Retractor device for transforming a retrieval device from a deployed position to a delivery position

Information

  • Patent Grant
  • 11304834
  • Patent Number
    11,304,834
  • Date Filed
    Tuesday, September 24, 2019
    4 years ago
  • Date Issued
    Tuesday, April 19, 2022
    2 years ago
Abstract
Devices and methods for transforming a covered retrieval device from a deployed position to a delivery position for re-use are disclose herein. A retractor device may include, for example, a tubular structure defining a channel and configured to slidably receive a retrieval device. A method for transforming a retrieval device may include, for example, (a) positioning a retrieval device in a deployed position within a channel of a retractor device, (b) securing a part of the cover against a surface of the retractor, and (c) while securing the cover, advancing the retrieval device distally through the tubular structure to expose a capture structure of the retrieval device.
Description
TECHNICAL FIELD

The present technology relates generally to devices and methods for removing obstructions from body lumens. Some embodiments of the present technology relate to removing clot material from blood vessels.


BACKGROUND

Many medical procedures use medical device(s) to remove an obstruction (such as clot material) from a body lumen, vessel, or other organ. An inherent risk in such procedures is that mobilizing or otherwise disturbing the obstruction can potentially create further harm if the obstruction or a fragment thereof dislodges from the retrieval device. If all or a portion of the obstruction breaks free from the device and flows downstream, it is highly likely that the free material will become trapped in smaller and more tortuous anatomy. In many cases, the physician will no longer be able to use the same retrieval device to again remove the obstruction because the device may be too large and/or immobile to move the device to the site of the new obstruction.


Even in successful procedures, a physician must be cautious to prevent the walls of the vessel or body lumen from imparting undesired forces to shear or dislodge the obstruction as it passes through the vasculature during removal. These forces have the potential of fragmenting the obstruction. In some cases, the obstruction can simply break free from the retrieval device and can lodge in a new area causing more concern than the original blockage.


Procedures for treating ischemic stroke by restoring flow within the cerebral vasculature are subject to the above concerns. The brain relies on its arteries and veins to supply oxygenated blood from the heart and lungs and to remove carbon dioxide and cellular waste from brain tissue. Blockages that interfere with this blood supply eventually cause the brain tissue to stop functioning. If the disruption in blood occurs for a sufficient amount of time, the continued lack of nutrients and oxygen causes irreversible cell death (infarction). Accordingly, it is desirable to provide immediate medical treatment of an ischemic stroke. To access the cerebral vasculature, a physician typically advances a catheter from a remote part of the body (typically a leg) through the abdominal vasculature and into the cerebral region of the vasculature. Once within the cerebral vasculature, the physician deploys a device for retrieval of the obstruction causing the blockage. Concerns about dislodged obstructions or the migration of dislodged fragments increases the duration of the procedure at time when restoration of blood flow is paramount. Furthermore, a physician might be unaware of one or more fragments that dislodge from the initial obstruction and cause blockage of smaller more distal vessels.


Many physicians currently perform thrombectomies (i.e. clot removal) with stents to resolve ischemic stroke. Typically, the physician deploys a stent into the clot in an attempt to push the clot to the side of the vessel and re-establish blood flow. Tissue plasminogen activator (“tPA”) is often injected into the bloodstream through an intravenous line to break down a clot. However, it takes time for the tPA to reach the clot because the tPA must travel through the vasculature and only begins to break up the clot once it reaches the clot material. tPA is also often administered to supplement the effectiveness of the stent. Yet, if attempts at clot dissolution are ineffective or incomplete, the physician can attempt to remove the stent while it is expanded against or enmeshed within the clot. In doing so, the physician must effectively drag the clot through the vasculature, in a proximal direction, into a guide catheter located within vessels in the patient's neck (typically the carotid artery). While this procedure has been shown to be effective in the clinic and is easy for the physician to perform, there remain some distinct disadvantages to using this approach.


For example, one disadvantage is that the stent may not sufficiently retain the clot as it pulls the clot to the catheter. In such a case, some or all of the clot might remain within the vasculature. Another risk is that as the stent mobilizes the clot from the original blockage site, the clot might not adhere to the stent as the stent is withdrawn toward the catheter. This is a particular risk when passing through bifurcations and tortuous anatomy. Furthermore, blood flow can carry the clot (or fragments of the clot) into a branching vessel at a bifurcation. If the clot is successfully brought to the end of the guide catheter in the carotid artery, yet another risk is that the clot may be “stripped” or “sheared” from the stent as the stent enters the guide catheter. Regardless, simply dragging an expanded stent (either fully or partially expanded) can result in undesired trauma to the vessel. In most cases, since the stent is oversized compared to the vessel, dragging a fixed metallic (or other) structure can pull the arteries and/or strip the cellular lining from the vessel, causing further trauma such as a hemorrhagic stroke (leakage of blood from a cerebral vessel). Also, the stent can become lodged on plaque on the vessel walls resulting in further vascular damage.


In view of the above, there remains a need for improved devices and methods that can remove occlusions from body lumens and/or vessels.


SUMMARY

At least some of the embodiments disclosed herein involves devices, systems, and methods for retrieving clot material from a blood vessel lumen. For example, some embodiments are directed to a retrieval device (such as a clot retrieval device) that includes an elongated shaft configured to be intravascularly positioned at or adjacent clot material within a blood vessel lumen, and a retrieval assembly coupled to a distal region of the elongated shaft. The retrieval assembly may include a flexible cover and a capture structure. The retrieval assembly may be deployed within the blood vessel lumen at or near the clot material such that the capture structure engages or otherwise becomes enmeshed with at least a portion of the clot material, and at least a portion of the cover presses outward against the blood vessel wall proximal of the capture structure. Pulling the elongated shaft proximally everts the cover over the capture structure such that the cover at least partially ensheathes the capture structure and associated clot material. The retrieval assembly can then be withdrawn to remove the retrieval device and associated clot material from the patient.


In at least some embodiments of the present technology, a retractor device can be used to transform the retrieval device from a deployed position to a delivery position for re-use. In the deployed position, the cover at least partially ensheathes the capture structure. In the delivery position, the cover ensheathes less of the capture than in the deployed position (e.g., ensheathes no portion of the capture structure). In some embodiments, the retractor can have a tubular structure configured to slidably receive the retrieval device. The tubular structure can have a length no greater than twice the length of the capture structure.


The subject technology is illustrated, for example, according to various aspects described below. Various examples of aspects of the subject technology are described as numbered clauses (1, 2, 3, etc.) for convenience. These are provided as examples and do not limit the subject technology. It is noted that any of the dependent clauses may be combined in any combination, and placed into a respective independent clause, e.g., clause 1, clause 11, or clause 20. The other clauses can be presented in a similar manner.

