Retractable storm shutter

Information

  • Patent Application
  • 20070204526
  • Publication Number
    20070204526
  • Date Filed
    March 03, 2006
    18 years ago
  • Date Published
    September 06, 2007
    16 years ago
Abstract
A retractable storm shutter for protecting a fenestration is disclosed. The retractable storm shutter includes a base panel coupled to a wall surrounding the fenestration and extending lengthwise across a side of the fenestration. The retractable storm shutter further includes a plurality of planar panels arranged adjacently so as to cover the fenestration. The retractable storm shutter further includes a plurality of hinges, wherein at least one hinge couples each adjacent pair of planar panels and wherein at least one hinge couples a first planar panel to the base panel. The retractable storm shutter further includes a means for fastening each of the plurality of panels to outer edges of the fenestration. Each of the plurality of panels may be rotated about the plurality of hinges so as to stack the panels and place them lengthwise across a side of the fenestration so as to unfetter the fenestration.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

Not Applicable.


STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable.


INCORPORATION BY REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISC

Not Applicable.


FIELD OF THE INVENTION

This invention relates to storm shutters for windows and other fenestrations, and more particularly to retractable storm shutters.


BACKGROUND OF THE INVENTION

Southern states, especially Florida, are particularly vulnerable to hurricanes. Historically, during the hurricane season, i.e. June to October, these southern slates may be subjected to up to a dozen hurricanes, and damage from the hurricanes can run into billions of dollars. The 2004 and 2005 hurricane seasons both saw four hurricanes landing in Florida with the later year ending in the destruction of New Orleans. Traditional construction practices do not provide the security and protection to homeowners that can lower the costs associated with storm damage.


Conventional awnings, or shutters, typically have a perimeter framework with a plurality of horizontal louvers or slats. The louvers include openings between individual louver slats to allow air and sunlight to enter the structure to which the awning is attached, and to permit persons within the structure to see out. The frame can be attached at the top by a hinge to the top, or side, of a window or other opening. The protective awning or shutter is presized in length and width to cover the entire window or other opening. In the case of an awning, the awning can be rotated about the hinge, with the lower portion of the awning moving in an arc relative to the hinge, and away from the lower portion of the window. The awning can thus be positioned at some desired angle relative to the window. The lower portion of the awning can be held away from the window by one or a pair of support arms. The arms can be removable and/or include a release mechanism to permit the lower portion of the awning to be moved toward the window to a closed position substantially parallel to the window to provide security or storm protection.


However, because the awning or shutter louvers have openings between the louver slats to allow air and sunlight to enter the structure, the protection provided is limited by the strength of the individual horizontal louver slats. Individual louver slats having an opening between adjacent slats cannot provide sufficient protection against large magnitude storms such as hurricanes.


Subsequent to hurricane Andrew hitting South Florida in August of 1992, several Florida counties have begun to require minimum building code standards for storm shutters. For example, in the Miami, Florida area, Dade County standards require the shutter to withstand certain tests including a large missile impact test consisting of a length of 2″×4″ wood weighing about 9 pounds shot from an air cannon at approximately 34 miles per hour directly into the shutter. Conventional Bahama awnings, or shutters, having openings between adjacent slats fail to pass these tests. Recognizing the need to provide protection, especially to meet this severe impact test, several approaches to this problem have emerged.


U.S. Pat. No. 4,688,351, to Torres, teaches a conventional frame for a jalousie type window that is made secure against passage therethrough by individuals by the insertion of bars through the openings in the side frame members normally utilized by the jalousie support brackets which are then pivoted on the bars. The ends of the bars, where they project through the side frames members of the jalousie frame, are rigidly connected, such as by welding to a respective one of a pair of bars parallel to the outer side of the side frame members. The bar ends extend beyond the second bars for embedment in a masonry surrounding a window opening adapted to receive the frame. The brackets and jalousie slats are controlled in a conventional manner.


