1. Field of the Invention
The invention relates to the elevator art. More particularly, the invention relates to an elevator system which is particularly conducive to retrofitability in structures without elevator pits as well as new construction where a pit is not desired or permitted.
2. Prior Art
In the elevator art it has been conventional for a very long period of time to build an elevator hoistway, i.e. the shaft in which an elevator car is moved upwardly and downwardly, with a pit. A pit is a continuation of the hoistway downwardly below the intended lowest level at which the elevator car will have duty. The lowest level may be a first floor or a basement, etc. Typically, a pit is about 4-5 feet in depth below the lowest elevator car level and thus requires a substantial amount of excavation of material at not insignificant cost. Moreover, the deeper a pit is dug the more likely it becomes that the water table in the area will be reached which further complicates matters. Where an elevator system is a retrofit in an existing structure, the excavating of a pit is complicated further and further increases expense. Additionally, the pit takes up space that could be otherwise employed. The latter interpretation occurs where an elevator stops a level above a basement and the pit is located in the basement. Digging is thus not specifically required for the pit itself but a portion of the basement is lost and the elevator car, in a conventional system, could not be lowered to the basement level.
A pit is conventionally required for elevator systems in order to house the over limit car buffer and pit sheaves, and to provide clearance for the elevator car entrance toe guard which can be up to two meters in length and is rigid. Toe guards are also commonly referred to as platform guards. Toe guards extend below the elevator car and block access to the hoistway in the event the elevator car is not leveled properly at a landing. The toe guard therefore requires in such a case at least two meters of clearance and preferably more to avoid bumping the bottom of the shaft when the elevator is at its lowest point. This could occur if insufficient space were left in the pit to receive the toe guard in the event the car continued too far downwardly in the hoistway (an over limit condition).
The foregoing limitations have been consistent drawbacks of the elevator art. In an era of ever increasing cost of space and construction, the art is in need of pitless elevator systems for both new construction and retrofit applications in existing structures.
The above-identified drawbacks of the prior art are overcome or alleviated by the pitless elevator system of the invention.
The invention simplifies new construction by eliminating the conventional need for a pit and facilitates the retrofitting of existing structures with elevators by obviating the need for the pit.
In order to avoid a pit, the elements traditionally housed therein must be relocated and otherwise modified to facilitate elevator system operation without the undercar clearance of the pit. The pitless elevator system of the invention includes one or more car buffers located in a portion of the side clearance space necessary in all elevator systems. The car buffers will in the event of over limit conditions of the car, contact strike angle(s) on the car to brake its movement. Since the car buffers are not located under the car, clearance therefor is not needed. Moreover, pit sheaves, if employed for the elevator roping configuration, are preferably nestled near or between the structural beam rails, and the machine is not placed underneath the car but is located elsewhere within the hoistway. Locations include on the car, in the tower of the hoistway, between the rails or on side clearance space. The location of the machine is not critical so long as it is not located under the car.
Another aspect of the system of the invention is a toe guard which requires virtually no clearance and is automatically or manually retractable under the bottom surface of the elevator car. The combination of features in the elevator system of the invention allows for pitless installation and greatly benefits the art.
Referring now to the drawings wherein like elements are numbered alike in the several FIGURES:
An elevator system 10 contains certain basic elements that are represented in the invention and illustrated in
In order to achieve the desired beneficial result of the invention and provide a functioning elevator system without a pit, all of the conventional residents of the pit must be relocated to clearance spaces around the portion of hoistway 26 occupied by car 12. In a preferred embodiment the arrangement is as illustrated in
Strike angle 28 is preferably constructed of a material and configuration to become a structural member and support the full load of the elevator car 12 in the event of an overlimit condition resulting in contact between strike angle 28 and car buffer 22. In one preferred embodiment, the strike angle 28 is constructed of ½ inch thick steel which is fastened in a structural manner to frame 16. Frame 16 further provides, as is common, the connection to cables for lifting the elevator car. In one preferred embodiment of the invention, car buffer 22 stands approximately 18 inches tall. In such an embodiment the strike angle 28 will be configured to stop at about 21 inches above the floor 24 of hoistway 26. Thus, a 3 inch space buffer will exist between the strike angle 28 and car buffer 22. This is beneficial since in the event a very small overrun occurs, the strike angle 28 will not come in contact with buffer 22. In this condition, where strike angle 28 is about 21 inches above floor 24, a base 30 of elevator car 12 will preferably hover about 3 inches above floor 24.
