The present invention relates to methods and devices that can both retract tissue away from a surgical incision and assist in closing the surgical incision.
Minimally invasive surgical techniques such as endoscopies and laparoscopies are often preferred over traditional open surgeries because the recovery time, pain, and surgery-related complications are typically less with minimally invasive surgical techniques. In many laparoscopic procedures, the abdominal cavity is insufflated with carbon dioxide gas to a pressure of approximately 15 mm Hg. The abdominal wall is pierced and a cannula or trocar that is approximately 5 to 10 mm in diameter is inserted into the abdominal cavity. Surgeons can then perform a variety of diagnostic procedures, such as visual inspection or removal of a tissue sample for biopsy, or treatment procedures, such as removal of a polyp or tumor or restructuring tissue.
Because of the rise in popularity of minimally invasive surgeries, there has been significant development with respect to the procedures and the instruments used in such procedures. For example, in some procedures a single incision at the navel can be sufficient to provide access to a surgical site. This is because the umbilicus can be a preferred way to access an abdominal cavity in a laparoscopic procedure. The umbilical incision can be easily enlarged without significantly compromising cosmesis and without significantly increasing the chances of wound complications, thus allowing multiple instruments to be introduced through a single incision.
In one common form of a single site laparoscopy procedure, an incision having a diameter of approximately 20 to 35 millimeters is formed and a surgical access device is disposed therein. The surgical access device forms a seal with the tissue of the opening and also forms a seal between the surgical site and the outside environment. The device typically includes a flexible retractor with one or more seal elements disposed in the retractor. Instruments can then be inserted into the seal elements for use at the surgical site while the seal between the surgical site and the outside environment is maintained. While having a surgical incision with a diameter of approximately 20 to 35 millimeters can improve the range of motion and access for instruments disposed in the surgical access device, and can also be quite useful for removing various specimen from the surgical site, it can sometimes require a significant amount of effort to close the surgical incision once the procedure is complete.
Accordingly, it would be desirable for a surgical access device, or a component of a surgical access device, such as a retractor, to include one or more features that help make closing the surgical incision in which the device was disposed easier.
Methods and devices are generally provided that allow for a surgical site to be accessed through a component of a surgical access device that is disposed in a surgical opening during a surgical procedure, and further, allow the component of the surgical access device to assist in closing the surgical opening in which the component was disposed. In one embodiment a surgical access device includes a housing having an opening extending therethrough and which is configured to be positioned adjacent to a surgical incision, a flexible retractor that can be removably and replaceably coupled to the housing and which is configured to be positioned within the surgical incision to provide access to a body cavity, and a wound closure component associated with a distal end of the retractor. The wound closure component can be configured to engage tissue adjacent to the surgical incision and can selectively move tissue from one side of the surgical incision toward a second side of the surgical incision. Such movement can assist in closing the surgical incision.
In one embodiment the wound closure component can include hooks. Each of the hooks can be coupled to a strand of suture that is removably disposed in at least a portion of the retractor. The hooks can be configured to engage the tissue that is adjacent to the surgical incision. A proximal end of each strand of suture can be configured to be approximated and pulled together in a direction away from the surgical incision. This, in turn, can pull closer together the tissue that is engaged by the hooks. Optionally, an actuation mechanism can be coupled to the proximal ends of the strands of suture. The actuation mechanism can be configured to approximate the strands of suture toward each other in a direction away from the surgical incision.
In another embodiment the wound closure component can include a ring having hooks disposed around a circumference of the ring. The hooks can be configured to engage the tissue that is adjacent to the surgical incision. The hooks can further be configured to be deployed into the tissue in response to a designated movement of the retractor. For example, the hooks can be deployed upon rotation of the retractor. In one embodiment the hooks can be configured to be approximated toward each other in response to a force that is applied to the retractor in a direction away from the surgical incision. The ring can include a hinge that is located along the circumference of the ring. In one embodiment the ring can be configured to be removed from the tissue in which it is disposed after the plurality of hooks are approximated toward each other.
An exemplary embodiment of a flexible retractor for use in a surgical procedure can include proximal and distal ends with a lumen extending therethrough to define a working channel and a wound closure component associated with the distal end of the retractor. The wound closure component can be configured to engage tissue adjacent to a surgical incision and approximate tissue adjacent to the surgical incision to assist in closing the surgical incision. In one embodiment the wound closure component can include hooks. Each of the hooks can be coupled to a strand of suture, and further, can be configured to engage the tissue adjacent to the surgical incision. Additionally, the strands of suture can be configured to be manipulated in such a way that the tissue engaged by the hooks is approximated. In another embodiment the wound closure component can include a ring having hooks disposed around its circumference. The hooks can be configured to engage the tissue adjacent to the surgical incision. In one embodiment the hooks can be configured to engage tissue in response to a designated movement of the retractor. For example, rotation of the retractor can cause the hooks to engage the tissue adjacent to the surgical incision. Further, the ring can include a hinge disposed thereon. In such an embodiment, the ring can be configured, for example, such that when the ring is moved in a direction away from the surgical incision, the ring pulls tissue adjacent to the surgical incision toward other tissue adjacent to the surgical incision.
