Retractable steering column with manual retrieval

Information

  • Patent Grant
  • 9919724
  • Patent Number
    9,919,724
  • Date Filed
    Monday, August 31, 2015
    8 years ago
  • Date Issued
    Tuesday, March 20, 2018
    6 years ago
Abstract
A steering column assembly is provided and includes a steering column shaft and a column adjustment assembly configured to translate the steering column shaft between a retracted position and a deployed position. A disengagement assembly selectively couples a steering column telescope lead screw to the column adjustment assembly. The disengagement assembly is configured to selectively disengage the telescope lead screw from the column adjustment assembly to facilitate manual movement of the steering column shaft between the retracted position and the deployed position.
Description
FIELD OF THE INVENTION

The following description relates to steering column assemblies and, more specifically, to a manually retrievable retractable steering column assembly.


BACKGROUND

When some vehicles are fitted with autonomous driving assist systems, it may become possible to retract the steering column and wheel away from the driver to provide space for non-driving related activities such as working, reading, and game playing. However, the driver may need to be able to retrieve the wheel from its retracted position quickly enough to safely take control when an autonomous driver assistance system relinquishes control.


Accordingly, it is desirable to provide a steering column assembly that enables the driver to rapidly return the wheel from a retracted position.


SUMMARY OF THE INVENTION

In one exemplary embodiment of the invention, a steering column assembly is provided and includes a steering column shaft and a column adjustment assembly configured to translate the steering column shaft between a retracted position and a deployed position. A disengagement assembly selectively couples a steering column telescope lead screw to the column adjustment assembly. The disengagement assembly is configured to selectively disengage the telescope lead screw from the column adjustment assembly to facilitate manual movement of the steering column shaft between the retracted position and the deployed position.


In another exemplary embodiment of the invention, a vehicle including a steering column assembly having a steering column shaft, a column jacket, and a steering wheel coupled to the steering column shaft is provided. A column adjustment assembly is configured to translate the steering column shaft between a retracted position and a deployed position. A disengagement assembly selectively couples the steering column shaft to the column adjustment assembly. The disengagement assembly is configured to disengage the steering column shaft from the column adjustment assembly to facilitate manual movement of the steering column shaft between the retracted position and the deployed position.


In yet another exemplary embodiment of the invention, a method of assembling a steering column assembly is provided. A column adjustment assembly is provided and configured to translate a steering column shaft between a retracted position and a deployed position. A disengagement assembly is coupled between the steering column shaft and the column adjustment assembly. The disengagement assembly is configured to selectively disengage the steering column shaft from the column adjustment assembly to facilitate manual movement of the steering column shaft between the retracted position and the deployed position.


These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:



FIG. 1A is a perspective view of a steering column assembly in a first position according to one embodiment of the disclosure;



FIG. 1B is an alternate perspective view of the steering column assembly of FIG. 1A;



FIG. 2 is a perspective view of the steering column assembly shown in FIG. 1 in a second position;



FIG. 3 is another perspective view of the steering column assembly shown in FIG. 1A; and



FIG. 4 is another perspective view of the steering column assembly shown in FIG. 2.





DETAILED DESCRIPTION

Referring now to the Figures, where the invention will be described with reference to specific embodiments, without limiting same, FIGS. 1-4 illustrate an exemplary retractable steering column assembly 10 that generally includes a steering telescoping column shaft 12, a column telescoping jacket 14, and a steering wheel 16 coupled to shaft 12. Assembly 10 further includes a steering column adjustment assembly 18 and a wheel disengagement assembly 20. FIGS. 1 and 3 illustrate assembly 20 in an engaged position, and FIGS. 2 and 4 illustrate assembly 20 in a disengaged position.


In the exemplary embodiment, adjustment assembly 18 is configured to move steering column assembly 10 between a deployed position and a retracted or retractable position. In the deployed position, steering wheel 16 may be used by a driver to steer the vehicle. In the retract position, portions of steering column assembly 10 such as steering wheel 16 are disposed away from the driver toward a vehicle instrument panel (not shown), which provides increased space for the driver.


Steering column adjustment assembly 18 generally includes a housing 22, a motor 24, and a lead screw 26. Housing 22 is coupled to the vehicle support structure and is disposed between column jacket 14 and lead screw 26. Motor 24 is coupled to housing 22 and selectively rotates telescope lead screw 26 to telescope shaft 12 and translate the telescoping jacket 14 along a screw axis 30 relative to housing. In the exemplary embodiment, lead screw 26 is threaded. An engagement component 32 selectively couples shaft 12/jacket 14 to assembly 18 (e.g., screw 26) and may be threadably engageable therewith. As such, motor 24 rotates lead screw 26 to drive shaft 12/jacket 14 in the direction of arrows 28.