Another possible resident of the pit is pit sheaves 30. Pit sheaves may or may not be employed in elevator systems as dictated by roping configurations. Where pit sheave(s) are used they must not be located under the elevator car in accordance with this invention. In the drawing figures appended hereto, one of the pit sheaves 30 is fully visible and the other is nearly fully obscured by foreground rail 14. Pit sheaves 30 have been relocated in the system of the invention to a clearance area between car 12 and rails 14. In this position the elevator rope 32 is easily alignable and the sheaves 30 do not limit the downward movement of the car 12.
Another component of a systems of a conventional variety that is addressed in the system of the invention is toe guard 34. Conventionally, as stated hereinbefore, the toe guard is rigid and long and therefore requires a large amount of vertical clearance located below the lowest level of car 12. In pit elevator systems such clearance is available in the pit, however in the pitless elevator system of the invention, there is no clearance space available into which the toe guard may extend when the car is at the lowest level.
Referring to
Guard 34 is hingedly connected to car 12 at a suitable member 36 through preferably a spring hinge 38 although it will be appreciated that any type of hinge arrangement may be substituted if desired such as a living hinge, plates and pin hinges, etc. Where a spring hinge 38 is employed, toe guard 34 will automatically assume the deployed position of
The retractable toe guard 34 thus enables the pitless elevator system of the invention and additionally facilitates inspection of the elevator car and hoistway without lifting the car as high as would otherwise been necessary with a rigid toe guard. The function of inspection is augmented by an arm 52 which may be manual or powered to retract toe guard 34 or to deploy toe guard 34 (in applications where the toe guard spring hinge does not automatically deploy toe guard 34).
The elevator system of the invention combines the benefits of the individual features of the car buffer position, the pit sheave position and the retractable toe guard to render pitless operation possible and reliable and thereby reduces the cost of new construction elevator systems and enables retrofit systems.
While preferred embodiments have been shown and described, various modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustration and not limitation.
This is a division of application Ser. No. 09/296,885 filed Apr. 22, 1999 now U.S. Pat. No. 6,095,288, the contents of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
748702 | Conary | Jan 1904 | A |
1279967 | Barlow | Sep 1918 | A |
1486027 | Mayotte | Mar 1924 | A |
1738729 | Richardson | Dec 1929 | A |
1891300 | Baker | Dec 1932 | A |
4091906 | Clarke et al. | May 1978 | A |
4556129 | Martin | Dec 1985 | A |
5046635 | Haas et al. | Sep 1991 | A |
5251726 | de Jong | Oct 1993 | A |
5655628 | Lin | Aug 1997 | A |
5666252 | Bjordahl | Sep 1997 | A |
5806633 | Macuga | Sep 1998 | A |
Number | Date | Country |
---|---|---|
431 864 | Mar 1967 | CH |
0719724 | Mar 1996 | EP |
1118574 | Jul 2001 | EP |
1118576 | Jul 2001 | EP |
53-047650 | Apr 1978 | JP |
60 102386 | Jun 1985 | JP |
05-186171 | Jul 1993 | JP |
8-231163 | Sep 1996 | JP |
10-114481 | May 1998 | JP |
2001-163543 | Jun 2001 | JP |
Entry |
---|
JP Pub 05-186171 English translation. |
Office Action issued in corresponding JP application No. 2000-613757. |
Number | Date | Country | |
---|---|---|---|
Parent | 09296885 | Apr 1999 | US |
Child | 09594880 | US |