    • 1. A kit for retrieving material (e.g. luminal obstructive material such as clot) from a body of a subject, the kit comprising:
      • a retrieval device including an elongated shaft and a retrieval assembly coupled to a distal zone of the elongated shaft, wherein—
        • the retrieval assembly includes a capture structure and a cover,
        • the cover has a first portion coupled to the distal zone of the elongated shaft and a free second portion, and
        • the cover has a first position in which the second portion extends proximally from the first portion, a second position in which the second portion extends distally from the first portion, and the cover surrounds at least a portion of the capture structure in the second position; and
      • a retractor having a tubular structure that defines a channel configured to slidably receive the retrieval device, wherein the tubular structure has a length no greater than twice the length of the capture structure measured along a longitudinal axis, and wherein the retractor is configured to extend distally beyond the capture structure to facilitate moving the cover from the second position after deployment to the first position for redeployment.
    • 2. The kit of clause 1 wherein the retractor includes a longitudinal slot extending the entire length of the tubular structure, and wherein the slot has a width at least as great as the outer diameter of the elongated shaft such that the elongated shaft can pass laterally through the slot and into the channel.
    • 3. The kit of clause 1 wherein the channel further includes a stop sized to allow the elongated shaft to pass through the stop and to inhibit proximal movement of the retrieval assembly when the elongated shaft is pulled proximally.
    • 4. The kit of clause 1 wherein the retractor includes a longitudinal slot extending the entire length of the tubular structure and onto a proximal portion of the tubular structure, wherein the slot has a width at least as great as the outer diameter of the elongated shaft such that the elongated shaft can pass laterally through the slot and into the channel, and wherein the proximal portion of the tubular structure is configured to inhibit proximal movement of the retrieval assembly when the elongated shaft is pulled proximally.
    • 5. The kit of clause 1 wherein at least one of the capture structure and the cover is a mesh.
    • 6. The kit of clause 1 wherein the capture structure is a stent and the cover is a braid.
    • 7. The kit of clause 1 wherein the length of the capture structure is greater than the length of the tubular structure.
    • 8. The kit of clause 1 wherein the device further includes a handle configured to be gripped by a user when the cover is moved from the second position to the first position for redeployment.
    • 9. The kit of clause 8 wherein the handle is coupled to the tubular structure nearer to a proximal portion of the tubular structure than a distal portion of the tubular structure.
    • 10. The kit of clause 2 wherein the device further includes a handle having a planar shape and coupled to the tubular structure such that the handle is perpendicular relative to a plane extending through the longitudinal slot.
    • 11. A method comprising:
      • positioning at least a portion of a retrieval assembly of a retrieval device within a channel defined by a retractor such that least a distal terminus of a capture structure of the retrieval assembly is within the channel, wherein the retrieval assembly is coupled to an elongated shaft, and wherein the retrieval assembly is in a deployed configuration in which a cover of the retrieval assembly extends distally relative to the capture structure and surrounds at least a portion of the capture structure;
      • securing part of the cover against an outer surface of the retractor; and
      • while securing the part of the cover, advancing the retrieval assembly distally through the channel such that at least the distal terminus of the capture structure extends distally from the retractor and the cover.
    • 12. The method of clause 11 wherein securing comprises securing the part of the cover against an outer surface of the retractor.
    • 13. The method of clause 11 wherein securing comprises securing part of the cover against an outer surface of the retractor while another part of the cover is located in the channel, between an outer surface of the capture structure and an inner wall of the channel.
    • 14. The method of clause 11, further comprising:
      • removing the retrieval assembly from the retractor when the retrieval assembly is in a delivery position in which the cover extends proximally relative to the capture structure.
    • 15. The method of clause 11, further comprising:
      • manipulating a distal portion of the cover onto the retractor, wherein manipulating the cover includes everting a portion of the cover.
    • 16. The method of clause 11 wherein advancing the retrieval assembly further includes exposing a distal portion of the capture structure and advancing the retrieval assembly distally by pulling distally on the exposed portion of the capture structure.
    • 17. The method of clause 11 wherein advancing the retrieval assembly includes pushing the elongated shaft distally and/or pushing the retrieval assembly distally.
    • 18. The method of clause 11, further comprising:
      • before positioning the portion of the retrieval assembly, positioning the elongated shaft within the channel of the retractor.
    • 19. The method of clause 18 wherein positioning the portion of the retrieval assembly further includes pulling the elongated shaft proximally such that the retrieval assembly slides through the channel until the distal terminus of the capture structure is within the channel.
    • 20. A retractor for transforming a retrieval device, comprising:
      • a tubular structure that defines a channel and having a distal portion, a proximal portion, and a length extending between the distal portion and the proximal portion, wherein—
        • the channel is configured to slidably receive the retrieval device, the retrieval device including an elongated shaft coupled to a retrieval assembly having a capture structure and a cover,
        • a retention surface of the retractor outside of the channel is configured to engage a portion of the cover and be held by one hand of an operator while at least a distal terminus of the capture structure is positioned within the channel such that the capture structure can be advanced through the channel while the cover remains in a secured position relative to the retractor, and
        • a longitudinal slot extends the entire length of the tubular structure and has a width at least as great as the outer diameter of the elongated shaft such that the elongated shaft can pass laterally through the slot and into the channel; and
      • a handle attached to the tubular structure configured to be held by another hand of the operator to hold the retractor while transforming the retrieval device.
    • 21. The retractor of clause 20 wherein the channel further includes a stop sized to allow the elongated shaft to pass through the stop and to inhibit proximal movement of the retrieval assembly when the elongated shaft is pulled proximally.
    • 22. The retractor of clause 20 wherein the longitudinal slot extends onto the proximal portion of the tubular structure and wherein the proximal portion is configured to inhibit proximal movement of the retrieval assembly when the elongated shaft is pulled proximally.
    • 23. The retractor of clause 20 wherein the longitudinal slot extends through a sidewall of the tubular structure
    • 24. The retractor of clause 20, further comprising a handle projecting from the tubular structure.


Additional features and advantages of the subject technology will be set forth in the description below, and in part will be apparent from the description, or may be learned by practice of the subject technology. The advantages of the subject technology will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description are explanatory and are intended to provide examples and further explanation of the subject technology as claimed.





BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present technology can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Instead, emphasis is placed on illustrating clearly the principles of the present disclosure.



FIG. 1A is a side view of a distal portion of a clot retrieval device shown with a retrieval assembly in a first configuration in accordance with the present technology.



FIG. 1B is a side view of the distal portion of the clot retrieval device of FIG. 1A, shown with the retrieval assembly shown in a second, everted configuration.



FIGS. 2A-2G illustrate a method of removing clot material from a blood vessel lumen using the clot retrieval device shown in FIGS. 1A and 1B.



FIG. 3A is an isometric view of a retractor configured in accordance with the present technology.



FIG. 3B is an isometric view of the retractor shown in FIG. 3A in operation with a retrieval device.



FIG. 4A is an isometric view of another embodiment of a retractor configured in accordance with the present technology.



FIG. 4B is an isometric view of the retractor shown in FIG. 4A in operation with a retrieval device.



FIG. 4C is an enlarged side view of a proximal portion of the retractor in FIGS. 4A and 4B.



FIGS. 5A-5G illustrate a method of using a retractor in accordance with the present technology to facilitate the transformation of a retrieval device from a deployed configuration to a delivery configuration.





DETAILED DESCRIPTION

The present technology provides devices, systems, and methods for removing clot material from a blood vessel lumen. Although many of the embodiments are described below with respect to devices, systems, and methods for treating an ischemic stroke or cerebral embolism, other applications and other embodiments in addition to those described herein are within the scope of the technology. For example, the retrieval devices of the present technology may be used to remove emboli or other material from body lumens other than blood vessels (e.g., the digestive tract, etc.) and/or may be used to remove emboli from blood vessels outside of the brain (e.g., pulmonary blood vessels, blood vessels within the legs, etc.). In addition, the retrieval devices of the present technology may be used to remove luminal obstructions other than clot material (e.g., plaque, foreign bodies, resected tissue, etc.).


An overview of the retrieval devices of the present technology and associated methods of use is described below with reference to FIGS. 1A-2G. Particular embodiments of a retractor device according to the present technology and to be used with a retrieval device are described below with reference to FIGS. 3A-5G.



FIGS. 1A and 1B are side views of a distal portion of some embodiments of a retrieval device 10 (“device 10”) outside of a blood vessel in an expanded, relaxed (e.g., unconstrained) configuration in accordance with the present technology. The retrieval device 10 is shown in first and second configurations in FIGS. 1A and 1B, respectively. As shown in FIGS. 1A and 1B, the retrieval device 10 includes an elongated shaft 12 (“shaft 12”) and a retrieval assembly 14 coupled to a distal region of the elongated shaft 12 via a connection assembly 120. The retrieval assembly 14 is configured to be intravascularly positioned at or adjacent clot material (or other material to be retrieved such as plaques, foreign bodies, etc.) within a blood vessel lumen and includes a capture structure 100 and a flexible cover 200. In some embodiments, the capture structure 100 and the cover 200 are fixed to the elongated shaft 12 at generally the same location, or the capture structure 100 and cover 200 may be coupled to the shaft 12 at different locations and/or may be slidable with respect to the elongated shaft 12.


