not in the driving position 22. However, deployment of airbag 42 is allowed (airbag 42 is active) when the wheel 18 is in the driving position 22. Thus, the air bag 42 is non-deployable when the air bag 42 is inactive, such that the ability to deploy the air bag 42 is prohibited, and the air bag 42 is deployable when the airbag 42 is active, such that the ability to deploy the air bag 42 is enabled.
An operation 200 for the above-described system is described with respect to
When the ADAS switch is on, then, as determined by block 206, the ADAS system 98 may provide directional control, as demonstrated by block 212. At this point, the air bag 42 is still active (deployable in a crash event), as demonstrated by block 214. The controller 102 further determines, as demonstrated by block 216, if the steering column shaft 16 has been decoupled yet, such as by decoupling assembly 32. If not, then as demonstrated by block 218, no action is required. However, if the steering column shaft 16 is decoupled, then as demonstrated by block 220, it will be further determined if the steering wheel 18 is retracted or being retracted. If not, then as demonstrated by block 222, no action is required. However, if the steering wheel 18 has been retracted, then as noted by block 224, the steering wheel 18 and thus the air bag 42 will be distanced from the driver 46 by a distance greater than a distance designed for optimal driver protection.
The operation 200 extends from block 224 in
Thus, operations 100 and 200 ensure that the driver 46 is prohibited from retracting the steering column shaft 16 until the driver restraint 54 is secured, and the air bag 42 is operational when the steering wheel 18 is in the driving position 22. Either or both operations 100 and 200 may be used in the same vehicle 10.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Further, it should further be noted that the terms “first,” “second,” and the like herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description.
This patent application claims priority to U.S. Provisional Patent Application Ser. No. 62/183,963, filed Jun. 24, 2015 which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3782492 | Hollins | Jan 1974 | A |
4315117 | Kokubo et al. | Feb 1982 | A |
4337967 | Yoshida et al. | Jul 1982 | A |
4503300 | Lane, Jr. | Mar 1985 | A |
4503504 | Suzumura et al. | Mar 1985 | A |
4561323 | Stromberg | Dec 1985 | A |
4691587 | Farrand et al. | Sep 1987 | A |
4836566 | Birsching | Jun 1989 | A |
4921066 | Conley | May 1990 | A |
4962570 | Hosaka et al. | Oct 1990 | A |
4967618 | Matsumoto et al. | Nov 1990 | A |
4976239 | Hosaka | Dec 1990 | A |
5240284 | Takada et al. | Aug 1993 | A |
5295712 | Omura | Mar 1994 | A |
5319803 | Allen | Jun 1994 | A |
5488555 | Asgari et al. | Jan 1996 | A |
5618058 | Byon | Apr 1997 | A |
5668721 | Chandy | Sep 1997 | A |
5690362 | Peitsmeier et al. | Nov 1997 | A |