One exemplary embodiment of a method for repairing a surgical wound includes positioning a surgical access retractor through an opening in tissue. The retractor can include a wound closure component. The wound closure component can engage tissue adjacent to a distal end of the retractor. The wound closure component can also be manipulated to approximate tissue adjacent to the opening in tissue, which in turn can close the surgical wound. The approximated tissue can then be sutured. In one embodiment, manipulating the wound closure component can include moving the wound closure component toward an outside environment. In another embodiment, manipulating the wound closure component can include cinching strands of suture coupled to the tissue adjacent to the distal end of the retractor toward each other.
This invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention. Like-numbered components of the embodiments generally have similar features, and thus within a particular embodiment each feature of each like-numbered component is not necessarily fully elaborated upon. A person having skill in the art will recognize that features of one component can generally be incorporated into other like-numbered components.
A surgical access device is generally provided for minimally-invasive surgeries such as laparoscopic surgeries. The surgical access device can be disposed in a body to allow for access to a surgical site from outside of the body. The device can generally be configured to receive one or more instruments through the device so that the instruments can be used to perform a desired procedure. The device can have a number of different components, or it can be a single component. One component that can be used as a surgical access device, or in conjunction with a surgical access device, is a retractor. More specifically, a retractor can be disposed in a surgical incision or opening and can provide access from an outside environment to a surgical site, such as a body cavity. The retractor can form a seal between tissue of the incision in which it is disposed and the retractor itself. Further, the retractor can be associated with or include one or more seal elements disposed therein. The retractor, in conjunction with the seal elements, can form a seal between the surgical location and the outside environment. Procedures can be performed by disposing instruments in the seal elements, and once a procedure is complete, the retractor and seal elements can be removed from the surgical opening and the surgical opening or wound can be closed. The terms “surgical opening,” “incision,” and “wound” are used interchangeably throughout.
In exemplary embodiments the retractor can include one or more features to assist in closing the surgical incision in which it is disposed. Accordingly, as or after the retractor is removed, one or more wound closure components can be used to help close the wound. The wound closure component(s) can be associated or incorporated with the retractor before, while, or after the retractor is disposed in the surgical incision. In one embodiment, as the retractor is removed, a wound closure component can selectively move tissue from one side of the surgical incision toward a second side of the surgical incision. By associating or incorporating a wound closure component with the retractor, a surgical incision can be closed without inserting additional tools into the body. This consolidation of functions into a single device is a novel approach for accessing a surgical site through an opening and then closing the opening. Wound closure components can have a variety of configurations, some of which are described below, but generally a wound closure component can be configured to assist with closing a surgical incision following a surgical procedure.
A retractor associated with a wound closure component can be configured to operate on its own as a surgical access device, but it can also be incorporated into a surgical access device having other components. A surgical access device can include any number of components and features, but in one exemplary embodiment it can include a housing with an opening extending therethrough and capable of receiving a retractor with a wound closure component associated therewith. The housing can be configured to be located outside of the body and be positioned adjacent to the surgical opening. The retractor can be removably and replaceably coupled to the housing, for instance by way of male and female components associated with the retractor and housing, a snap-fit configuration, an interference-fit configuration, or any number of ways by which two components can be coupled.
The surgical access device can also include one or more seal elements. The seal elements can be generally flexible and can be configured to be disposed, at least in part, in the retractor, or alternatively, the seal elements can be configured to be coupled to the housing, proximal of the retractor. The seal elements can have bodies and can be generally configured to both receive instruments through a sealable opening formed in the bodies for use at a surgical site and to maintain a seal between a surgical site and an outside environment, thereby limiting or preventing fluid from passing therebetween. The sealable opening can be configured to form a seal itself when no instrument is disposed therein, and to conform to and seal around an instrument disposed within the sealable opening. It can be advantageous to have one seal element be configured to receive an instrument for providing insufflation to the surgical site, although in some embodiments the housing and/or retractor can include an opening for providing insufflation.