Accordingly, steering column assembly 10 may be a power adjustable steering column with a telescope mode travel in the direction of arrows 28. Because the telescope mode rate of travel may be low, wheel disengagement assembly 20 allows the driver to bypass the power screw actuator so that steering wheel 16 may be gripped and quickly pulled to the normal driving position (i.e., the deployed position).


In the exemplary embodiment, wheel disengagement assembly 20 generally includes engagement component 32, opposed supports 34, 36, a cam plate or latching arm 38, a guide bracket 40, and a solenoid or actuator 42. In the illustrated embodiment, engagement component 32 is a split nut having a first portion 46 and an opposed second portion 48 that are movable between an engaged position (FIGS. 1A and 3) and a disengaged position (FIGS. 2 and 4). First and second portions 46, 48 each include a partial bore or recess 50 (FIG. 2) configured to be disposed about a portion (e.g., half) of lead screw 26 (see FIG. 1). Recess 50 may be threaded to meshingly engage the threads on lead screw 26.


Engagement component first and second portions 46, 48 each include a pivot end 52 pivotally coupled to one of supports 34, 36 by a pin 54. As such, first and second portions 46, 48 are pivotable between the engaged position (FIGS. 1A and 3) and the disengaged position (FIGS. 2 and 4). Supports 34, 36 are coupled to telescoping jacket 14.


In the exemplary embodiment, cam plate 38 includes a main body portion 56 and a flange portion 58. A first channel 60 and a second channel 62 are formed in main body portion 56. Channels 60, 62 are generally angled from a first end 64 to a second end 66 such that second ends 66 of adjacent channels 60, 62 are closer to each other than first ends 64 (see FIG. 2).


A first pin 68 extends through channel 60 and is coupled between guide bracket 40 and first portion 46 such that first pin 68 may travel along channel 60 between channel first end 64 and channel second end 66. As such, engagement component first portion 46 is moved into the disengaged position when first pin 68 is positioned at channel first end 64 (see FIG. 2), and first portion 46 is moved into the engaged position when first pin 68 is positioned at channel second end 66 (see FIG. 1).


Similarly, a second pin 70 extends through channel 62 and is coupled between guide bracket 40 and second portion 48 such that second pin 70 may travel along channel 62 between channel first end 64 and channel second end 66. As such, engagement component second portion 48 is moved into the disengaged position when second pin 70 is positioned at channel first end 64 (see FIG. 2), and second portion 48 is moved into the engaged position when first pin 68 is positioned at channel second end 66 (see FIG. 1).


In the exemplary embodiment, engagement component first portion 46 and/or second portion 48 may be fitted with a biasing mechanism (not shown) such as a spring to bias portion 46, 48 toward lead screw 26 to cause proper engagement therebetween.


In the exemplary embodiment, cam plate flange portion 58 defines a surface 72 that is coupled to or is configured to be engaged by an arm 74 extending from actuator 42. As such, actuator 42 utilizes arm 74 to selectively move cam plate 38 in the direction of arrows 28 to move engagement component 32 between the engaged position (FIG. 1A) and the disengaged position (FIG. 2).


In the illustrated embodiment, steering column assembly 10 includes a first switch 80 and a second switch 82. First switch 80 is electrically coupled to motor 24 and is configured to supply a command thereto, which turns lead screw 26 to retract or deploy steering column assembly 10 and wheel 16 at a predefined rate of speed. Second switch 82 is electrically coupled to actuator 42 and is configured to supply a command thereto, which moves arm 74 to retract or deploy cam plate 38 to move engagement component 32 between the engaged position and the disengaged position.


In operation, steering column assembly 10 may be in the deployed position with engagement component 32 in the engaged position to engage lead screw 26. First switch 80 may be subsequently manipulated to telescope steering column assembly 10 and wheel 16 to the retracted position away from the driver. In the exemplary embodiment, engagement component 32 may remain engaged to lead screw 26 when assembly 10 is in the retracted position. In other embodiments, engagement component 32 may be automatically disengaged when assembly 10 reaches the retracted position.