U.S. Pat. No. 4,967,509, to Storey et al., discloses a high security grating which resembles a conventional wooden window shutter. The shutter uses crossbars which extend across a door or window into a shutter frame. A tie rod extends through bores in the crossbar ends to tie the crossbars together and hold them in place. A metal frame covers the tie rods and shutter blades cover the crossbars. The shutter blades can be pivoted using an operator rod. The shutters are mounted inside a building using heavy duty hinges and deadbolts which allow them to be alternatively closed over a door or window or folded away to the side.


U.S. Pat. No. 5,490,353, to McLaughlin, relates to an elegant plantation security shutter assembly for a window in a wall of a building that consists of a casing with components for reinforcing the casing. Structures are for mounting the casing onto the wall behind the window. A pair of shutters are provided, with elements for reinforcing each shutter. Paraphernalia is provided for securing each shutter within the casing, so as to stop a thief from an unauthorized entry through the window into the building, by preventing the thief from breaking the shutters and the casing.


While the foregoing prior art recognize the need for security and protection to structures, especially single family dwellings, in the high risk areas of southern United States, the proposed solutions set forth complex and costly systems. Furthermore, the approaches described above require the permanent placement of a support apparatus on the window or fenestration, thereby fettering the opening to the window.


Therefore, a need exists to overcome the problems with the prior art as discussed above, and particularly for a more efficient way for activating and retracting storm shutters on a window or other fenestration.


SUMMARY OF THE INVENTION

Briefly, according to an embodiment of the present invention, a retractable storm shutter for protecting a fenestration is disclosed. The retractable storm shutter includes a base panel coupled to a wall surrounding the fenestration and extending lengthwise across a side of the fenestration. The retractable storm shutter further includes a plurality of planar panels arranged adjacently so as to cover the fenestration. The retractable storm shutter further includes a plurality of hinges, wherein at least one hinge couples each adjacent pair of planar panels and wherein at least one hinge couples a first planar panel to the base panel. The retractable storm shutter further includes a means for fastening each of the plurality of panels to outer edges of the fenestration. Each of the plurality of panels may be rotated about the plurality of hinges so as to stack the panels and place them lengthwise across a side of the fenestration so as to unfetter the fenestration.


In another embodiment of the present invention, a retractable storm shutter for protecting a window is disclosed. The retractable storm shutter includes a vertical bar coupled to a left or right side of a wall surrounding the window and a plurality of vertical planar panels arranged adjacently so as to cover the fenestration. The retractable storm shutter further includes a plurality of hinges, wherein at least one hinge couples each adjacent pair of planar panels and wherein at least one hinge couples a first planar panel to the vertical bar. The retractable storm shutter further includes a means for fastening each of the plurality of panels to outer edges of the window. Each of the plurality of panels may be rotated about the plurality of hinges so as to stack the panels and place them vertically across the left or right side of the window so as to unfetter the window.


In another embodiment of the present invention, a retractable storm shutter for protecting a window is disclosed. The retractable storm shutter includes a plurality of planar panels placed adjacently and vertically so as to cover the window and a plurality of hinges coupling each adjacent pair of planar panels and a first planar panel to a wall surrounding the window. The retractable storm shutter further includes a plurality of orifices located along outer edges of each of the plurality of planar panels and a plurality of fasteners for fastening each of the plurality of panels to the wall using the plurality of orifices. The plurality of panels may be rotated about the plurality of hinges as to be stacked and unfetter the window.


The foregoing and other features and advantages of the present invention will be apparent from the following more particular description of the preferred embodiments of the invention, as illustrated in the accompanying drawings.




BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features and also the advantages of the invention will be apparent from the following detailed description taken in conjunction with the accompanying drawings. Additionally, the left-most digit of a reference number identifies the drawing in which the reference number first appears.



FIG. 1 is an illustration of a perspective view of a retractable storm shutter, according to one embodiment of the present invention.



FIG. 2 is an illustration of a perspective view of the retractable storm shutter of FIG. 1 in a closed position.



