This application is the National Stage of PCT/EP2018/076765 filed on Oct. 2, 2018, which claims priority under 35 U.S.C. ยง 119 of German Application No. 10 2017 123 613.9 filed on Oct. 11, 2017, the disclosures of which are incorporated by reference. The international application under PCT article 21(2) was not published in English.
The present invention relates to a retraction device for movable furniture parts, having a driver movable along a first guide path, which is movable between a retracted position and a parked position and is directly or indirectly pretensioned into the retracted position by an energy storage device, wherein the driver can be coupled to an activator in order to move the movable furniture part into a closed position, and a method for opening and closing a movable furniture part and tensioning and releasing a retraction device.
DE 20 2006 014 748 U1 discloses a device for retracting a movable furniture part, in which the movable furniture part can be retracted into a closed position on the furniture body via an energy storage device, and the energy storage device can be loaded by moving the movable furniture part out of the closed position. Transmission means are provided, by means of which, in the assembled state of the device, a force to be applied to move the movable furniture part from the closed position to an open position is less than the force provided by the energy storage device in the retraction direction of the movable furniture part. For the transmission mechanism, pinions and tooth profiles are used to ensure appropriate power transmission.
In addition, self-closing devices are known, as they are disclosed for example in DE 10 2014 106 796. A retracting arrangement comprises a retracting spring and a second pretensioned retracting element which applies an additional retraction force from an intermediate position located between the parked position and the retracting position. This should make the opening and closing process more comfortable. If several springs are used, the retraction force can be increased in the area just before the retracted position, but the problem with the opening process is that the spring force increases when opening and when the movable furniture part is uncoupled from one of the springs, a sudden reduction in force occurs, which is perceived as unpleasant by the user.
It is therefore the object of the present invention to create a retraction device for movable furniture parts which has an improved handling. In addition, a method for opening and closing a movable furniture part should result in gentle tensioning and release of the retraction device.
This object is solved with a retraction device having a driver which can be moved along a first guide path, can be moved between a retraction position and a parked position and is directly or indirectly pretensioned into the retraction position by an energy storage device, wherein the driver can be coupled to an activator in order to move the movable furniture part into a closed position. This obiect is also accomplished by a method for opening and closing a movable furniture part as described below.
In the retraction device according to the invention, the movable furniture part is coupled to a driver in the closing direction via an activator, while in the opening direction coupling takes place via an opening activator and an opening driver. The opening driver is coupled to the driver via a transmission gear, which pulls the driver from a retracted position to the parked position during an opening movement, wherein the distance traveled by the opening driver is longer than that of the driver. As a result, high retraction forces can be provided over a comparatively short distance during a closing movement, while only lower forces have to be overcome during an opening movement over a correspondingly longer distance, which simplifies handling. The transmission gear allows for optimized handling when opening and closing the movable furniture part.
Preferably, the transmission gear is a gear with a transmission ratio that can be changed by the movement of the opening driver. If the opening driver moves constantly in the opening direction, for example, the movement of the driver from the retracted position to the parked position can be slower. This makes it possible to reduce the force required for opening, unlike with tension springs, by reducing the movement of the driver before reaching the parked position. Due to the changing transmission ratio, the movement of the driver relative to the opening driver may be at least 50% slower and may be further reduced, especially just before reaching the parked position. As a result, the user will hardly feel the placement of the opening driver and the driver in a parked position, as only small forces need to be overcome when the driver is placed in the parked position.
In another embodiment, the second guide path has a linear section and an angled section that forms a parking section for the opening driver. If the opening driver is arranged in the angled section, preferably the opening activator and the opening driver are decoupled from each other, and in addition the driver is arranged in the parked position. This allows the movable furniture part to move freely when the driver and the opening driver are placed in a parked position.
While during an opening process the movable furniture part is coupled to the retraction device via the opening activator, during a closing movement the activator, which is located at a distance from the opening activator, is coupled to the driver. This results in different force and movement sequences during opening and closing.
Preferably, the transmission gear is equipped with at least one cable pull that can be wound up along a rotating pulley. In order to obtain a flexible transmission ratio, at least one winding edge for a cable pull can be formed on the pulley, which has a radius that changes in relation to the axis of rotation of the pulley. Preferably, winding edges are formed on opposite sides of the pulley, one winding edge for a cable pull for coupling the pulley with the driver and on the opposite side a winding edge for a cable pull for coupling with the opening driver.