When the driver desires to return steering column assembly 10 and wheel 16 to the deployed position for use, in the exemplary embodiment, the driver manipulates second switch 82. This causes actuator 42 to retract arm 74 and cam plate 38 such that pins 68, 70 are positioned at channel first end 64, which withdraws engagement component portions 46, 48 away from engagement with lead screw 26. Actuator 42 latches the cam plate 38 in the disengaged position by extending and retracting arm 74 (a momentary movement). Alternatively, if only one recess 50 is threaded, only that associated component portion 46 or 48 may be withdrawn from engagement with lead screw 26.


With engagement component 32 in the disengaged position, component 32 may slide unimpeded over lead screw 26 such that the driver can rapidly move steering wheel 16 to its deployed, driving position. In the exemplary embodiment, the normal, non-energized position of actuator 42 causes engagement component 32 to engage lead screw 26. In other embodiments, the non-energized position of actuator 42 disengages component 32 from lead screw 26.


Accordingly, if the driver needs to quickly return steering wheel 16 from the retracted position, the driver need only press switch 82 (connected to actuator 42) to disengage component 32. In other embodiments, component 32 may automatically disengage when reaching the retracted position. This allows the driver to pull steering wheel 16 to the normal driving position free of any engagement with lead screw 26.


In some embodiments, when the driver pulls steering wheel 16 to the deployed, driving position, the separated engagement component portions 46, 48 are mechanically re-engaged with lead screw 26 such as by inclined, ramped surfaces of unlatching cam 84 of FIG. 1B. This retains latching arm 74 in the deployed driving position. Alternatively, assembly 10 may include an electrical position sensor (not shown) that may be utilized to cause portions 46, 48 to re-engage screw 26.


In some embodiments, the driver may also activate switch 82 to disengage component 32 and enable the driver to rapidly move steering column assembly 10 and wheel 16 from the deployed position to the retracted position.


In alternative embodiments, engagement component portions 46, 48 may be moved between the engaged and disengaged positions by first and second levers (not shown) pinned to open and close around screw 26, actuated by the rotation of a third lever (not shown) fitted with pins (not shown) to spread the first and second levers as if they were opening and closing jaws.


A method of assembling steering column assembly 10 includes providing shaft 12, jacket 14, and wheel 16 coupled to shaft 12. Column adjustment assembly 18 is operably coupled to shaft 12 and jacket 14 to move assembly 10 between the retracted position and the deployed position. Disengagement assembly 20 is operably coupled to column adjustment assembly 18 and is configured to disengage shaft 12 from assembly 18 to facilitate manual movement of shaft 12 and steering wheel 16 between the retracted position and the deployed position.


Described herein are systems and methods providing a steering column assembly that is movable between a retracted position and a deployed position. The steering column assembly includes telescope movement enabled by a column adjustment assembly. A disengagement assembly enables the steering column assembly to be selectively disengaged from the column adjustment assembly to enable a driver to quickly move the steering column assembly and steering wheel from the retracted position to the deployed position. As such, the driver can quickly return the wheel to the deployed, driving position quickly enough to safely take control when, for example, an autonomous driver assistance system relinquishes control of the vehicle. The described system gives the driver the ability to bypass the column adjustment assembly and thus quickly pull the steering wheel to the normal driving position.


While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description.