FIG. 3 is an illustration of a perspective view of the retractable storm shutter of FIG. 1 with one panel in an open position.



FIG. 4 is an illustration of a perspective view of the retractable storm shutter of FIG. 1 with two panels in an open position.



FIG. 5 is an illustration of a perspective view of the retractable storm shutter of FIG. 1 with all panels in an open position.




DETAILED DESCRIPTION

The present invention provides a retractable storm shutter that comprises existing storm shutter panels arranged that are hingably coupled to allow retraction and storage of the storm shutter along side the fenestration, or window, it protects. The apparatus of the present invention includes a plurality of storm shutter panels that are coupled using hinges and includes orifices along the edges of each panel for coupling to a wall. When in a closed or protective position, the apparatus of the present invention allows the storm shutter panels to be fastened to the wall surrounding the fenestration, or window, it protects. The apparatus of the present invention allows the storm shutter panels to be retracted about its hinges away from the fenestration it projects such that the fenestration is not occluded by the storm shutter panels. When in an open or stored position, the apparatus of the present invention allows the stacked storm shutter panels to be fastened to the wall along side the fenestration it protects.


The features of the present invention are advantageous as they allow for the quick and easy installation of storm shutter panels around a fenestration, requiring only the rotation of the panels about its hinges from an open or stored position to a closed or protective position. The present invention is further beneficial as it allows for almost effortless retraction and storing of the storm shutter panels, requiring only the rotation of the panels about its hinges from the protective position to the stored position. The present invention also allows for uncomplicated securing of the storm shutter panels to the wall surrounding the fenestration it protects, utilizing orifices in the storm shutter panels to which fasteners secure the panels to the wall in either the stored or protective position.



FIG. 1 is an illustration of a perspective view of a retractable storm shutter 100, according to one embodiment of the present invention. FIG. 1 shows the retractable storm shutter 100 secured to a wall so as to protect a fenestration or window 108. FIG. 1 shows a base plate 105 running vertically along the left side of the fenestration 108. The base plate 105 includes a series of orifices 115 that may be used in conjunction with bolts to secure the base plate 105 to the wall surrounding fenestration 108. It should be noted that although base plate 105 is arranged vertically, the present invention also supports the base plate 105, and thus also the panels 101-103, being arranged horizontally.


The retractable storm shutter 100 includes three panels, panel 101, panel 102 and panel 103. FIG. 1 shows that each panel may be corrugated, ribbed or grooved. Although the panels of FIG. 1 are shown to be corrugated, the present invention supports any surface variation of panel that is consistent with the features of the present invention. Panel 101 is coupled to base plate 105 via a series of hinges 111, panel 101 is coupled to panel 102 via a hinge 112, and panel 102 is coupled to panel 103 via a hinge 113. Although FIG. 1 shows that hinge 113 and hinge 112 are continuous hinges that run the length of each panel, the present invention supports any hinge arrangement or coupling apparatus that allows each panel to rotate about the hinge point. Likewise, although FIG. 1 shows that hinge 111 is a series of hinges placed at various locations on each panel, the present invention supports any hinge arrangement or coupling apparatus that allows each panel to rotate about the hinge point. In an embodiment of the present invention, hinges 111, 112 and 113 comprise any one of butt hinges, continuous hinges, barrel hinges or the like.



FIG. 1 shows a series of orifices 121 along the top of panels 101, 102 and 103 that may be used in conjunction with bolts to secure the panels 101, 102 and 103 to orifices 122 in the wall above fenestration 108. Also shown are a series of orifices 123 along the bottom of panels 101, 102 and 103 that may be used in conjunction with bolts to secure the panels 101, 102 and 103 to orifices 124 in the wall below fenestration 108. In one embodiment of the present invention, bolts or screws are inserted into orifices 121 and 123 and affixed or screwed into threaded receptacle sleeves in orifices 122 and 124, respectively. Also shown are a series of orifices 125 along the right side of the wall that may be used in conjunction with bolts to secure horizontal bars (not shown) to the wall surrounding fenestration 108. Further shown are a series of orifices 126 in the base plate 105 that may be used in conjunction with bolts to secure the horizontal bars to the base plate 105. Also shown are a series of orifices 128 along the left side of the wall that may be used in conjunction with bolts to secure the panels 101-103 to the wall surrounding fenestration 108 when in an open or storage position.