The seal elements can have a variety of shapes, sizes, and features, depending at least in part on the size of the incision, housing, and/or retractor in which they will be disposed, the surgical device components and instrument with which they will be used, and the type of surgical procedure with which they will be used. Any type of seal element can be used in conjunction with the surgical access devices and/or retractors disclosed herein, including, but not limited to elongate, rounded, gel, multi-layer, duckbill, gimbal, zero-closure, diaphragm, and septum seal elements, each of which can serve particular purposes.
One exemplary embodiment of a retractor 20 having a wound closure component associated therewith is illustrated in
The retractor 20 can be configured to be generally flexible, and thus can be made from a flexible material, such as a polymer. Examples of flexible materials that can be used to form the retractor include polyisoprene, polyurthethane, and silicone. More than one material can be used to form the retractor, and the retractor can include some portions that are more rigid than other portions. For example, more rigid portions of a retractor can be made from materials such as polycarbonate, polyester, polyetherimide, or stainless steel, while more flexible portions can be made from materials such as polyisoprene, polyurthethane, and silicone. Another non-limiting exemplary embodiment of a retractor that can be used with the teachings described herein is described in greater detail in U.S. patent application Ser. No. 12/420,107 entitled “Retractor with Flexible Sleeve” of Shelton et al., and filed on Apr. 8, 2009, which is hereby incorporated by reference in its entirety.
While the retractor can be configured to have a variety of shapes and sizes, depending at least in part on the size of the incision in which it will be disposed, additional components with which it will be used, and the type of surgical procedure with which it will be used, the retractor 20 in the illustrated embodiment has a body that is generally cylindrical and includes a flange 26 at the proximal end 20p. The flange 26 can help retract tissue 102 at a proximal end of the surgical incision 104. In alternative embodiments the retractor can include a flange at the distal end 20d to also assist in retracting tissue away from the surgical opening. The wound closure component 40 of the retractor 20 can also help retract tissue 102 at a distal end of the surgical incision 104.
As shown, the flange 26 at the proximal end 20p of the retractor 20 can have openings 28 formed therein. The openings 28 can extend through the body 22 of the retractor 20 and out the distal end 20d. A portion of the wound closure component 40 can be disposed in the openings 28. In the illustrated embodiment the wound closure component 40 includes suture strands 42 disposed in each opening 28, as well as barbs or hooks 44 that are configured to engage tissue 102 adjacent the surgical incision 104 near the distal end 20d of the retractor 20, which can be attached to distal ends of the strands 42. The length of the suture strands 42, and the size and shape of the hooks 44, can depend on a variety of different factors, including but not limited to the sizes and shapes of the components with which they are associated and the type of surgical procedure with which the strands and hooks are used. Nevertheless, generally the strands 42 are long enough so that they can be operated from a location outside of the body and can engage a distal end of the surgical incision 104 and the hooks 44 are configured to promote engagement with tissue 102 near the distal end of the surgical incision. The hooks 44 can be made of a variety of materials, including, for example, stainless steel or nitinol. The hooks 44 can generally be implantable, and in one embodiment the hooks are bioabsorbable.
In use, the hooks 44 can engage the tissue 102 in a variety of manners, some of which are disclosed further below with respect to
The operation of the retractor 120 of
The housing 215 can have any number of shapes, sizes, and configurations, depending at least in part on the size of the incision with which it will be used, the surgical device components with which it will be used, and the type of surgical procedure with which it will be used. In the illustrated embodiment the housing 215 is substantially disk-shaped. The housing 215 can be configured to receive one or more seal elements, a retractor, and/or a wound closure component in a removable and replaceable configuration. In some embodiments the seal elements can be disposed in the retractor itself, while in other embodiments the seal elements can be formed in a separate component disposed in the housing, proximal of the retractor. In the illustrated embodiment, as seen in
In use, as shown in
The hooks 244 of the wound closure component 240, which as shown in
After the wound closure component 240 engages the tissue 302, a variety of techniques can be performed to approximate the tissue adjacent to the surgical opening 304 for wound closure. In the illustrated embodiment, as shown in
Although in the illustrated embodiment the wound 304 is closed with tissue 302 extending outside of the body, in other embodiments the wound 304 can be closed within the body, below the housing 215, or after the housing 215 has been removed. Further, while in the illustrated embodiment the wound closure component 240 is configured to couple to the housing 215, in other embodiments it can be configured to pass through the housing 215 and couple to the retractor 220. Still further, any of the housing 215, the retractor 220, and the wound closure component 240 can be integrally formed. A person having skill in the art will recognize that a number of different combinations and configurations can be used in conjunction with a housing, a retractor, one or more seal elements, and one or more wound closure components without departing from the spirit of the invention, including the elimination of one or more components, such as the housing.