However, it is also possible to use a transmission gear based on racks and non-circular gears, wherein the teeth are arranged along a curve which is at a non-constant distance from the axis of rotation of the gear, thus varying the ratio of angular velocity to the linear velocity of the rack. Such a progressive gear is shown for example in EP 1 988 003 A2. The use of such a progressive gear preferably with gear parts made of plastic is particularly advantageous for dishwashers, as aggressive media are present there. Here, too, the transmission ratio can change over the distance.
The retraction device according to the invention is preferably used for pull-out guides which pretension drawers for furniture or drawer elements for household appliances, such as wire baskets, support shelves, plastic containers in a retracted position. The two guide paths can preferably be arranged in a stationary position, while the opening activator and the activator are fixed to a movable rail of the pull-out guide or to the drawer or storage element, resulting in a compact design. In the further description, only the movable furniture part is mentioned, but the explanations apply analogously to rail-guided drawer elements in household appliances.
In the method in accordance with the invention for opening and closing a movable furniture part and for tensioning and releasing a retraction device, the movable furniture part is first moved from the closed position in the opening direction, wherein an opening driver moves a driver in the opening direction via a transmission gear, which driver is pretensioned into a closed position by an energy storage device, wherein the opening driver is moved faster than the driver. The driver and the opening driver are then parked in a parked position and the movable furniture part is decoupled from the retraction device. If the movable furniture part is moved in the closing direction, an activator engages with the driver, which moves the movable furniture part and the opening activator in the closing direction via the energy storage device. In this way, opening and closing movements can be made user-friendly with regard to the distance and the forces acting during opening and closing. In addition, a damper can optionally act in the closing direction to slow down the moving furniture part before reaching the closed position.
A piece of furniture 1 comprises a furniture body 2, on which several drawer elements 3 are movably mounted in the form of drawers. For this purpose, pull-out guides 4 are fixed to the furniture body 2, which allow the drawer elements 3 to be moved from a closed position in the opening direction and back again. Instead of a piece of furniture 1, a drawer element 3 can also be attached to a household appliance, such as a dishwasher or refrigerator.
The retraction device comprises a first guide housing 8, on which two guide paths 9 and 10 are formed to guide a driver 11. The driver 11 can be coupled over a certain distance to an activator 25, which is fixed to the running rail 7. Furthermore, the retraction device comprises a second guide housing 20, on which a second guide path 21 is formed.
The driver 11 is pretensioned to a closed position by an energy storage device, wherein the energy storage device is located in a cartridge 12. A damper, in particular a linear damper, may also be provided in cartridge 12 to slow down a closing movement of the movable furniture part and the driver 11 before reaching the closed position. The closed position of the drawer element 3 corresponds to the retracted position of the driver 11, which can be moved between the retracted position and a parked position.
A receptacle 17 is formed on the driver 11, into which the pin 16 of the connecting piece 13 can be inserted. Furthermore, the driver 11 can be moved with a protruding pin 18 in a second guide path 10 on the first guide housing 8. The second guide path 10 comprises an angled end section on the front side, as seen in the opening direction, at which the driver 11 can be pivoted and latched into the cartridge 12 against the force of an energy storage device. The driver 11 can thus be moved between the parked position with tensioned energy storage device and a retraction position with largely relaxed energy storage device.
On the second guide housing 20 with the second guide path 21, an opening driver 23 can be moved, which is movably held in guide path 21 via two spaced pins 24. The guide path 21 comprises an angled end section 22 on the front side in the opening direction, on which the opening driver 23 can be pivoted in order to decouple a coupling between an opening activator 26 on the running rail 7 and the opening driver 23. The opening driver 23 can also be moved between a retracted position and a parked position.
The driver 11 and the opening driver 23 are connected to each other via a transmission gear 30. The transmission gear 30 comprises a rotatably mounted disc 32, which is arranged stationary on a holder 31, wherein the holder 31 is fixed, for example, to the guide rail 5. The rotatable disc 32 has winding edges on opposite sides, and when the disc 32 rotates, a cable pull 33 or 34 can be wound up or unwound. The winding edges have a different radius to the axis of rotation, so that the speed when winding or unwinding the two cable pulls 33 or 34 is different. Optionally, at least one winding edge or core for winding one of the cable pulls 33 or 34 can also have a constant diameter. Disc 32 can be turned several times, for example by 1.5 to four turns, to wind up the cable pulls 33 and 34.