FIG. 1 further shows a storage panel 106 that is arranged horizontally on the left side of the fenestration 108. The storage panel 106 is affixed to the fenestration 108 via orifices 116 that may be used in conjunction with bolts to secure the storage panel 106 to the wall surrounding fenestration 108. The storage panel 106 is used to support the weight of the panels 101, 102 and 103 when the retractable storm shutter 100 is in an open or storage position (now shown).



FIG. 2 is an illustration of a perspective view of the retractable storm shutter 100 of FIG. 1 in a closed or protective position. FIG. 2 shows that each panel 101-103 is closed over fenestration 108 such that the fenestration 108 is protected from wind, rain and other flying objects.


It can further be seen that the series of orifices 121 along the top of panels 101, 102 and 103 have been aligned with orifices 122 in the wall above fenestration 108 such that bolts 202 can be inserted into the orifices 121, 122 to secure the panels 101, 102 and 103 to the wall. Further, the series of orifices 123 along the bottom of panels 101, 102 and 103 have been aligned with orifices 124 in the wall below fenestration 108 such that bolts 204 can be inserted into the orifices 123, 124 to secure the panels 101, 102 and 103 to the wall.


Also shown are horizontal bars 210 and 211 that include orifices on either side. The orifices on the left side of the horizontal bars 210 and 211 have been aligned with orifices 126 in the base panel 105 such that bolts 206 can be inserted into the orifices 126 to secure the horizontal bars 210, 211 to the panels 101, 102 and 103. Further, the orifices on the right side of the horizontal bars 210 and 211 have been aligned with orifices 125 in the wall such that bolts 208 can be inserted into the orifices 125 to secure the horizontal bars 210, 211 to the wall.



FIG. 3 is an illustration of a perspective view of the retractable storm shutter 100 of FIG. 1 with panel 103 in an open position. FIG. 3 shows that panel 103 has been unfastened, i.e., any bolts or other mechanisms fastening the panel 103 to the wall surrounding fenestration 108 have been removed from the orifices in the panel 103. Subsequently, panel 103 has been rotated about hinge 113 away from the fenestration 108 and towards to panel 102 so as to unfetter the opening of the fenestration 108. The panel 103 can subsequently be further rotated so to rest fully on top of panel 102.



FIG. 4 is an illustration of a perspective view of the retractable storm shutter 100 of FIG. 1 with two panels 103 and 102 in an open position. FIG. 4 shows that panel 102 (along with panel 103, which rests on top of panel 102), has been unfastened, i.e., any bolts or other mechanisms fastening the panel 102 to the wall surrounding fenestration 108 have been removed from the orifices in the panel 102. Subsequently, panel 102 and panel 103 have been rotated about hinge 112 away from the fenestration 108 and towards to panel 101 so as to further unfetter the opening of the fenestration 108. The panel 102 can subsequently be further rotated so to rest fully on top of panel 101.



FIG. 5 is an illustration of a perspective view of the retractable storm shutter 100 of FIG. 1 with all panels 101-103 in an open position. FIG. 5 shows that all panels 101-103 have been unfastened, i.e., any bolts or other mechanisms fastening the panels to the wall surrounding fenestration. 108 have been removed from the orifices in the panels. Subsequently, all panels 101-103 have been rotated about hinge 111 away from the fenestration 108 and towards to base panel 105 so as to completely unfetter the opening of the fenestration 108. The panels 101-103 have been rotated fully such that they rest fully on top of each other.