5765116 | Wilson-Jones et al. | Jun 1998 | A |
5893580 | Hoagland et al. | Apr 1999 | A |
5911789 | Keipert et al. | Jun 1999 | A |
6070686 | Pollmann | Jun 2000 | A |
6170862 | Hoagland et al. | Jan 2001 | B1 |
6227571 | Sheng et al. | May 2001 | B1 |
6301534 | McDermott, Jr. et al. | Oct 2001 | B1 |
6354622 | Ulbrich et al. | Mar 2002 | B1 |
6360149 | Kwon et al. | Mar 2002 | B1 |
6373472 | Palalau et al. | Apr 2002 | B1 |
6381526 | Higashi et al. | Apr 2002 | B1 |
6390505 | Wilson | May 2002 | B1 |
6578449 | Anspaugh et al. | Jun 2003 | B1 |
6612393 | Bohner et al. | Sep 2003 | B2 |
6819990 | Ichinose | Nov 2004 | B2 |
7021416 | Kapaan et al. | Apr 2006 | B2 |
7048305 | Muller | May 2006 | B2 |
7062365 | Fei | Jun 2006 | B1 |
7295904 | Kanevsky et al. | Nov 2007 | B2 |
7308964 | Hara et al. | Dec 2007 | B2 |
7428944 | Gerum | Sep 2008 | B2 |
7461863 | Muller | Dec 2008 | B2 |
7495584 | Sorensen | Feb 2009 | B1 |
7628244 | Chino et al. | Dec 2009 | B2 |
7719431 | Bolourchi | May 2010 | B2 |
7735405 | Parks | Jun 2010 | B2 |
7793980 | Fong | Sep 2010 | B2 |
7862079 | Fukawatase et al. | Jan 2011 | B2 |
7894951 | Norris et al. | Feb 2011 | B2 |
7909361 | Oblizajek et al. | Mar 2011 | B2 |
8002075 | Markfort | Aug 2011 | B2 |
8027767 | Klein et al. | Sep 2011 | B2 |
8055409 | Tsuchiya | Nov 2011 | B2 |
8069745 | Strieter et al. | Dec 2011 | B2 |
8079312 | Long | Dec 2011 | B2 |
8146945 | Born et al. | Apr 2012 | B2 |
8170725 | Chin et al. | May 2012 | B2 |
8260482 | Szybalski et al. | Sep 2012 | B1 |
8352110 | Szybalski et al. | Jan 2013 | B1 |
8479605 | Shavrnoch et al. | Jul 2013 | B2 |
8548667 | Kaufmann | Oct 2013 | B2 |
8606455 | Boehringer et al. | Dec 2013 | B2 |
8634980 | Urmson et al. | Jan 2014 | B1 |
8650982 | Matsuno et al. | Feb 2014 | B2 |
8670891 | Szybalski et al. | Mar 2014 | B1 |
8695750 | Hammond et al. | Apr 2014 | B1 |
8818608 | Cullinane et al. | Aug 2014 | B2 |
8825258 | Cullinane et al. | Sep 2014 | B2 |
8825261 | Szybalski et al. | Sep 2014 | B1 |
8843268 | Lathrop et al. | Sep 2014 | B2 |
8874301 | Rao et al. | Oct 2014 | B1 |
8880287 | Lee et al. | Nov 2014 | B2 |
8881861 | Tojo | Nov 2014 | B2 |
8899623 | Stadler et al. | Dec 2014 | B2 |
8909428 | Lombrozo | Dec 2014 | B1 |
8948993 | Schulman et al. | Feb 2015 | B2 |
8950543 | Heo et al. | Feb 2015 | B2 |
8994521 | Gazit | Mar 2015 | B2 |
9002563 | Green et al. | Apr 2015 | B2 |
9031729 | Lathrop et al. | May 2015 | B2 |
9032835 | Davies et al. | May 2015 | B2 |
9045078 | Tovar et al. | Jun 2015 | B2 |
9073574 | Cuddihy et al. | Jul 2015 | B2 |
9092093 | Jubner et al. | Jul 2015 | B2 |
9108584 | Rao et al. | Aug 2015 | B2 |
9134729 | Szybalski et al. | Sep 2015 | B1 |
9150200 | Urhahne | Oct 2015 | B2 |
9150224 | Yopp | Oct 2015 | B2 |
9164619 | Goodlein | Oct 2015 | B2 |
9174642 | Wimmer et al. | Nov 2015 | B2 |
9186994 | Okuyama et al. | Nov 2015 | B2 |
9193375 | Schramm et al. | Nov 2015 | B2 |