Claims
  • 1. A steering column assembly comprising: a steering column shaft;a column adjustment assembly configured to translate the steering column shaft between a retracted position and a deployed position;a disengagement assembly selectively coupling a steering column telescope lead screw to the column adjustment assembly, the disengagement assembly configured to selectively disengage the telescope lead screw from the column adjustment assembly to facilitate manual movement of the steering column shaft between the retracted position and the deployed position.
  • 2. The steering column assembly of claim 1, wherein the column adjustment assembly comprises a lead screw.
  • 3. The steering column assembly of claim 2, wherein the column adjustment assembly comprises a motor coupled to the lead screw and configured to turn the lead screw to retract and deploy the steering column shaft.
  • 4. The steering column assembly of claim 2, wherein the disengagement assembly comprises an engagement component configured to selectively engage the lead screw.
  • 5. The steering column assembly of claim 4, wherein the engagement component is a split nut having a first portion and a second portion.
  • 6. The steering column assembly of claim 5, wherein the disengagement assembly further comprises at least one support, the split nut first and second portions each pivotally coupled to the at least one support.
  • 7. The steering column assembly of claim 6, wherein the disengagement assembly further comprises an actuator configured to move the split nut between an engaged position where the split nut engages the lead screw, and a disengaged position where the split nut is disengaged from the lead screw.
  • 8. The steering column assembly of claim 6, wherein the disengagement assembly further comprises: a cam plate having a ramped channel formed therein; anda pin coupled to the split nut and extending through the ramped channel, the pin operable to travel along the ramped channel from a first position to a second position, the first position of the pin causing the split nut to move to the engaged position, and the second position of the pin causing the split nut to move to the disengaged position.
  • 9. The steering column assembly of claim 7, further comprising an electrical switch configured to operate the disengagement assembly to move the split nut between the engaged position and the disengaged position.
  • 10. A vehicle comprising: a steering column assembly comprising:a steering column shaft;a column jacket;a steering wheel coupled to the steering column shaft;a column adjustment assembly configured to translate the steering column shaft between a retracted position and a deployed position;a disengagement assembly selectively coupling the steering column shaft to the column adjustment assembly, the disengagement assembly configured to disengage the steering column shaft from the column adjustment assembly to facilitate manual movement of the steering column shaft between the retracted position and the deployed position.
  • 11. The vehicle of claim 10, wherein the column adjustment assembly comprises a lead screw.
  • 12. The vehicle of claim 11, wherein the column adjustment assembly comprises a motor coupled to the lead screw and configured to turn the lead screw to retract and deploy the steering column shaft.
  • 13. The vehicle of claim 11, wherein the disengagement assembly comprises an engagement component configured to selectively engage the lead screw.
  • 14. The vehicle of claim 13, wherein the engagement component is a split nut having a first portion and a second portion.
  • 15. The vehicle of claim 14, wherein the disengagement assembly further comprises at least one support, the split nut first and second portions each pivotally coupled to the at least one support.
  • 16. The vehicle of claim 15, wherein the disengagement assembly further comprises an actuator configured to move the split nut between an engaged position where the split nut engages the lead screw, and a disengaged position where the split nut is disengaged from the lead screw.
  • 17. The vehicle of claim 15, wherein the disengagement assembly further comprises: a cam plate having a ramped channel formed therein; anda pin coupled to the split nut and extending through the ramped channel, the pin operable to travel along the ramped channel from a first position to a second position, the first position of the pin causing the split nut to move to the engaged position, and the second position of the pin causing the split nut to move to the disengaged position.
  • 18. The vehicle of claim 16, further comprising an electrical switch configured to operate the disengagement assembly to move the split nut between the engaged position and the disengaged position.
  • 19. A method of assembling a steering column assembly, the method comprising: providing a steering column shaft;providing a column adjustment assembly configured to translate the steering column shaft between a retracted position and a deployed position; andcoupling a disengagement assembly between the steering column shaft and the column adjustment assembly, the disengagement assembly configured to selectively disengage the steering column shaft from the column adjustment assembly to facilitate manual movement of the steering column shaft between the retracted position and the deployed position.
CROSS-REFERENCE TO RELATED APPLICATION

This patent application claims priority to U.S. Provisional Patent Application Ser. Nos. 62/168,167, filed May 29, 2015, which is incorporated herein by reference in its entirety.