The capture structure 100 has a low-profile configuration (not shown) when constrained within a delivery catheter (e.g., a microcatheter) and an expanded configuration for securing and/or engaging clot material or other obstructions within a blood vessel lumen (e.g., a cerebral blood vessel lumen) and/or for restoring blood flow within the blood vessel. The capture structure 100 has a proximal portion 100a coupled to the shaft 12 and a distal portion 100b. The capture structure 100 further includes an open cell framework or body 108 (FIG. 1A) and a coupling region 102 (FIG. 1A) extending proximally from the body 108. In some embodiments, for example as shown in FIGS. 1A and 1B, a distal portion 100b of the capture structure 100 can be generally tubular (e.g., cylindrical), and the proximal portion 100a of the capture structure 100 tapers proximally to the coupling region 102. In some embodiments, the distal terminus of the distal portion 100b coincides with a distal terminus 101 of the capture structure 100 and/or retrieval assembly 14.


Referring again to FIGS. 1A and 1B, in some embodiments the capture structure 100 is a mesh structure formed of a superelastic material (e.g., Nitinol or other resilient or self-expanding material) configured to self-expand when released from the delivery catheter. For example, in some embodiments the capture structure 100 may be a stent and/or stentriever, such as Medtronic's Solitaire™ Revascularization Device, Stryker Neurovascular's Trevo® ProVue™ Stentriever, or other suitable devices. In other embodiments, the capture structure 100 may include a plurality of braided filaments. Examples of suitable capture structures 100 include any of those disclosed in U.S. Pat. No. 7,300,458, filed Nov. 5, 2007, U.S. Pat. No. 8,940,003, filed Nov. 22, 2010, U.S. Pat. No. 9,039,749, filed Oct. 1, 2010, and U.S. Pat. No. 8,066,757, filed Dec. 28, 2010, each of which is incorporated by reference herein in its entirety.


The cover 200 includes a first end portion 200a coupled to the shaft 12 via the connection assembly 120, a free second end portion 200b, and a cover wall 200c extending between the first end portion 200a and the second end portion 200b. As used herein to describe the second end portion 200b of the cover 200, the term “free” refers to a portion of the cover 200 that is not fixed to the elongated shaft 12 and may move radially and/or longitudinally with respect to the shaft 12. The cover 200 is flexible such that it is movable between a first position (FIG. 1A) in which the free second end portion 200b is proximal of the first end portion 200a and a second position (FIG. 1B) in which the cover 200 is inverted over the capture structure 100 such that a distal terminus 201 (FIG. 1B) of the cover 200 is at or distal to the distal terminus 101 of the capture structure 100 and/or to the first end portion 200a. As shown in FIG. 1A, when the cover 200 is in the first position in an expanded, relaxed state, some embodiments of the cover 200 may have a leading edge 204 that overlaps the coupling region 102 of the capture structure 100 but does not extend beyond the coupling region 102 to overlap the body 108 of the capture structure 100. In some embodiments, the leading edge 204 of the cover 200 may also overlap all or a portion of the length of the body 108 when the cover 200 is in the first position. As shown in FIG. 1B, when the cover 200 is in the second position, the free second end portion 200b is distal of the first end portion 200a and distal of the distal terminus 101 of the capture structure 100. As such, when in the second position, the cover wall 200c surrounds the capture structure 100.


The cover 200 can comprise a mesh and/or braid of a plurality of wires (e.g., filaments, threads, sutures, fibers or the like) that have been interwoven to form a structure having openings (e.g., a porous fabric). The mesh and/or braid can be composed of metals, polymers, composites, and/or biologic materials. Polymer materials can include Dacron, polyester, polypropylene, nylon, Teflon, polytetrafluoroethylene (PTFE), tetrafluoroethylene, polyethylene terephthalate, polyactic acid (PLA) silicone, polyurethane, polyethylene, polycarbonate, styrene, polyimide, PEBAX, Hytrel, polyvinyl chloride, high-density polyethylene, low-density polyethylene, polyether ether ketone (PEEK), rubber, latex, and/or other suitable polymers known in the art. Other materials known in the art of elastic implants can also be used. Metal materials can include, but are not limited to, nickel-titanium alloys (e.g. Nitinol), platinum, cobalt-chromium alloys, stainless steel, tungsten or titanium. In some embodiments, metal filaments may be highly polished and/or surface treated to further improve their hemocompatibility. The cover 200 can be constructed solely from metallic materials without the inclusion of any polymer materials, solely from polymer materials without the inclusion of any metallic materials, or a combination of polymer and metallic materials.


In some embodiments, some or all of the wires of the cover 200 are drawn-filled tube (“DFT”) wires having a radiopaque core (e.g., platinum, tantalum, gold, tungsten, etc.) surrounded by a superelastic material (e.g., Nitinol, a cobalt-chromium alloy, etc.). The radiopaque core may comprise about 5% to about 50% (e.g., 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%) of the total-cross-sectional area of the individual wires. In some embodiments, the cover 200 may have 72-144 total wires (e.g., 72, 96 128, 144, etc.) Moreover, some or all of the wires may have a wire diameter of about 0.005 inches to about 0.015 inches (e.g., 0.008 inches, 0.01 inches, etc.). In some embodiments, all of the wires have the same diameter, and in other embodiments some of the wires have different diameters.



FIGS. 2A-2G illustrate a method of removing clot material from the lumen of a blood vessel BV using the retrieval device 10 of the present technology. As shown in FIG. 2A, a guidewire 1 may be advanced through the clot material CM such that a distal terminus of the guidewire 1 is distal of the clot material CM. Next, a delivery catheter 2 may be delivered over the guidewire 1 so that a distal portion of the delivery catheter 2 is positioned at or near the clot material CM. As shown in FIG. 2B, in some embodiments the delivery catheter 2 may be advanced over the guidewire 1 through the clot material CM such that a distal terminus of the delivery catheter 2 is distal of the clot material CM. With the delivery catheter 2 in position, the guidewire 1 may be withdrawn. The retrieval device 10 may then be advanced through the delivery catheter 2 in a low-profile configuration until a distal terminus 101 of the capture structure 100 (shown schematically in FIG. 2B) is at or adjacent the distal terminus of the delivery catheter 2. As shown in FIGS. 2C and 2D, the delivery catheter 2 may then be pulled proximally relative to the retrieval device 10 to release the capture structure 100, thereby allowing the capture structure 100 to self-expand within the clot material CM. As the capture structure 100 expands, the capture structure 100 engages and/or secures the surrounding clot material CM, and in some embodiments may restore or improve blood flow through the clot material CM. In some embodiments, the capture structure 100 may be expanded distal of the clot material CM such that no portion of the capture structure 100 is engaging the clot material CM while the capture structure 100 is in the process of expanding toward the vessel wall. In some embodiments, the capture structure 100 is configured to expand into contact with the blood vessel wall, or the capture structure 100 may expand to a diameter that is less than that of the blood vessel lumen such that the capture structure 100 does not engage the entire circumference of the blood vessel wall.


As shown in FIG. 2D, the delivery catheter 2 may continue advancing proximally (as the user continues pulling it proximally) to release the cover 200 such that at least a portion of the cover wall 200c expands into contact with the blood vessel wall when the cover 200 is in the first position. Once the delivery catheter 2 is moved proximal of the cover 200 in the first position and both the cover 200 and the capture structure 100 are expanded within the vessel lumen, the retrieval assembly 14 is in the first configuration.