It can further be seen that the series of orifices 121 along the top of panels 101, 102 and 103 have been aligned with orifices 128 in the wall to the left of fenestration 108 such that bolts 502 can be inserted into the orifices 121 to secure the panels 101, 102 and 103 to the wall when in an open or storage position. This allows the panels 101-103 to be stored securely during times of the year when the retractable storm shutter 100 is not in use.


The components of the retractable storm shutter 100 can be manufactured from a variety of materials using a variety of methods. In one embodiment of the present invention, the components of the retractable storm shutter 100, including the panels 101-103, hinges 111, 112 and 113, base panel 105 and storage panel 106, can be manufactured from aluminum or an aluminum alloy. Aluminum can be either non-treated, clear or color anodized. The aluminum alloys are categorized into two types, non-heat-treatable and heat-treatable.


Type 1100 non-heat-treatable aluminum alloys are commercially pure, low-strength alloys having corrosion resistance and satisfactory anodizing and coating finishes. Type 3003 non-heat-treatable aluminum alloys are the most widely used general-purpose alloys because of their corrosion resistance, moderate strength, formability, and weldability. Type 5005 non-heat-treatable aluminum alloys are comparable to Type 3003 in strength and formability,. and have good finishing characteristics, making it much better for anodizing. They also exhibit corrosion resistance and weldability, but rates below Type 1100 and Type 3003 alloys for machining.


Type 5052 non-heat-treatable aluminum alloys are versatile high-strength alloys with good forming characteristics and excellent corrosion resistance. Although easily welded, they are not recommended for brazing and soldering applications. Type 2024 heat-treatable aluminum alloys are high-strength alloys with nearly twice the strength of Type 5052 and fair corrosion resistance. Type 6061 heat-treatable aluminum alloys are high-strength alloys that are corrosion resistant and have good finishing, and welding characteristics. Type 7075 heat-treatable aluminum alloys were developed for aircraft applications, and re one of the highest strength, commercially available alloys. They have fair corrosion resistance and machinability.


In another embodiment of the present invention, the components of the retractable storm shutter 100 can be manufactured from hot-forged alloy steel that is oil quenched and tempered for maximum strength and durability. Additionally, the components of the retractable storm shutter 100 may include nickel-chrome plating that resists rust. The components of the retractable storm shutter 100 can be welded or coupled together using an arc welding process such as heli-arc welding.


The components of the retractable storm shutter 100 can further be manufactured using a variety of methods for casting metals. Metal casting involves the shaping of free-flowing liquid metals through the use of dies, molds, or patterns. Castings are generally roughly finished due to the nature of their production. In many cases, additional finishing is required to remove burrs and other artifacts of the casting process. Metal castings are used to design a wide range of components and finished products. Common metal casting processes include sand casting, die casting, permanent mold casting, investment casting, centrifugal casting, and lost foam casting.


Die-casting includes a number of processes in which reusable dies or molds are used to produce casting. The die contains an impression of the finished product together with its running, feeding and venting systems. The die is capable of a regular cycle and of (quickly) dissipating the heat of the metal poured into it. Once the liquid metal has cooled sufficiently, the mold is opened and the casting can be removed and finished. In permanent mold casting, molten metal is poured into cast iron molds, coated with a ceramic mold wash. Cores can be metal, sand, sand shell, or other materials. When completed, the molds are opened and the castings are ejected.


Investment casting involves molding patterns by the injection of a special wax into a metal die. The patterns are assembled into a cluster around a wax runner system. The ‘tree’ of patterns is then coated with eight to ten layers of a refractory material. The assembly is heated to remove the wax. The hot mold is cast, and when cool, the mold material is removed by impact, vibration, grit blasting, high pressure water blasting or chemical dissolution leaving the castings, which are then removed from the runner system.