If the movable furniture part is now moved in the opening direction, for example by a pulling movement on the drawer, the opening activator 26 pulls on the opening driver 23, which turns the rotatable disc 32 via the transmission gear 30 and also moves the driver 11 slightly in the opening direction. Due to the transmission gear 30, the opening driver 23 moves a greater distance than the driver 11, as shown in the comparison of
The driver 11 is moved along the two guide paths 9 and 10, wherein the driver 11 is pivoted after a short starting phase, as shown in the comparison of
In
In
If the movable furniture part is now moved in the closing direction, the opening activator 26 can be moved past the opening driver 23, as this is still in the parked position and thus allows the opening activator 26 to be passed. The movable furniture part and the running rail 7 can be moved in closing direction until the activator 25 engages with the pivoted driver 11, which moves and pivots it out of the parked position, so that now the driver 11 is moved together with the activator 25. The coupling of the activator 25 enables the running rail 7 to be braked via a damper in the cartridge 12 to avoid loud impact noises. When the driver 11 is moved in the closing direction, the opening driver 23 is simultaneously moved from the parked position at the angled end section 22, which is now also moved in the closing direction. The driver 11 pulls the opening driver 23 via the transmission gear 30, which again moves at a higher speed in closing direction, but this does not affect the closing forces, as the opening activator 26 is still at a distance from the opening driver 23. Only shortly before reaching the closed position, the driver 11 is pivoted, and by pivoting, the activator 25 is released again in the opening direction, as shown in
During a closing operation, the retracting device only becomes effective when a distance of about 30 to 50 mm before the closed position is reached, as shown by the dashed line. The retraction device is first activated by unlocking the driver 11 from the parked position. As soon as a corresponding unlocking has taken place, activator 25 is pulled in the retraction direction, wherein the force in the retraction direction decreases, since the energy storage device relaxes slightly when moving in the closing direction. The selected transmission ratios for opening and closing can, of course, be modified by a person skilled in the art.
Both the length of the tensioning process and the length of the retraction distance when closing can be changed. The transmission ratio can also be adjusted, wherein, if possible, the user no longer feels any abrupt jumps in force when opening the movable furniture part.
Number | Date | Country | Kind |
---|---|---|---|
10 2017 123 613.9 | Oct 2017 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/076765 | 10/2/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/072636 | 4/18/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
10151130 | Wang | Dec 2018 | B2 |
10513876 | Molloy | Dec 2019 | B2 |
10758043 | Pohlmann | Sep 2020 | B2 |
11109676 | Bantie | Sep 2021 | B2 |
20060016279 | Sato | Jan 2006 | A1 |
20060017358 | Sato | Jan 2006 | A1 |
20060017359 | Sato | Jan 2006 | A1 |
20110023370 | Zimmer | Feb 2011 | A1 |
20110138579 | Sato | Jun 2011 | A1 |
20120019012 | Saito | Jan 2012 | A1 |
20130026899 | Babucke-Runte et al. | Jan 2013 | A1 |
20130088132 | Hammerle | Apr 2013 | A1 |
20130104339 | Shimizu | May 2013 | A1 |
20130134852 | Salice | May 2013 | A1 |
20130219657 | Iwaki | Aug 2013 | A1 |
20140026357 | Zimmer | Jan 2014 | A1 |
20170265644 | Fischer | Sep 2017 | A1 |
20180371815 | Intelmann | Dec 2018 | A1 |
20200190882 | Bantle | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
202006014748 | Feb 2008 | DE |
202010013186 | Mar 2012 | DE |
202011104526 | Nov 2012 | DE |
202012008995 | Jan 2014 | DE |
102013100652 | Jul 2014 | DE |
102014106796 | Nov 2015 | DE |
1988003 | Nov 2008 | EP |
2 710 924 | Mar 2014 | EP |
2 506 872 | Feb 2014 | RU |
2 527 183 | Aug 2014 | RU |
Entry |
---|
International Search Report of PCT/EP2018/076765 dated Nov. 12, 2018. |
German Search Report dated Oct. 1, 2018 issued in the corresponding German Application DE 10 2017 123 613.9 (with English translation of relevant parts). |
Indian Examination Report dated Mar. 9, 2022 in Indian Application No. 202047019260. |
Number | Date | Country | |
---|---|---|---|
20210212461 A1 | Jul 2021 | US |