9199553 | Cuddihy et al. | Dec 2015 | B2 |
9227531 | Cuddihy et al. | Jan 2016 | B2 |
9233638 | Lisseman et al. | Jan 2016 | B2 |
9235111 | Yamaguchi | Jan 2016 | B2 |
9235987 | Green et al. | Jan 2016 | B2 |
9238409 | Lathrop et al. | Jan 2016 | B2 |
9248743 | Enthaler et al. | Feb 2016 | B2 |
9260130 | Mizuno | Feb 2016 | B2 |
9290174 | Zagorski | Mar 2016 | B1 |
9290201 | Lombrozo | Mar 2016 | B1 |
9298184 | Bartels et al. | Mar 2016 | B2 |
9308857 | Lisseman et al. | Apr 2016 | B2 |
9308891 | Cudak et al. | Apr 2016 | B2 |
9333983 | Lathrop et al. | May 2016 | B2 |
9352752 | Cullinane et al. | May 2016 | B2 |
9360865 | Yopp | Jun 2016 | B2 |
20030046012 | Yamaguchi | Mar 2003 | A1 |
20030094330 | Boloorchi et al. | May 2003 | A1 |
20030188598 | Cartwright | Oct 2003 | A1 |
20030227159 | Muller | Dec 2003 | A1 |
20040016588 | Vitale et al. | Jan 2004 | A1 |
20040046346 | Eki et al. | Mar 2004 | A1 |
20040046379 | Riefe | Mar 2004 | A1 |
20040099468 | Chernoff et al. | May 2004 | A1 |
20040129098 | Gayer et al. | Jul 2004 | A1 |
20040204808 | Satoh et al. | Oct 2004 | A1 |
20040262063 | Kaufmann et al. | Dec 2004 | A1 |
20050001445 | Ercolano | Jan 2005 | A1 |
20050081675 | Oshita et al. | Apr 2005 | A1 |
20050197746 | Pelchen et al. | Sep 2005 | A1 |
20050275205 | Ahnafield | Dec 2005 | A1 |
20060186658 | Yasuhara et al. | Aug 2006 | A1 |
20060224287 | Izawa et al. | Oct 2006 | A1 |
20060244251 | Muller | Nov 2006 | A1 |
20070021889 | Tsuchiya | Jan 2007 | A1 |
20070029771 | Haglund et al. | Feb 2007 | A1 |
20070046003 | Mori et al. | Mar 2007 | A1 |
20070046013 | Bito | Mar 2007 | A1 |
20070241548 | Fong | Oct 2007 | A1 |
20070284867 | Cymbal et al. | Dec 2007 | A1 |
20080009986 | Lu et al. | Jan 2008 | A1 |
20080238068 | Kumar et al. | Oct 2008 | A1 |
20090024278 | Kondo et al. | Jan 2009 | A1 |
20090256342 | Cymbal et al. | Oct 2009 | A1 |
20090276111 | Wang et al. | Nov 2009 | A1 |
20090292466 | McCarthy et al. | Nov 2009 | A1 |
20100152952 | Lee et al. | Jun 2010 | A1 |
20100218637 | Barroso | Sep 2010 | A1 |
20100222976 | Haug | Sep 2010 | A1 |
20100228417 | Lee et al. | Sep 2010 | A1 |
20100228438 | Buerkle | Sep 2010 | A1 |
20100280713 | Stahlin et al. | Nov 2010 | A1 |
20100286869 | Katch et al. | Nov 2010 | A1 |
20100288567 | Bonne | Nov 2010 | A1 |
20110098922 | Ibrahim | Apr 2011 | A1 |
20110153160 | Hesseling et al. | Jun 2011 | A1 |
20110167940 | Shavrnoch et al. | Jul 2011 | A1 |
20110187518 | Strumolo et al. | Aug 2011 | A1 |
20110266396 | Abildgaard et al. | Nov 2011 | A1 |
20110282550 | Tada et al. | Nov 2011 | A1 |
20120136540 | Miller | May 2012 | A1 |
20120205183 | Rombold | Aug 2012 | A1 |
20120209473 | Birsching et al. | Aug 2012 | A1 |
20120215377 | Takemura et al. | Aug 2012 | A1 |
20130002416 | Gazit | Jan 2013 | A1 |
20130087006 | Ohtsubo et al. | Apr 2013 | A1 |
20130158771 | Kaufmann | Jun 2013 | A1 |