Centrifugal casting is used to produce castings that are cylindrical in shape. In centrifugal casting, a permanent mold is rotated about its axis at high speeds as the molten metal is poured. The molten metal is centrifugally thrown towards the inside mold wall, where it solidifies. The casting is usually a fine grain casting with a very fine-grained outer diameter, which is resistant to atmospheric corrosion. Lost foam casting is metal casting that uses foam filled patterns to produce castings. Foam is injected into a pattern, filling all areas, leaving no cavities. When molten metal is injected into the pattern, the foam is burned off allowing the casting to take shape.


The components of the retractable storm shutter 100 can further be manufactured using metal injection molding (MIM) method for preparing metals. MIM is a powder metallurgy process used for manufacturing metal parts. Although metal injection molding uses powder metal, it is nothing like conventional powder metal processing. The metal powders used in MIM are ten to one hundred times smaller than in powder metal processes. Also, the end product of metal injection molding is much higher in density (greater than 95% theoretical density). Unlike powder metal, products manufactured by MIM can be case or through hardened, painted, and drilled and tapped.


The components of the retractable storm shutter 100 can further be manufactured using a variety of metals, such as ferrous metals and alloys. Ferrous metals and alloys are iron-based materials that are used in a wide variety of industrial applications. Examples include carbon steels, alloy steels, stainless steels, tool steels, cast iron, cast steel, maraging steel, and specialty or proprietary iron-based alloys.


There are many types of ferrous metals and alloys. Carbon steels are ferrous alloys that contain carbon and small levels of other alloying elements such as manganese or aluminum. Alloy steels contain low to high levels of elements such as chromium, molybdenum, vanadium and nickel. Stainless steels are highly corrosion resistant, ferrous alloys that contain chromium and/or nickel additions. There are three basic types of products: austenitic stainless steels, ferritic and martensitic stainless steels, and specialty stainless steels and iron super-alloys. Tool steels are wear resistant, but difficult to fabricate in their hardened form. Specific grades are available for cold-working, hot-working, and high speed applications. Cast iron is a ferrous alloy with high amounts of carbon. This category includes ductile iron, gray iron and white cast iron grades. Cast steel alloy grades are made by pouring molten iron into a mold.


The components of the retractable storm shutter 100 can further be manufactured using nickel and nickel alloys. Nickel and nickel alloys are non-ferrous metals with high strength and toughness, excellent corrosion resistance, and superior elevated temperature properties. Commercially pure, unalloyed or very low alloy nickel does not contain or contains only very small amounts of alloying elements. By contrast, nickel alloys contain significant amounts of added elements or constituents. Clad or bimetal stock consists of two different alloys that are bonded integrally together. Metal matrix composites have a composite or reinforced metal or alloy matrix filled with a second component, which may be in particulate, chopped fiber, continuous filament, or fabric form. Other unlisted, specialty or proprietary nickel and nickel alloys are also available. These materials are often based on a unique alloy system, use a novel processing technology, or have properties tailored for specific applications.


Although specific embodiments of the invention have been disclosed, those having ordinary skill in the art will understand that changes can be made to the specific embodiments without departing from the spirit and scope of the invention. The scope of the invention is not to be restricted, therefore, to the specific embodiments. Furthermore, it is intended that the appended claims cover any and all such applications, modifications, and embodiments within the scope of the present invention.