As shown in FIG. 2E, when the elongated shaft 12 is pulled proximally while the retrieval assembly 14 is in the first configuration, friction between the blood vessel wall and the cover wall 200c prevents or resists proximal movement of the free second end portion 200b of the cover 200 while the first end portion 200a of the cover 200 moves in a proximal direction with the capture structure 100. In other words, expansion of the cover 200 provides sufficient friction against the walls of the vessel V to overcome the column strength of the cover wall 200c, thereby causing the cover wall 200c to remain in place and/or move less than the first end portion 200a of the cover 200 so that the cover wall 200c inverts over the capture structure 100 and any associated clot material CM. As the elongated shaft 12 is moved proximally and the cover 200 is inverting, the capture structure 100 moves proximally relative to the leading edge 204 of the cover 200 so that the length of the capture structure 100 coextensive with the cover 200 increases. Eventually, the cover 200 completely inverts from the first position over the proximally advancing capture structure 100, thereby further securing any clot material held by or within the capture structure. As shown in FIG. 2G, the retrieval device 10 may continue advancing proximally (as the user continues pulling it proximally) until the retrieval assembly 14 is positioned within the delivery catheter 2. The delivery catheter 2, device 10, and associated clot material CM may then be withdrawn from the patient.


In some instances, the physician (i.e., a “user”) using the retrieval device 10 may wish to re-use the retrieval device 10 after it has been delivered within a vessel. For example, the user may wish to re-use the retrieval device 10 in a second attempt to remove clot material CM from a vessel. However, once the clot retrieval assembly 14 is retracted proximally within the delivery catheter 2 (e.g., to remove the clot material CM), the cover 200 is in the second position (FIG. 1B). In some instances, the physician can manipulate the cover 200 from the second position to the first position (FIG. 1A) simply using their fingers. However, the cover 200 may rip, tear, or snag on the capture structure 100 when the physician attempts to move the cover 200 between the second and first positions. Moreover, such a process can slow down the overall process of redeploying the clot retrieval assembly 14.



FIGS. 3A-5G show various embodiments of retractors in accordance with the present technology for use with retrieval devices. The retractors discussed below are described with reference to the retrieval device 10 shown in FIGS. 1A-2G, but can be used in operation with any suitable covered retrieval device. A retractor according to the present technology is configured to move the cover 200 of retrieval device 10 from the second position (FIG. 1B) to the first position (FIG. 1A). As described above, in the first position, the free second end portion 200b of the cover 200 is proximal of the first end portion 200a and at least a portion of the capture structure 100 is exposed such that the cover 200 does not surround the capture structure 100. In the second position, the cover 200 is inverted over the capture structure 100 such that the free second end portion 200b of the cover 200 is distal of first end portion 200a and the cover 200 surrounds at least a portion of the capture structure 100. In some embodiments (e.g., as shown in FIG. 3B), the cover 200 can completely surround the capture structure 100 in the second position such that the distal terminus (i.e., absolute end) of the cover 200 is at or distal to the distal terminus 101 of the capture structure 100.



FIGS. 3A and 3B illustrate a retractor 300 in accordance with some embodiments of the present technology. The retractor 300 has a tubular structure 302 and a channel 304 extending longitudinally therethrough. Tubular structure 302 further includes a distal portion 312, a proximal portion 314, and an outside surface 316. As illustrated in FIG. 3B, the channel 304 is configured to slidably receive the retrieval device 10. In particular, the channel 304 has a diameter that is sized to slidably receive the elongated shaft 12 and the retrieval assembly 14 such that the retrieval device 10 can be pulled proximally or pushed distally through the tubular structure 302. The outside surface 316 of the tubular structure 302 is configured to engage a portion of the cover 200 for retracting the cover 200 proximally with respect to the retrieval assembly 14. As a result, the outside surface 316 can define a retention surface against which the cover 200 can be held.


As shown in FIG. 3B, the tubular structure 302 has a length L1 extending between the distal portion 312 and the proximal portion 314. The capture structure 100 has a length L2 measured along the same longitudinal axis as the length L1. In some embodiments, the length L1 of the tubular structure 302 is less than the length L2 of the capture structure 100. In such embodiments, the proximal portion 100a of the capture structure 100 may protrude proximally from the proximal portion 314 of the tubular structure 302 when the retrieval assembly 14 is situated within the channel 304. In some embodiments, the length L1 of the tubular structure 302 is greater than the length L2 of the capture structure 100 such that the entire retrieval assembly 14, or the entire capture structure 100, may be contained within the tubular structure 302. However, the length L1 of the tubular structure 302 is not more than twice the length L2 of the capture structure 100.


In the embodiment illustrated in FIGS. 3A and 3B, the retractor 300 includes a slot 308 extending through the tubular structure 302 and longitudinally the entire length L1 of the tubular structure 302. More specifically, the slot 308 can have edges 309a and 309b (collectively “edges 309”) that extend along the length of the tubular structure 302. The slot 308 further has a width W between the edges 309 that is at least as great as an outer diameter of elongated shaft 12 such that the elongated shaft 12 can pass laterally through the slot 308 and into the channel 304. In some embodiments, the edges 309 can have a generally rounded or other shape without sharp or hard edges to avoid damaging the elongated shaft 12 when it passes through the slot 308. The slot 308 allows the retrieval device 10 to be positioned within the channel 304 without first threading the entire length of the elongated shaft 12 through the channel 304 of the retractor 300. Instead, a distal portion of the elongated shaft 12 can be passed laterally through slot 308. Once the elongated shaft 12 is within the channel 304, the elongated shaft 12 can then be pulled proximally, and/or the retractor 300 pushed distally, until the retrieval assembly 14 is positioned within the channel 304. In some embodiments, the tubular structure 302 does not include any slots and the channel 304 is fully enclosed.


The retractor 300 can further comprise a handle 306 extending from the tubular structure 302 and configured to be gripped by a user when the retractor 300 is used to move the cover 200 from the second position to the first position. The handle 306 can be coupled to the tubular structure 302 nearer to the proximal portion 314 of the tubular structure 302 than the distal portion 312. In some embodiments, the handle 306 has at least a generally planar shape and is coupled to the tubular structure 302 such that the handle 306 is perpendicular to a plane extending through the slot 308. In some embodiments, the handle 306 is attached at a different portion of the tubular structure 302 and can have a different shape or relative size. For example, the handle 306 can be a ring or other open shape that a user can grip.


The retractor 300 can be made out of a plastic or other materials. For example, in some embodiments, the retractor 300 is formed from high-density polyethylene (“HDPE”). Suitable materials can be injection molded, compression molded, or three-dimensionally printed into shape. Other well-known methods of manufacture can be used to form the retractor 300.


To move the cover 200 from the second position to the first position, the retrieval device 10 can be slidably disposed within the channel 304 such that the distal terminus 101 of the capture structure 100 is within channel 304. The cover 200 can then be secured against the outside surface 316 while the capture structure 100 is advanced distally through channel 304 to expose the capture structure 100. One advantage of using the retractor 300 is that the rigid external structure of the tubular structure 302 inhibits the cover 200 of the retrieval device from snagging on the capture structure 100 as the cover 200 moves from the second position to the first position. For example, without using the retractor 300, a user would need to grip either or both of the elongated shaft 12 and retrieval assembly 14 while attempting to manipulate the cover 200 from the second position to the first position. In doing so, without using the retractor 300, the distal terminus 101 of the capture structure 100 will frequently snag on the cover 200 when the cover 200 is moved proximally. This can increase the time required to prepare the retrieval device 10 for redeployment, and potentially damage the cover 200.



FIGS. 4A-4C show another embodiment of a retractor 400 configured in accordance with the present technology. FIGS. 4A and 4B illustrate a retractor 400 that includes some features generally similar to the features of the embodiment shown in FIGS. 3A and 3B. For example, retractor 400 includes a tubular structure 402 defining a channel 404, and a first slot 408 extending through and along the entire length of the tubular structure 402. The retractor 400 further includes a stop 422 having a slit 418 configured to receive the elongated shaft 12. The stop 422 limits proximal movement of the retrieval assembly 14.


In the embodiment shown in FIGS. 4A-4C, the slot 408 and the slit 418 combine to form a contiguous opening through the tubular structure 402 for receiving the elongated shaft 12. In some embodiments, the slit 418 has other shapes or configurations. For example, the slit 418 can be curved, L-shaped, or otherwise shaped to contain the elongated shaft 12 when it is moved through the stop 422.