20130199866 | Yamamoto et al. | Aug 2013 | A1 |
20130218396 | Moshchuk et al. | Aug 2013 | A1 |
20130233117 | Read et al. | Sep 2013 | A1 |
20130325202 | Howard et al. | Dec 2013 | A1 |
20140028008 | Stadler | Jan 2014 | A1 |
20140046542 | Kauffman et al. | Feb 2014 | A1 |
20140046547 | Kaufmann et al. | Feb 2014 | A1 |
20140111324 | Lisseman et al. | Apr 2014 | A1 |
20140277896 | Lathrop | Sep 2014 | A1 |
20140300479 | Wolter et al. | Oct 2014 | A1 |
20140309816 | Stefan et al. | Oct 2014 | A1 |
20150002404 | Hooton | Jan 2015 | A1 |
20150014086 | Eisenbarth | Jan 2015 | A1 |
20150032322 | Wimmer | Jan 2015 | A1 |
20150051780 | Hahne | Feb 2015 | A1 |
20150060185 | Feguri | Mar 2015 | A1 |
20150120142 | Park et al. | Apr 2015 | A1 |
20150137492 | Rao et al. | May 2015 | A1 |
20150203145 | Sugiura et al. | Jul 2015 | A1 |
20150210273 | Kaufmann et al. | Jul 2015 | A1 |
20150246673 | Tseng et al. | Sep 2015 | A1 |
20150251666 | Attard et al. | Sep 2015 | A1 |
20150283998 | Lind et al. | Oct 2015 | A1 |
20150324111 | Jubner et al. | Nov 2015 | A1 |
20160009332 | Sirbu | Jan 2016 | A1 |
20160075371 | Varunkikar et al. | Mar 2016 | A1 |
20160082867 | Sugioka et al. | Mar 2016 | A1 |
20160185387 | Kuoch | Jun 2016 | A1 |
20160200246 | Lisseman et al. | Jul 2016 | A1 |
20160200343 | Lisseman et al. | Jul 2016 | A1 |
20160200344 | Sugioka et al. | Jul 2016 | A1 |
20160207538 | Urano et al. | Jul 2016 | A1 |
20160209841 | Yamaoka et al. | Jul 2016 | A1 |
20160229450 | Basting et al. | Aug 2016 | A1 |
20160231743 | Bendewald et al. | Aug 2016 | A1 |
20160244070 | Bendewald | Aug 2016 | A1 |
20160318540 | King | Nov 2016 | A1 |
20160318542 | Pattok et al. | Nov 2016 | A1 |
20160347347 | Lubischer et al. | Dec 2016 | A1 |
20160347348 | Lubischer | Dec 2016 | A1 |
20160362084 | Martin et al. | Dec 2016 | A1 |
20160362117 | Kaufmann et al. | Dec 2016 | A1 |
20160362126 | Lubischer | Dec 2016 | A1 |
20160368522 | Lubischer | Dec 2016 | A1 |
20160375770 | Ryne et al. | Dec 2016 | A1 |
20160375860 | Lubischer | Dec 2016 | A1 |
20160375923 | Schulz | Dec 2016 | A1 |
20160375924 | Bodtker et al. | Dec 2016 | A1 |
20160375925 | Lubischer et al. | Dec 2016 | A1 |
20160375926 | Lubischer et al. | Dec 2016 | A1 |
20160375927 | Schulz | Dec 2016 | A1 |
20160375928 | Magnus | Dec 2016 | A1 |
20160375929 | Rouleau | Dec 2016 | A1 |
20160375931 | Lubischer et al. | Dec 2016 | A1 |
20170029009 | Rouleau | Feb 2017 | A1 |
20170029018 | Lubischer | Feb 2017 | A1 |
20170113589 | Riefe | Apr 2017 | A1 |
20170113712 | Watz | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
1722030 | Jan 2006 | CN |
1736786 | Feb 2006 | CN |
101037117 | Sep 2007 | CN |
101041355 | Sep 2007 | CN |
101596903 | Dec 2009 | CN |
102452391 | May 2012 | CN |
103419840 | Dec 2013 | CN |
19923012 | Nov 2000 | DE |
10212782 | Oct 2003 | DE |
102005032528 | Jan 2007 | DE |
102005056438 | Jun 2007 | DE |
102006025254 | Dec 2007 | DE |