Claims
  • 1. A retractable storm shutter for protecting a fenestration, comprising: a base panel coupled to a wall surrounding the fenestration and extending lengthwise across a side of the fenestration; a plurality of planar panels arranged adjacently so as to cover the fenestration; a plurality of hinges, wherein at least one hinge couples each adjacent pair of planar panels and wherein at least one hinge couples a first planar panel to the base panel; and a means for fastening each of the plurality of panels to outer edges of the fenestration; wherein each of the plurality of panels may be rotated about the plurality of hinges so as to stack the panels and place them lengthwise across a side of the fenestration so as to unfetter the fenestration.
  • 2. The retractable storm shutter of claim 1, further comprising: a plurality of orifices positioned near outer edges of each of the plurality of panels for fastening each of the plurality of panels to outer edges of the fenestration.
  • 3. The retractable storm shutter of claim 2, wherein the means for fastening comprises: a plurality of bolts for fastening each of the plurality of panels to outer edges of the fenestration using the plurality of orifices positioned near outer edges of each of the plurality of panels.
  • 4. The retractable storm shutter of claim 1, wherein the base panel comprises a vertical bar coupled to a left or right side of the wall surrounding the fenestration.
  • 5. The retractable storm shutter of claim 4, wherein each of the plurality of planar panels comprises a rectangular-shaped planar panel arranged vertically so as to cover the fenestration.
  • 6. The retractable storm shutter of claim 5, wherein each of the plurality of hinges comprises any one of a butt hinge and a continuous hinge.
  • 7. The retractable storm shutter of claim 1, further comprising at least one fastening panel comprising a planar bar attached horizontally over the plurality of panels and fastened to the wall.
  • 8. The retractable storm shutter of claim 7, further comprising a means for fastening the plurality of panels to the wall when stacked and placed lengthwise across a side of the fenestration so as to unfetter the fenestration.
  • 9. The retractable storm shutter of claim 8, further comprising a horizontal bar coupled to the wall on a left or right side of the fenestration so as to allow the plurality of panels to rest on the horizontal bar when stacked and placed lengthwise across a side of the fenestration so as to unfetter the fenestration.
  • 10. A retractable storm shutter for protecting a window, comprising: a vertical bar coupled to a left or right side of a wall surrounding the window; a plurality of vertical planar panels arranged adjacently so as to cover the fenestration; a plurality of hinges, wherein at least one hinge couples each adjacent pair of planar panels and wherein at least one hinge couples a first planar panel to the vertical bar; and a means for fastening each of the plurality of panels to outer edges of the window; wherein each of the plurality of panels may be rotated about the plurality of hinges so as to stack the panels and place them vertically across the left or right side of the window so as to unfetter the window.
  • 11. The retractable storm shutter of claim 10, further comprising at least one planar bar attached horizontally over the plurality of panels and fastened to the wall.
  • 12. The retractable storm shutter of claim 11, further comprising a means for fastening the plurality of panels to the wall when stacked and placed across a side of the window.
  • 13. The retractable storm shutter of claim 12, further comprising a horizontal bar coupled to the wall on a left or right side of the window so as to allow the plurality of panels to rest on the horizontal bar when stacked and placed across a side of the window.
  • 14. The retractable storm shutter of claim 10, further comprising: a plurality of orifices positioned near outer edges of each of the plurality of panels for fastening each of the plurality of panels to outer edges of the window.
  • 15. The retractable storm shutter of claim 14, wherein the means for fastening comprises: a plurality of bolts for fastening each of the plurality of panels to outer edges of the window using the plurality of orifices positioned near outer edges of each of the plurality of panels.
  • 16. The retractable storm shutter of claim 10, wherein each of the plurality of hinges comprises any one of a butt hinge and a continuous hinge.
  • 17. The retractable storm shutter of claim 10, further comprising at least one fastening panel comprising a planar bar attached horizontally over the plurality of panels and fastened to the wall.
  • 18. The retractable storm shutter of claim 10, further comprising a means for fastening the plurality of panels to the wall when stacked and placed across a side of the window.
  • 19. A retractable storm shutter for protecting a window, comprising: a plurality of planar panels placed adjacently and vertically so as to cover the window; a plurality of hinges coupling each adjacent pair of planar panels and a first planar panel to a wall surrounding the window; a plurality of orifices located along outer edges of each of the plurality of planar panels; and a plurality of fasteners for fastening each of the plurality of panels to the wall using the plurality of orifices; wherein the plurality of panels may be rotated about the plurality of hinges as to be stacked and unfetter the window.
  • 20. The retractable storm shutter of claim 19, further comprising at least one planar bar attached horizontally over the plurality of panels and fastened to the wall.