FIG. 4C shows a side view of the proximal portion 414 of tubular structure 402. The slit 418 has a width W2 that is at least as great as an outer diameter of the elongated shaft 12. This assures that the elongated shaft 12 can slide both distally and proximally through the slit 418. However, the width W2 is smaller than an outer diameter of the proximal portion 100a of capture structure 100 and the connection assembly 120. Because the slit 418 is not sized to slidably receive either the capture structure 100 or the connection assembly 120, the stop 422 inhibits proximal movement of the retrieval assembly 14 when the elongated shaft 12 is pulled proximally. In the illustrated embodiment, the width W2 of the slit 418 is less than a width W1 of the slot 408. In some embodiments, the slot 408 and the slit 418 can have the same width, or the width W2 of the slit 418 can be greater than the width W1 of the slot 408.


The stop 422 defines a specific location within the retractor 400 for positioning the retrieval device 10. For example, the stop 422 can be located within the channel 404 such that when the retrieval assembly 14 engages the stop 422, the distal terminus 101 of the capture structure 100 is within the channel 404. The location of the stop 422 can also prevent the retrieval assembly 14 from being placed needlessly deep into the channel 404 and/or from sliding in the proximal direction out of the channel 404 during retraction of the cover 200. If placed too deep, more time and motion are required for manipulating the cover 200 onto the tubular structure 402. As illustrated in FIGS. 4A-4C, the stop 422 can be located at a proximal portion 414 of the tubular structure 402. In some embodiments, the stop 422 is located at a different position within the channel 404. For example, depending on the relative lengths of the capture structure 100 and tubular structure 402, the stop 422 can be positioned in a different location within the channel 404 (e.g., at a central portion or a distal portion of the channel 404) to serve as a locating feature for positioning the retrieval assembly 14.


Several aspects of methods for using the retractor 300 shown in FIGS. 3A and 3B to transform the cover 200 from the second position to the first position are shown in FIGS. 5A-5G. Some differences for using the retractor 400 (FIGS. 4A-4C) are described below, however, it is to be understood that the following method could generally be performed using a retractor according to any of the embodiments described herein. Moreover, in some figures, the user's fingers have been omitted so as not to obscure other features. Accordingly, even if not illustrated, the user may grip the handle 306 or other parts of the retractor 300 in order to carry out any or all of the steps described with reference to FIGS. 5A-5G.



FIG. 5A illustrates the retrieval device 10 with the cover 200 in the second position and positioned partly within the channel 304 of the retractor 300. Before positioning the retrieval assembly 14 within channel 304, the elongated shaft 12 of the retrieval device 10 can be positioned within channel 304 as illustrated in FIG. 3B. For example, a distal portion of the elongated shaft 12 just proximal of the retrieval assembly 14 can pass laterally through the slot 308 and into the channel 304 of the tubular structure 302. The user can then pull proximally on the elongated shaft 12 such that the retrieval assembly 14 slides into and partly through the channel 304. More specifically, the user could grip the handle 306 with one hand while pulling proximally on the elongated shaft 12 to position the retrieval assembly 14 within the tubular structure 302. Alternatively or additionally, the retractor 300 can slide distally over the retrieval device 10 and/or the user can push/pull proximally on the retrieval assembly 14 to position the retrieval assembly 14 within the tubular structure 302 of the retractor 300.


As illustrated in FIG. 5B, the retrieval device 10 is positioned within the retractor 300 such that the distal terminus 101 of the capture structure 100 is within the channel 304. This prevents the cover 200 from catching or snagging on the capture structure 100 when the cover 200 is later manipulated onto the tubular structure 302. In contrast to the embodiment illustrated in FIGS. 4A-4C, the user may need to visualize when the distal terminus 101 is within the retractor 300 without the stop 422 that locates the capture structure 100 at a specific location within the retractor 300.


Still referring to FIG. 5B, after the retrieval device 10 is positioned within the channel 304, a distal portion 203 (including the second end portion 200b) of the cover 200 extends distally from the distal portion 312 of the tubular structure 302 and remains outside of the channel 304. The distal portion 203 of the cover 200 remains outside of the channel 304 so that the cover 200 can later be manipulated onto the tubular structure 302. In some embodiments, depending on the relative lengths of the tubular structure 302 and the capture structure 100, a proximal portion 100a of the capture structure 100 may extend from the proximal portion 314 of the tubular structure 302 and outside of the channel 304. In some embodiments, such as the retractor 400, the capture structure 100 is positioned such that it is fully within the channel 404. As such, both the proximal portion 100a and the distal terminus 101 of the capture structure 100 can be within the channel in such cases.


As shown in FIGS. 5C and 5D, once the retrieval device 10 is positioned within the retractor 300, the user can manipulate the distal portion 203 of the cover 200 onto the outside surface 316 of tubular structure 302. More specifically, the user can peel back the distal portion 203 of the cover 200 and push it onto the distal portion 312 of tubular structure 302 while the capture structure 100 is held stationary within the channel 304. As illustrated, the distal portion 203 of the cover 200 can have an end 217 that is everted relative to the rest of the cover 200 in the second position. In one embodiment, only this end 217 is manipulated onto the retractor 300. In some embodiments, the entire distal portion 203 of the cover 200 can be positioned around the outside surface 316 of the retractor 300. For example, FIG. 5E shows an embodiment in which a larger portion of the cover 200 than simply the end 217 has been manipulated onto the tubular structure 302.


Next, the cover 200 is secured against the outside surface 316 of the tubular structure 302. For example, the user can squeeze the portion of the cover 200 that is over the tubular structure 302 to clamp the cover 200 against the outside surface 316 of the tubular structure 302. In some embodiments, the cover 200 can be secured against the outside surface 316 of the tubular structure 302 by other mechanisms, such as a clamp or tie fastened around the portion of the cover on the outside surface 316.


In a next step illustrated in FIG. 5E, the capture structure 100 is advanced distally through the retractor 300 while the cover 200 is pressed against the outer surface 316 such that at least the distal terminus 101 of the capture structure 100 extends distally from the tubular structure 302. Importantly, the distal terminus 101 of the capture structure 100 extends past the cover 200 such that the cover 200 no longer surrounds at least a portion of the capture structure 100. In some embodiments, the capture structure 100 is advanced distally through the channel 304 by applying a force in the distal direction to the elongated shaft 12 (indicated by arrow F in FIG. 5E) while the cover 200 is pressed against the outer surface 316. In some embodiments, where the proximal portion 100a of the capture structure 100 extends proximally outside the tubular structure 302, the capture structure 100 can be advanced by applying a force in the distal direction to the proximal portion 100a. For example, a user might push distally on the proximal portion 100a when the elongated shaft 12 is not configured to transmit sufficient column force to advance the capture structure 100 outside the retractor 300.


As shown in FIG. 5F, the user can then grip an exposed portion of the capture structure 100 and pull the capture structure 100 distally to further expose the capture structure 100 relative to the cover 200 and the retractor 300. Thus, the capture structure 100 can be advanced through the channel 304 by any combination of pushing distally on the elongated shaft 12 and/or pushing distally on the proximal portion 100a of the capture structure 100, and then by pulling distally on an exposed distal portion of the capture structure 100.


As illustrated in FIG. 5G, the cover 200 can be released from the outside surface 316 of the tubular structure 302 once the cover 200 is in the second position. In a final step, the retrieval device 10 is removed from the retractor 300. For example, the elongated shaft 12 may be removed from the channel 304 via the slot 308. The user can then clean and prepare the retrieval device for re-use.


This disclosure is not intended to be exhaustive or to limit the present technology to the precise forms disclosed herein. Although specific embodiments are disclosed herein for illustrative purposes, various equivalent modifications are possible without deviating from the present technology, as those of ordinary skill in the relevant art will recognize. In some cases, well-known structures and functions have not been shown and/or described in detail to avoid unnecessarily obscuring the description of the embodiments of the present technology. Although steps of methods may be presented herein in a particular order, in alternative embodiments the steps may have another suitable order. Similarly, certain aspects of the present technology disclosed in the context of particular embodiments can be combined or eliminated in other embodiments. Furthermore, while advantages associated with some embodiments may have been disclosed in the context of those embodiments, other embodiments can also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages or other advantages disclosed herein to fall within the scope of the present technology. Accordingly, this disclosure and associated technology can encompass other embodiments not expressly shown and/or described herein.