US Referenced Citations (204)
Number Name Date Kind
4315117 Kokubo et al. Feb 1982 A
4337967 Yoshida et al. Jul 1982 A
4503300 Lane, Jr. Mar 1985 A
4503504 Suzumura et al. Mar 1985 A
4561323 Stromberg Dec 1985 A
4691587 Farrand et al. Sep 1987 A
4836566 Birsching Jun 1989 A
4921066 Conley May 1990 A
4962570 Hosaka et al. Oct 1990 A
4967618 Matsumoto Nov 1990 A
4976239 Hosaka Dec 1990 A
5240284 Takada et al. Aug 1993 A
5295712 Omura Mar 1994 A
5319803 Allen Jun 1994 A
5488555 Asgari Jan 1996 A
5618058 Byon Apr 1997 A
5668721 Chandy Sep 1997 A
5690362 Peitsmeier Nov 1997 A
5893580 Hoagland et al. Apr 1999 A
5911789 Keipert Jun 1999 A
6070686 Pollmann Jun 2000 A
6170862 Hoagland et al. Jan 2001 B1
6227571 Sheng et al. May 2001 B1
6277571 Sheng et al. May 2001 B1
6301534 McDermott, Jr. Oct 2001 B1
6354622 Ulbrich et al. Mar 2002 B1
6360149 Kwon et al. Mar 2002 B1
6373472 Palalau et al. Apr 2002 B1
6381526 Higashi et al. Apr 2002 B1
6390505 Wilson May 2002 B1
6578449 Anspaugh et al. Jun 2003 B1
6612393 Bohner et al. Sep 2003 B2
6819990 Ichinose Nov 2004 B2
7021416 Kapaan et al. Apr 2006 B2
7048305 Muller May 2006 B2
7062365 Fei Jun 2006 B1
7295904 Kanevsky et al. Nov 2007 B2
7308964 Hara et al. Dec 2007 B2
7428944 Gerum Sep 2008 B2
7437902 Monash Oct 2008 B2
7461863 Muller Dec 2008 B2
7495584 Sorensen Feb 2009 B1
7628244 Chino et al. Dec 2009 B2
7719431 Bolourchi May 2010 B2
7735405 Parks Jun 2010 B2
7793980 Fong Sep 2010 B2
7862079 Fukawatase et al. Jan 2011 B2
7894951 Norris et al. Feb 2011 B2
7909361 Oblizajek et al. Mar 2011 B2
8002075 Markfort Aug 2011 B2
8027767 Klein et al. Sep 2011 B2
8069745 Strieter et al. Dec 2011 B2
8079312 Long Dec 2011 B2
8146945 Born Apr 2012 B2
8170725 Chin et al. May 2012 B2
8260482 Szybalski et al. Sep 2012 B1
8352110 Szybalski et al. Jan 2013 B1
8479605 Shavrnoch et al. Jul 2013 B2
8548667 Kaufmann Oct 2013 B2
8606455 Boehringer et al. Dec 2013 B2
8634980 Urmson et al. Jan 2014 B1
8650982 Matsuno Feb 2014 B2
8670891 Szybalski et al. Mar 2014 B1
8695750 Hammond et al. Apr 2014 B1
8818608 Cullinane et al. Aug 2014 B2
8825258 Cullinane et al. Sep 2014 B2
8825261 Szybalski et al. Sep 2014 B1
8843268 Lathrop et al. Sep 2014 B2
8874301 Rao et al. Oct 2014 B1
8880287 Lee et al. Nov 2014 B2
8881861 Tojo Nov 2014 B2
8899623 Stadler et al. Dec 2014 B2
8909428 Lombrozo Dec 2014 B1
8948993 Schulman et al. Feb 2015 B2
8950543 Heo et al. Feb 2015 B2
8994521 Gazit Mar 2015 B2
9002563 Green et al. Apr 2015 B2
9031729 Lathrop et al. May 2015 B2
9032835 Davies et al. May 2015 B2
9045078 Tovar et al. Jun 2015 B2
9073574 Cuddihy et al. Jul 2015 B2
9092093 Jubner et al. Jul 2015 B2
9108584 Rao et al. Aug 2015 B2
9134729 Szybalski et al. Sep 2015 B1
9150200 Urhahne Oct 2015 B2
9150224 Yopp Oct 2015 B2
9164619 Goodlein Oct 2015 B2
9174642 Wimmer et al. Nov 2015 B2
9186994 Okuyama et al. Nov 2015 B2
9193375 Schramm et al. Nov 2015 B2
9199553 Cuddihy et al. Dec 2015 B2
9227531 Cuddihy et al. Jan 2016 B2
9233638 Lisseman et al. Jan 2016 B2
9235211 Davidsson et al. Jan 2016 B2
9235987 Green et al. Jan 2016 B2
9238409 Lathrop et al. Jan 2016 B2
9248743 Enthaler et al. Feb 2016 B2
9260130 Mizuno Feb 2016 B2
9290174 Zagorski Mar 2016 B1
9290201 Lombrozo Mar 2016 B1
9298184 Bartels et al. Mar 2016 B2
9308857 Lisseman et al. Apr 2016 B2
9308891 Cudak et al. Apr 2016 B2
9333983 Lathrop et al. May 2016 B2