1020081057313 | Oct 2009 | DE |
102010025197 | Dec 2011 | DE |
1559630 | Aug 2005 | EP |
1783719 | May 2007 | EP |
1932745 | Jun 2008 | EP |
2384946 | Nov 2011 | EP |
2426030 | Mar 2012 | EP |
2489577 | Aug 2012 | EP |
2604487 | Jun 2013 | EP |
1606149 | May 2014 | EP |
2862595 | May 2005 | FR |
3016327 | Jul 2015 | FR |
H05162652 | Jun 1993 | JP |
20100063433 | Jun 2010 | KR |
2006099483 | Sep 2006 | WO |
2010082394 | Jul 2010 | WO |
2010116518 | Oct 2010 | WO |
Entry |
---|
China Patent Application No. 201510204221.5 Second Office Action dated Mar. 10, 2017, 8 pages. |
CN Patent Application No. 201210599006.6 First Office Action dated Jan. 27, 2015, 9 pages. |
CN Patent Application No. 201210599006.6 Second Office Action dated Aug. 5, 2015, 5 pages. |
CN Patent Application No. 201310178012.9 First Office Action dated Apr. 13, 2015, 13 pages. |
CN Patent Application No. 201310178012.9 Second Office Action dated Dec. 28, 2015, 11 pages. |
CN Patent Application No. 201410089167 First Office Action and Search Report dated Feb. 3, 2016, 9 pages. |
EP Application No. 14156903.8 Extended European Search Report, dated Jan. 27, 2015, 10 pages. |
EP Application No. 14156903.8 Office Action dated Nov. 16, 2015, 4 pages. |
EP Application No. 14156903.8 Office Action dated May 31, 2016, 5 pages. |
EP Application No. 14156903.8 Partial European Search Report dated Sep. 23, 2014, 6 pages. |
EP Application No. 15152834.6 Extended European Search Report dated Oct. 8, 2015, 7 pages. |
European Application No. 12196665.9 Extended European Search Report dated Mar. 6, 2013, 7 pages. |
European Search Report for European Application No. 13159950.8; dated Jun. 6, 2013; 7 pages. |
European Search Report for related European Application No. 15152834.6, dated Oct. 8, 2015; 7 pages. |
Gillespie, Thomas D.; “Fundamentals of Vehicle Dynamics”; Society of Automotive Enginers, Inc.; published 1992; 294 pages. |
Kichun, et al.; “Development of Autonomous Car-Part II: A Case Study on the Implementation of an Autonomous Driving System Based on Distributed Architecture”; IEEE Transactions on Industrial Electronics, vol. 62, No. 8, Aug. 2015; 14 pages. |
Office Action dated Aug. 29, 2016. |
Partial European Search Report for related European Patent Application No. 14156903.8, dated Sep. 23, 2014, 6 pages. |
Van Der Jagt, Pim; “Prediction of steering efforts during stationary or slow rolling parking maneuvers”; Jul. 2013, 20 pages. |
Varunjikar, Tejas; Design of Horizontal Curves With DownGrades Using Low-Order Vehicle Dynamics Models; A Theisis by T. Varunkikar; 2011; 141 pages. |
Van der Jagt, Pim; “Prediction of Steering Efforts During Stationary or Slow Rolling Parking Maneuvers”; Ford Forschungszentrum Aachen GmbH.; Oct. 27, 1999; 20 pages. |
Number | Date | Country | |
---|---|---|---|
20160375860 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
62183963 | Jun 2015 | US |