Throughout this disclosure, the singular terms “a,” “an,” and “the” include plural referents unless the context clearly indicates otherwise. Similarly, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the terms “comprising” and the like are used throughout this disclosure to mean including at least the recited feature(s) such that any greater number of the same feature(s) and/or one or more additional types of features are not precluded. Reference herein to “one embodiment,” “an embodiment,” or similar formulations means that a particular feature, structure, operation, or characteristic described in connection with the embodiment can be included in at least one embodiment of the present technology. Thus, the appearances of such phrases or formulations herein are not necessarily all referring to the same embodiment. Furthermore, various particular features, structures, operations, or characteristics may be combined in any suitable manner in one or more embodiments.

Claims
  • 1. A method comprising: positioning at least a portion of a retrieval assembly of a retrieval device within a channel defined by a retractor such that least a distal terminus of a capture structure of the retrieval assembly is within the channel, wherein the retrieval assembly is coupled to an elongated shaft, and wherein the retrieval assembly is in a deployed configuration in which a cover of the retrieval assembly extends distally relative to the capture structure and surrounds at least a portion of the capture structure;securing part of the cover against an outer surface of the retractor; andwhile securing the part of the cover, advancing the retrieval assembly distally through the channel such that at least the distal terminus of the capture structure extends distally from the retractor and the cover.
  • 2. The method of claim 1 wherein securing comprises securing the part of the cover against the outer surface of the retractor while another part of the cover is located in the channel, between an outer surface of the capture structure and an inner wall of the channel.
  • 3. The method of claim 1, further comprising: removing the retrieval assembly from the retractor when the retrieval assembly is in a delivery position in which the cover extends proximally relative to the capture structure.
  • 4. The method of claim 1, further comprising: manipulating a distal portion of the cover onto the retractor, wherein manipulating the cover includes everting a portion of the cover.
  • 5. The method of claim 1 wherein advancing the retrieval assembly further includes exposing a distal portion of the capture structure and advancing the retrieval assembly distally by pulling distally on the exposed portion of the capture structure.
  • 6. The method of claim 1 wherein advancing the retrieval assembly includes pushing the elongated shaft distally and/or pushing the retrieval assembly distally.
  • 7. The method of claim 1, further comprising: before positioning the portion of the retrieval assembly, positioning the elongated shaft within the channel of the retractor.
  • 8. The method of clause 7 wherein positioning the portion of the retrieval assembly further includes pulling the elongated shaft proximally such that the retrieval assembly slides through the channel until the distal terminus of the capture structure is within the channel.
CROSS-REFERENCE TO RELATED APPLICATION(S)

The present application is a divisional of U.S. patent application Ser. No. 15/626,265, filed Jun. 19, 2017, which is incorporated herein by reference in its entirety.