9352752 Cullinane et al. May 2016 B2
9360865 Yopp Jun 2016 B2
20030046012 Yamaguchi Mar 2003 A1
20030094330 Boloorchi et al. May 2003 A1
20030227159 Muller Dec 2003 A1
20040016588 Vitale et al. Jan 2004 A1
20040046346 Eki et al. Mar 2004 A1
20040099468 Chernoff et al. May 2004 A1
20040129098 Gayer et al. Jul 2004 A1
20040204808 Satoh et al. Oct 2004 A1
20040262063 Kaufmann et al. Dec 2004 A1
20050001445 Ercolano Jan 2005 A1
20050081675 Oshita et al. Apr 2005 A1
20050197746 Pelchen et al. Sep 2005 A1
20050275205 Ahnafield Dec 2005 A1
20060224287 Izawa et al. Oct 2006 A1
20060244251 Muller Nov 2006 A1
20070021889 Tsuchiya Jan 2007 A1
20070029771 Haglund et al. Feb 2007 A1
20070046003 Mori et al. Mar 2007 A1
20070046013 Bito Mar 2007 A1
20070241548 Fong Oct 2007 A1
20070284867 Cymbal et al. Dec 2007 A1
20080009986 Lu et al. Jan 2008 A1
20080238068 Kumar et al. Oct 2008 A1
20090024278 Kondo et al. Jan 2009 A1
20090256342 Cymbal et al. Oct 2009 A1
20090276111 Wang et al. Nov 2009 A1
20090292466 McCarthy et al. Nov 2009 A1
20100152952 Lee et al. Jun 2010 A1
20100222976 Haug Sep 2010 A1
20100228417 Lee et al. Sep 2010 A1
20100228438 Buerkle Sep 2010 A1
20100280713 Stahlin et al. Nov 2010 A1
20100286869 Katch et al. Nov 2010 A1
20100288567 Bonne Nov 2010 A1
20110098922 Ibrahim Apr 2011 A1
20110153160 Hesseling et al. Jun 2011 A1
20110167940 Shavrnoch et al. Jul 2011 A1
20110187518 Strumolo et al. Aug 2011 A1
20110266396 Abildgaard et al. Nov 2011 A1
20110282550 Tada et al. Nov 2011 A1
20120136540 Miller May 2012 A1
20120205183 Rombold Aug 2012 A1
20120209473 Birsching et al. Aug 2012 A1
20120215377 Takemura et al. Aug 2012 A1
20130087006 Ohtsubo et al. Apr 2013 A1
20130158771 Kaufmann Jun 2013 A1
20130233117 Read et al. Sep 2013 A1
20130292955 Higgins et al. Nov 2013 A1
20130325202 Howard et al. Dec 2013 A1
20140028008 Stadler et al. Jan 2014 A1
20140046542 Kauffman et al. Feb 2014 A1
20140111324 Lisseman et al. Apr 2014 A1
20140277896 Lathrop et al. Sep 2014 A1
20140300479 Wolter et al. Oct 2014 A1
20140309816 Stefan et al. Oct 2014 A1
20150002404 Hooton Jan 2015 A1
20150014086 Eisenbarth Jan 2015 A1
20150032322 Wimmer Jan 2015 A1
20150051780 Hahne Feb 2015 A1
20150060185 Feguri Mar 2015 A1
20150120142 Park et al. Apr 2015 A1
20150210273 Kaufmann et al. Jul 2015 A1
20150246673 Tseng et al. Sep 2015 A1
20150251666 Attard et al. Sep 2015 A1
20150283998 Lind et al. Oct 2015 A1
20150324111 Jubner et al. Nov 2015 A1
20150375769 Abboud et al. Dec 2015 A1
20160009332 Sirbu Jan 2016 A1
20160075371 Varunkikar et al. Mar 2016 A1
20160082867 Sugioka et al. Mar 2016 A1
20160185387 Kuoch Jun 2016 A1
20160200246 Lisseman et al. Jul 2016 A1
20160200343 Lisseman et al. Jul 2016 A1
20160200344 Sugioka et al. Jul 2016 A1
20160207538 Urano et al. Jul 2016 A1
20160209841 Yamaoka et al. Jul 2016 A1
20160229450 Basting et al. Aug 2016 A1
20160231743 Bendewald et al. Aug 2016 A1
20160244070 Bendewald et al. Aug 2016 A1
20160318540 King Nov 2016 A1
20160318542 Pattok et al. Nov 2016 A1
20160347347 Lubischer Dec 2016 A1
20160347348 Lubischer Dec 2016 A1
20160362084 Martin et al. Dec 2016 A1
20160362117 Kaufmann et al. Dec 2016 A1
20160362126 Lubischer Dec 2016 A1
20160368522 Lubischer Dec 2016 A1
20160375860 Lubischer Dec 2016 A1
20160375923 Schulz Dec 2016 A1
20160375925 Lubischer et al. Dec 2016 A1