US Referenced Citations (367)
Number Name Date Kind
2918919 Wallace Dec 1959 A
2943626 Enrico Jul 1960 A
3996938 Clark, III Dec 1976 A
4347846 Dormia Sep 1982 A
4611594 Grayhack et al. Sep 1986 A
4650466 Luther Mar 1987 A
4657020 Lifton Apr 1987 A
4699147 Chilson et al. Oct 1987 A
4790812 Hawkins, Jr. et al. Dec 1988 A
4807626 Mcgirr Feb 1989 A
4832055 Palestrant May 1989 A
4873978 Ginsburg Oct 1989 A
4969891 Gewertz Nov 1990 A
4998539 Delsanti Mar 1991 A
5034001 Garrison et al. Jul 1991 A
5057114 Wittich et al. Oct 1991 A
5059178 Ya Oct 1991 A
5102415 Guenther et al. Apr 1992 A
5147400 Kaplan et al. Sep 1992 A
5152777 Goldberg et al. Oct 1992 A
5192286 Phan et al. Mar 1993 A
5300086 Gory et al. Apr 1994 A
5329942 Gunther et al. Jul 1994 A
5443478 Purdy Aug 1995 A
5449372 Schmaltz et al. Sep 1995 A
5458375 Anspach, Jr. et al. Oct 1995 A
5490859 Mische et al. Feb 1996 A
5496330 Bates et al. Mar 1996 A
5509900 Kirkman Apr 1996 A
5653684 Laptewicz et al. Aug 1997 A
5658296 Bates et al. Aug 1997 A
5709704 Nott et al. Jan 1998 A
5733302 Myler et al. Mar 1998 A
5741325 Chaikof et al. Apr 1998 A
5792156 Perouse Aug 1998 A
5827324 Cassell et al. Oct 1998 A
5846251 Hart Dec 1998 A
5895398 Wensel et al. Apr 1999 A
5911710 Barry et al. Jun 1999 A
5941869 Patterson et al. Aug 1999 A
5947995 Samuels Sep 1999 A
5968090 Ratcliff et al. Oct 1999 A
5971938 Hart et al. Oct 1999 A
5972019 Engelson et al. Oct 1999 A
5984957 Laptewicz, Jr. et al. Nov 1999 A
6001118 Daniel et al. Dec 1999 A
6033394 Vidlund et al. Mar 2000 A
6042598 Tsugita et al. Mar 2000 A
6053932 Daniel et al. Apr 2000 A
6066149 Samson et al. May 2000 A
6066158 Engelson et al. May 2000 A
6096053 Bates Aug 2000 A
6099534 Bates et al. Aug 2000 A
6146403 St. Germain Nov 2000 A
6159220 Gobron et al. Dec 2000 A
6165200 Tsugita et al. Dec 2000 A
6168603 Leslie et al. Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6176873 Ouchi Jan 2001 B1
6190394 Lind et al. Feb 2001 B1
6217609 Haverkost Apr 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6238412 Dubrul May 2001 B1
6245088 Lowery Jun 2001 B1
6245089 Daniel et al. Jun 2001 B1
6248113 Fina Jun 2001 B1
6264664 Avellanet Jul 2001 B1
6302895 Gobron et al. Oct 2001 B1
6309399 Barbut et al. Oct 2001 B1
6348056 Bates et al. Feb 2002 B1
6350266 White et al. Feb 2002 B1
6364895 Greenhalgh Apr 2002 B1
6371971 Tsugita et al. Apr 2002 B1
6383195 Richard May 2002 B1
6383196 Leslie et al. May 2002 B1
6391044 Yadav et al. May 2002 B1
6402771 Palmer et al. Jun 2002 B1
6409750 Hyodoh et al. Jun 2002 B1
6416505 Fleischman et al. Jul 2002 B1
6425909 Dieck et al. Jul 2002 B1
6436112 Wensel et al. Aug 2002 B2
6443972 Bosma et al. Sep 2002 B1
6458139 Palmer et al. Oct 2002 B1
6485497 Wensel et al. Nov 2002 B2
6494884 Gifford, III et al. Dec 2002 B2
6506204 Mazzocchi Jan 2003 B2
6514273 Voss et al. Feb 2003 B1
6530935 Wensel et al. Mar 2003 B2
6540657 Cross, III et al. Apr 2003 B2
6540768 Diaz et al. Apr 2003 B1
6551342 Shen et al. Apr 2003 B1
6575997 Palmer et al. Jun 2003 B1
6585753 Eder et al. Jul 2003 B2
6592605 Lenker et al. Jul 2003 B2
6592607 Palmer et al. Jul 2003 B1
6602271 Adams et al. Aug 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6610077 Hancock et al. Aug 2003 B1
6616679 Khosravi et al. Sep 2003 B1
6620148 Tsugita Sep 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6636758 Sanchez et al. Oct 2003 B2
6638245 Miller et al. Oct 2003 B2
6638293 Makower et al. Oct 2003 B1
6641590 Palmer et al. Nov 2003 B1
6645199 Jenkins et al. Nov 2003 B1
6652505 Tsugita Nov 2003 B1
6652548 Evans et al. Nov 2003 B2
6660021 Palmer et al. Dec 2003 B1
6663650 Sepetka et al. Dec 2003 B2
6673042 Samson et al. Jan 2004 B1
6679893 Tran Jan 2004 B1
6685738 Chouinard et al. Feb 2004 B2
6692508 Wensel et al. Feb 2004 B2
6692509 Wensel et al. Feb 2004 B2
6695858 Dubrul et al. Feb 2004 B1
6702782 Miller et al. Mar 2004 B2
6730104 Sepetka et al. May 2004 B1
6745080 Koblish Jun 2004 B2
6746468 Sepetka et al. Jun 2004 B1
6749619 Ouriel et al. Jun 2004 B2
6755813 Ouriel et al. Jun 2004 B2
6800080 Bates Oct 2004 B1
6824545 Sepetka et al. Nov 2004 B2
6855155 Denardo et al. Feb 2005 B2
6872211 White et al. Mar 2005 B2
6872216 Daniel et al. Mar 2005 B2
6890341 Dieck et al. May 2005 B2
6893431 Naimark et al. May 2005 B2
6905503 Gifford, III et al. Jun 2005 B2
6913612 Palmer et al. Jul 2005 B2
6936059 Belef Aug 2005 B2
6939362 Boyle et al. Sep 2005 B2
6945977 Demarais et al. Sep 2005 B2
6953465 Dieck et al. Oct 2005 B2
6964672 Brady et al. Nov 2005 B2
7004955 Shen et al. Feb 2006 B2
7004956 Palmer et al. Feb 2006 B2
7037320 Brady et al. May 2006 B2
7041126 Shin et al. May 2006 B2
7048014 Hyodoh et al. May 2006 B2
7058456 Pierce Jun 2006 B2
7097653 Freudenthal et al. Aug 2006 B2
7101380 Khachin et al. Sep 2006 B2
7169165 Belef et al. Jan 2007 B2
7179273 Palmer et al. Feb 2007 B1
7182771 Houser et al. Feb 2007 B1
7235061 Tsugita Jun 2007 B2
7240516 Pryor Jul 2007 B2
7399308 Borillo et al. Jul 2008 B2
7534252 Sepetka et al. May 2009 B2
7578830 Kusleika et al. Aug 2009 B2
7621870 Berrada et al. Nov 2009 B2
7837702 Bates Nov 2010 B2
8070791 Ferrera et al. Dec 2011 B2
8088140 Ferrera et al. Jan 2012 B2
8105333 Sepetka et al. Jan 2012 B2
8197493 Ferrera et al. Jun 2012 B2
8603014 Alleman et al. Dec 2013 B2
8795305 Martin Aug 2014 B2
8837800 Bammer et al. Sep 2014 B1
9119656 Bose et al. Sep 2015 B2
9126018 Garrison Sep 2015 B1
9211132 Bowman Dec 2015 B2
9241699 Kume et al. Jan 2016 B1
9254371 Martin Feb 2016 B2
9265512 Garrison et al. Feb 2016 B2
9308007 Cully et al. Apr 2016 B2
9399118 Kume et al. Jul 2016 B2
9427244 Lund-Clausen Aug 2016 B2
9445828 Turjman et al. Sep 2016 B2
9445829 Brady et al. Sep 2016 B2
9463036 Brady Oct 2016 B2
9492637 Garrison et al. Nov 2016 B2
9539022 Bowman Jan 2017 B2
9561345 Garrison et al. Feb 2017 B2
9579119 Cully et al. Feb 2017 B2
9585741 Ma Mar 2017 B2
9642635 Vale et al. May 2017 B2
9655633 Leynov et al. May 2017 B2
9717519 Rosenbluth Aug 2017 B2
9737318 Monstadt et al. Aug 2017 B2
9770251 Bowman et al. Sep 2017 B2
9801643 Hansen et al. Oct 2017 B2
9861783 Garrison et al. Jan 2018 B2
9962178 Greenhalgh May 2018 B2
9993257 Losordo et al. Jun 2018 B2
10028782 Orion Jul 2018 B2
10029008 Creighton Jul 2018 B2
10039906 Kume et al. Aug 2018 B2
10327883 Yachia Jun 2019 B2
20010041909 Tsugita et al. Nov 2001 A1
20010044632 Daniel et al. Nov 2001 A1
20010044634 Don et al. Nov 2001 A1
20010051810 Dubrul et al. Dec 2001 A1
20020002396 Fulkerson Jan 2002 A1
20020004667 Adams et al. Jan 2002 A1
20020026211 Khosravi et al. Feb 2002 A1
20020058904 Boock et al. May 2002 A1
20020062135 Mazzocchi et al. May 2002 A1
20020072764 Sepetka et al. Jun 2002 A1
20020072765 Mazzocchi Jun 2002 A1
20020082558 Samson et al. Jun 2002 A1
20020123765 Sepetka et al. Sep 2002 A1
20020138094 Borillo et al. Sep 2002 A1
20020151928 Leslie et al. Oct 2002 A1
20020169474 Kusleika et al. Nov 2002 A1
20020188314 Anderson et al. Dec 2002 A1
20020193825 Mcguckin et al. Dec 2002 A1
20030004542 Wensel et al. Jan 2003 A1
20030023265 Forber Jan 2003 A1
20030040771 Hyodoh et al. Feb 2003 A1
20030050663 Khachin et al. Mar 2003 A1
20030060782 Bose et al. Mar 2003 A1
20030093087 Jones et al. May 2003 A1