20160375926 Lubischer et al. Dec 2016 A1
20160375927 Schulz et al. Dec 2016 A1
20160375928 Magnus Dec 2016 A1
20160375929 Rouleau Dec 2016 A1
20160375931 Lubischer Dec 2016 A1
20170029009 Rouleau Feb 2017 A1
20170029018 Lubischer Feb 2017 A1
20170113712 Watz Apr 2017 A1
Foreign Referenced Citations (29)
Number Date Country
1722030 Jan 2006 CN
1736786 Feb 2006 CN
101037117 Sep 2007 CN
101041355 Sep 2007 CN
101596903 Dec 2009 CN
102452391 May 2012 CN
103419840 Dec 2013 CN
19523214 Jan 1997 DE
19923012 Nov 2000 DE
10212782 Oct 2003 DE
102005032528 Jan 2007 DE
102005056438 Jun 2007 DE
102006025254 Dec 2007 DE
102010025197 Dec 2011 DE
1559630 Aug 2005 EP
1783719 May 2007 EP
1932745 Jun 2008 EP
2384946 Nov 2011 EP
2426030 Mar 2012 EP
2489577 Aug 2012 EP
2604487 Jun 2013 EP
1606149 May 2014 EP
2862595 May 2005 FR
3016327 Jul 2015 FR
H05162652 Jun 1993 JP
20100063433 Jun 2010 KR
2006099483 Sep 2006 WO
2010082394 Jul 2010 WO
2010116518 Oct 2010 WO
Non-Patent Literature Citations (21)
Entry
China Patent Application No. 201510204221.5 Second Office Action dated Mar. 10, 2017, 8 pages.
CN Patent Application No. 201210599006.6 First Office Action dated Jan. 27, 2015, 9 pages.
CN Patent Application No. 201210599006.6 Second Office Action dated Aug. 5, 2015, 5 pages.
CN Patent Application No. 201310178012.9 First Office Action dated Apr. 13, 2015, 13 pages.
CN Patent Application No. 201310178012.9 Second Office Action dated Dec. 28, 2015, 11 pages.
CN Patent Application No. 201410089167 First Office Action and Search Report dated Feb. 3, 2016, 9 pages.
EP Application No. 14156903.8 Extended European Search Report, dated Jan. 27, 2015, 10 pages.
EP Application No. 14156903.8 Office Action dated Nov. 16, 2015, 4 pages.
EP Application No. 14156903.8 Office Action dated May 31, 2016, 5 pages.
EP Application No. 14156903.8 Partial European Search Report dated Sep. 23, 2014, 6 pages.
EP Application No. 15152834.6 Extended European Search Report dated Oct. 8, 2015, 7 pages.
European Application No. 12196665.9 Extended European Search Report dated Mar. 6, 2013, 7 pages.
European Search Report for European Application No. 13159950.8; dated Jun. 6, 2013; 7 pages.
European Search Report for related European Application No. 15152834.6, dated Oct. 8, 2015; 7 pages.
Gillespie, Thomas D.; “Fundamentals of Vehicle Dynamics”; Society of Automotive Enginers, Inc.; published 1992; 294 pages.
Kichun, et al.; “Development of Autonomous Car-Part II: A Case Study on the Implementation of an Autonomous Driving System Based on Distributed Architecture”; IEEE Transactions on Industrial Electronics, vol. 62, No. 8, Aug. 2015; 14 pages.
Office Action dated Aug. 29, 2016.
Partial European Search Report for related European Patent Application No. 14156903.8, dated Sep. 23, 2014, 6 pages.
Van der Jagt, Pim; “Prediction of Steering Efforts During Stationary or Slow Rolling Parking Maneuvers”; Ford Forschungszentrum Aachen GmbH.; Oct. 27, 1999; 20 pages.
Van Der Jagt, Pim; “Prediction of steering efforts during stationary or slow rolling parking maneuvers”; Jul. 2013, 20 pages.
Varunjikar, Tejas; Design of Horizontal Curves With DownGrades Using Low-Order Vehicle Dynamics Models; A Theisis by T. Varunkikar; 2011; 141 pages.
Related Publications (1)
Number Date Country
20160347347 A1 Dec 2016 US
Provisional Applications (1)
Number Date Country
62168167 May 2015 US