20030144687 Brady et al. Jul 2003 A1
20030153935 Mialhe Aug 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030195556 Stack et al. Oct 2003 A1
20040068288 Palmer et al. Apr 2004 A1
20040073243 Sepetka et al. Apr 2004 A1
20040079429 Miller et al. Apr 2004 A1
20040133232 Rosenbluth et al. Jul 2004 A1
20040138692 Phung et al. Jul 2004 A1
20040153025 Seifert et al. Aug 2004 A1
20040153118 Clubb et al. Aug 2004 A1
20040172056 Guterman et al. Sep 2004 A1
20040199201 Kellett et al. Oct 2004 A1
20040199243 Yodfat Oct 2004 A1
20040210116 Nakao Oct 2004 A1
20040267301 Boylan et al. Dec 2004 A1
20050004594 Nool et al. Jan 2005 A1
20050033348 Sepetka et al. Feb 2005 A1
20050038447 Huffmaster Feb 2005 A1
20050043680 Segal et al. Feb 2005 A1
20050043756 Lavelle et al. Feb 2005 A1
20050049619 Sepetka et al. Mar 2005 A1
20050055033 Leslie et al. Mar 2005 A1
20050055047 Greenhalgh Mar 2005 A1
20050059995 Sepetka et al. Mar 2005 A1
20050080356 Dapolito et al. Apr 2005 A1
20050085826 Nair et al. Apr 2005 A1
20050085847 Galdonik et al. Apr 2005 A1
20050085849 Sepetka et al. Apr 2005 A1
20050090857 Kusleika et al. Apr 2005 A1
20050090858 Pavlovic Apr 2005 A1
20050125024 Sepetka et al. Jun 2005 A1
20050131450 Nicholson et al. Jun 2005 A1
20050171566 Kanamaru Aug 2005 A1
20050203571 Mazzocchi et al. Sep 2005 A1
20050209609 Wallace Sep 2005 A1
20050216030 Sepetka et al. Sep 2005 A1
20050216050 Sepetka et al. Sep 2005 A1
20050234501 Barone Oct 2005 A1
20050234505 Diaz et al. Oct 2005 A1
20050277978 Greenhalgh Dec 2005 A1
20050283166 Greenhalgh Dec 2005 A1
20050283186 Berrada et al. Dec 2005 A1
20060004404 Khachin et al. Jan 2006 A1
20060009784 Behl et al. Jan 2006 A1
20060030925 Pryor Feb 2006 A1
20060047286 West Mar 2006 A1
20060058836 Bose et al. Mar 2006 A1
20060058837 Bose et al. Mar 2006 A1
20060058838 Bose et al. Mar 2006 A1
20060095070 Gilson et al. May 2006 A1
20060129166 Lavelle Jun 2006 A1
20060129180 Tsugita et al. Jun 2006 A1
20060155305 Freudenthal et al. Jul 2006 A1
20060190070 Dieck et al. Aug 2006 A1
20060195137 Sepetka et al. Aug 2006 A1
20060229638 Abrams et al. Oct 2006 A1
20060253145 Lucas Nov 2006 A1
20060271153 Garcia et al. Nov 2006 A1
20060276805 Yu Dec 2006 A1
20060282111 Morsi Dec 2006 A1
20060287668 Fawzi et al. Dec 2006 A1
20070112374 Paul et al. May 2007 A1
20070118165 Demello et al. May 2007 A1
20070149996 Coughlin Jun 2007 A1
20070185500 Martin et al. Aug 2007 A1
20070185501 Martin et al. Aug 2007 A1
20070197103 Martin et al. Aug 2007 A1
20070198029 Martin et al. Aug 2007 A1
20070198030 Martin et al. Aug 2007 A1
20070198051 Clubb et al. Aug 2007 A1
20070225749 Martin et al. Sep 2007 A1
20070233236 Pryor Oct 2007 A1
20070265656 Amplatz et al. Nov 2007 A1
20080109031 Sepetka et al. May 2008 A1
20080183198 Sepetka et al. Jul 2008 A1
20080188885 Sepetka et al. Aug 2008 A1
20080262528 Martin Oct 2008 A1
20080262532 Martin Oct 2008 A1
20090069828 Martin et al. Mar 2009 A1
20090105722 Fulkerson et al. Apr 2009 A1
20090105737 Fulkerson et al. Apr 2009 A1
20090125053 Ferrera et al. May 2009 A1
20090192518 Leanna et al. Jul 2009 A1
20090287291 Becking et al. Nov 2009 A1
20090299393 Martin et al. Dec 2009 A1
20100076452 Sepetka et al. Mar 2010 A1
20100100106 Ferrera Apr 2010 A1
20100174309 Fulkerson et al. Jul 2010 A1
20100185210 Hauser et al. Jul 2010 A1
20100217187 Ferrera et al. Aug 2010 A1
20100256600 Ferrera Oct 2010 A1
20100268264 Bonnette Oct 2010 A1
20100318097 Cragg et al. Dec 2010 A1
20110015718 Schreck Jan 2011 A1
20110160742 Ferrera et al. Jun 2011 A1
20110160757 Ferrera et al. Jun 2011 A1
20110160760 Ferrera et al. Jun 2011 A1
20110160761 Ferrera et al. Jun 2011 A1
20110160763 Ferrera et al. Jun 2011 A1
20110166586 Sepetka et al. Jul 2011 A1
20110288572 Martin Nov 2011 A1
20110319917 Ferrera et al. Dec 2011 A1
20120143230 Sepetka et al. Jun 2012 A1
20120197285 Martin et al. Aug 2012 A1
20130030461 Marks et al. Jan 2013 A1
20130281788 Garrison Oct 2013 A1
20130289589 Krolik Oct 2013 A1
20140005717 Martin et al. Jan 2014 A1
20140276074 Warner Sep 2014 A1
20140276403 Follmer Sep 2014 A1
20140277013 Sepetka et al. Sep 2014 A1
20140309656 Gal et al. Oct 2014 A1
20140343595 Monstadt et al. Nov 2014 A1
20150359547 Vale et al. Dec 2015 A1
20160015402 Brady et al. Jan 2016 A1
20160015935 Chan et al. Jan 2016 A1
20160106448 Brady et al. Apr 2016 A1
20160106449 Brady et al. Apr 2016 A1
20160113663 Brady et al. Apr 2016 A1
20160113665 Brady et al. Apr 2016 A1
20160151618 Powers et al. Jun 2016 A1
20160157985 Vo et al. Jun 2016 A1
20160199620 Pokorney et al. Jul 2016 A1
20160296690 Kume et al. Oct 2016 A1
20160302808 Loganathan et al. Oct 2016 A1
20160354098 Martin et al. Dec 2016 A1
20160375180 Anzai Dec 2016 A1
20170079766 Wang et al. Mar 2017 A1
20170079767 Leon-yip Mar 2017 A1
20170086862 Vale et al. Mar 2017 A1
20170100143 Grandfield Apr 2017 A1
20170105743 Vale et al. Apr 2017 A1
20170164963 Goyal Jun 2017 A1
20170215902 Leynov et al. Aug 2017 A1
20170224953 Tran et al. Aug 2017 A1
20170259042 Nguyen Sep 2017 A1
20170281909 Northrop et al. Oct 2017 A1
20170290599 Youn et al. Oct 2017 A1
20180049762 Seip et al. Feb 2018 A1
20180084982 Yamashita et al. Mar 2018 A1
20180116717 Taff et al. May 2018 A1
20180132876 Zaidat May 2018 A1
20180140314 Goyal et al. May 2018 A1
20180140315 Bowman et al. May 2018 A1
20180140354 Lam et al. May 2018 A1
20180185614 Garrison et al. Jul 2018 A1
20180325531 Skillrud Nov 2018 A1
20180325532 Skillrud Nov 2018 A1
20180325534 Skillrud Nov 2018 A1
20180325535 Skillrud Nov 2018 A1
20180368863 Skillrud Dec 2018 A1
Foreign Referenced Citations (53)
Number Date Country
1640505 Jul 2005 CN
102036611 Apr 2011 CN
3501707 Jul 1986 DE
0200668 Nov 1986 EP
1312314 May 2003 EP
2319575 Nov 2013 EP
2002537943 Nov 2002 JP
2007522881 Aug 2007 JP
2007252951 Oct 2007 JP
2008539958 Nov 2008 JP
2011508635 Mar 2011 JP
2014004219 Jan 2014 JP
2018118132 Aug 2018 JP
20180102877 Sep 2018 KR
WO 9409845 May 1994 WO
WO 9509586 Apr 1995 WO
WO 9601591 Jan 1996 WO
WO 9617634 Jun 1996 WO
WO 9619941 Jul 1996 WO
WO 9727808 Aug 1997 WO
WO 9727893 Aug 1997 WO
WO 9803120 Jan 1998 WO
WO 0053120 Sep 2000 WO
WO 0072909 Dec 2000 WO
WO 0132254 May 2001 WO
WO 0154622 Aug 2001 WO
WO 0167967 Sep 2001 WO
WO 0228291 Apr 2002 WO
WO 03000334 Jan 2003 WO
WO 03061730 Jul 2003 WO
WO 03089039 Oct 2003 WO
WO 2006031410 Mar 2006 WO
WO 2006122076 Nov 2006 WO
WO 2007092820 Aug 2007 WO
WO 2008036156 Mar 2008 WO
WO 2008131116 Oct 2008 WO
WO 2009034456 Mar 2009 WO
WO 2009086482 Jul 2009 WO
WO 2011091383 Jul 2011 WO
WO 2012009675 Jan 2012 WO
WO 2012162437 Nov 2012 WO
WO 2013106146 Jul 2013 WO
WO 2015141317 Sep 2015 WO
WO 2017192999 Nov 2017 WO
WO 2018019829 Feb 2018 WO
WO 2018033401 Feb 2018 WO
WO 2018046408 Mar 2018 WO
WO 2018137029 Aug 2018 WO
WO 2018137030 Aug 2018 WO
WO 2018145212 Aug 2018 WO
WO 2018156813 Aug 2018 WO
WO 2018172891 Sep 2018 WO
WO 2018187776 Oct 2018 WO
Non-Patent Literature Citations (1)
Entry
European Search Report dated Feb. 8, 2021; European Patent Application No. 18819768.5; 8 pages.
Related Publications (1)
Number Date Country
20200015988 A1 Jan 2020 US
Divisions (1)
Number Date Country
Parent 15626265 Jun 2017 US
Child 16580415 US