Another embodiment of a retractor 320 having a wound closure component 340 associated therewith and including a ring 342 at a distal end 320d thereof with a plurality of associated barbs or hooks 344 is illustrated in
The ring 342 of the wound closure component 340 can be associated with the distal end 320d of the retractor 320 in any number of ways. By way of non-limiting example, the ring can be integrally formed with the distal end of the retractor. Alternatively, the distal end of the retractor can include a sleeve configured to receive the ring, for example in a set or removable configuration. In the illustrated embodiment elongate holding members 346 extend from the proximal flange 326 of the retractor and are coupled to the ring 342 to maintain the ring in a desired location near the distal end 320d of the retractor 320. The holding members 346 can be generally flexible but can be generally rigid enough to maintain a position of the ring 342 as desired.
The ring 342 can be configured in a manner that allows it to close a surgical opening 404. As shown, the ring 342 can include hinges 348 that allow the ring to fold (
The ring 342 can generally have any size and shape, and can be made from any number of materials, all of which can depend, at least in part, on the size of the retractor and other components with which it will be used, the size of the incision with which it will be used, and the type of surgical procedure with which it will be used. As shown, the ring 342 is substantially circular and includes five hooks 344 on each side of the ring. Any number of hooks 344 can be used. The ring 342 can have a diameter that is approximately equal to the diameter of the lumen 324 extending through the retractor 320. The ring 342 can generally be semi-rigid, and non-limiting examples of materials that can be used to form the ring include stainless steel, such as from the 300 series, nitinol, and plastic, such as filled nylon.
In use, as shown in
Once a desired location for the ring 442 is reached, the wound closure component 440 can be actuated to engage the tissue 502 adjacent to the distal end 420d of the retractor 420. Actuation of the wound closure component 440 can cause the hooks 444 to move away from each other and place the ring 442 in its circular, deployed configuration, illustrated in
As illustrated in
Similar to the surgical access device 210, different configurations of the surgical access device 410 can include different locations for approximating the tissue 502 and closing the wound 504 and different combinations and configurations of components such as the housing 415, the retractor 420, and the wound closure component 440 without departing from the spirit of the invention.
While the illustrated embodiments discussed thus far include wound closure components associated with retractors, in other embodiments the wound closure components can be separate from the retractors. One embodiment of a wound closure tool 510 is illustrated in
In one exemplary embodiment each rake 570, 580 is made from two different materials—the proximal ends 570p, 580p include a reinforced flexible polymer and the distal ends 570d, 580d include an absorbable polymer that can remain disposed in the body after the procedure is complete. Optionally, as shown in
In use, the tool 510 can be inserted into a surgical opening 604 formed in tissue 602. During insertion, the rakes 570, 580 can each be in a generally vertical configuration, illustrated in
In embodiments in which at least one of the rakes 570, 580 includes openings 574 and/or adhesives 576 as part of the proximal end 570p, and/or in embodiments in which the distal ends 570d, 580d of at least one of the rakes 570, 580 are made of an absorbable material, the rakes 570, 580 can remain associated with the incision 604 even after the procedure is completed. More particularly, sutures or staples can be inserted through the openings 574 on the front side 570f of the proximal end 570p to couple the rake 570 to the tissue. Likewise, the adhesive 576 disposed on the back side 570b of the proximal end 570p can join with the tissue 602 to further secure the rake 570 to the tissue 602. While the illustrated embodiment does not include one or more surgical access device components, such as a retractor, the tool 510 can also be used with such components.
In use, as shown in
As illustrated in
Similar to the surgical access devices 210, 410, different configurations of the surgical access device 610 can include different locations for approximating the tissue 702 and closing the wound 704 and different combinations and configurations of components such as the housing 615, the retractor 620, and the wound closure component 640 without departing from the spirit of the invention.
A person having skill in the art will recognize that many of the configurations and techniques disclosed herein can be mixed and matched as desired. For example, a wound closure component can include both sutures with hooks disposed on a distal end thereof and a ring having hooks formed along a circumference thereof. Similarly, adhesives can be used in conjunction with components that include hooks, or alternatively, a tool like the tool 510 of
A person skilled in the art will appreciate that the present invention has application in conventional endoscopic and open surgical instrumentation as well application in robotic-assisted surgery. For instance, by way of non-limiting example, the tool 510 of
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
Preferably, the devices described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and its contents are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.
It is preferred that device is sterilized. This can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, steam.
One skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2129391 | Wappler | Sep 1938 | A |
3402710 | Paleschuck | Sep 1968 | A |
3654965 | Gramain | Apr 1972 | A |
4112932 | Chiulli | Sep 1978 | A |
4306545 | Ivan et al. | Dec 1981 | A |
4379458 | Bauer et al. | Apr 1983 | A |
4402683 | Kopman | Sep 1983 | A |
4417888 | Cosentino et al. | Nov 1983 | A |
5010925 | Atkinson et al. | Apr 1991 | A |
5091435 | Suzuki et al. | Feb 1992 | A |
5183471 | Wilk | Feb 1993 | A |
5197955 | Stephens et al. | Mar 1993 | A |
5207213 | Auhll et al. | May 1993 | A |
5209737 | Ritchart et al. | May 1993 | A |
5209741 | Spaeth | May 1993 | A |
5235966 | Jamner | Aug 1993 | A |
5269772 | Wilk | Dec 1993 | A |
5308336 | Hart et al. | May 1994 | A |
5312417 | Wilk | May 1994 | A |
5320611 | Bonutti et al. | Jun 1994 | A |
5342315 | Rowe et al. | Aug 1994 | A |
5366478 | Brinkerhoff et al. | Nov 1994 | A |
5385553 | Hart et al. | Jan 1995 | A |
5385560 | Wulf | Jan 1995 | A |
5391154 | Young | Feb 1995 | A |
5431676 | Dubrul et al. | Jul 1995 | A |
5443452 | Hart et al. | Aug 1995 | A |
5443484 | Kirsch et al. | Aug 1995 | A |
5476475 | Gadberry | Dec 1995 | A |
5480410 | Cuschieri et al. | Jan 1996 | A |
5531758 | Uschold et al. | Jul 1996 | A |
5545179 | Williamson, IV | Aug 1996 | A |
5562677 | Hildwein et al. | Oct 1996 | A |
5569205 | Hart et al. | Oct 1996 | A |
5569254 | Carlson et al. | Oct 1996 | A |
5584850 | Hart et al. | Dec 1996 | A |
5628732 | Antoon, Jr. et al. | May 1997 | A |
5634911 | Hermann et al. | Jun 1997 | A |
5634937 | Mollenauer et al. | Jun 1997 | A |
5643301 | Mollenauer | Jul 1997 | A |
5653705 | de la Torre et al. | Aug 1997 | A |
5653718 | Yoon | Aug 1997 | A |
5672168 | de la Torre et al. | Sep 1997 | A |
5676657 | Yoon | Oct 1997 | A |
5695448 | Kimura et al. | Dec 1997 | A |
5707359 | Bufalini | Jan 1998 | A |
5752970 | Yoon | May 1998 | A |
5782812 | Hart et al. | Jul 1998 | A |
5797888 | Yoon | Aug 1998 | A |
5803919 | Hart et al. | Sep 1998 | A |
5814058 | Carlson et al. | Sep 1998 | A |
5827319 | Carlson et al. | Oct 1998 | A |
5843040 | Exline | Dec 1998 | A |
5865807 | Blake, III | Feb 1999 | A |
5868762 | Cragg et al. | Feb 1999 | A |
5882344 | Stouder, Jr. | Mar 1999 | A |
5891013 | Thompson | Apr 1999 | A |
5899208 | Bonadio | May 1999 | A |
5906577 | Beane et al. | May 1999 | A |
5946280 | Ohkubo | Aug 1999 | A |
5957913 | de la Torre et al. | Sep 1999 | A |
5964782 | Lafontaine et al. | Oct 1999 | A |
5990382 | Fox | Nov 1999 | A |
5997515 | de la Torre et al. | Dec 1999 | A |
6024736 | de la Torre et al. | Feb 2000 | A |
RE36702 | Green et al. | May 2000 | E |
6056766 | Thompson et al. | May 2000 | A |
6066090 | Yoon | May 2000 | A |
6077288 | Shimomura et al. | Jun 2000 | A |
6080174 | Dubrul et al. | Jun 2000 | A |
6086603 | Termin et al. | Jul 2000 | A |
6120513 | Bailey et al. | Sep 2000 | A |
6123689 | To et al. | Sep 2000 | A |
6142396 | Gallus | Nov 2000 | A |
6142936 | Beane et al. | Nov 2000 | A |
6162196 | Hart et al. | Dec 2000 | A |
6217555 | Hart et al. | Apr 2001 | B1 |
6245052 | Orth et al. | Jun 2001 | B1 |
6258069 | Carpentier et al. | Jul 2001 | B1 |
6277064 | Yoon | Aug 2001 | B1 |
6315770 | de la Torre et al. | Nov 2001 | B1 |
6319246 | de la Torre et al. | Nov 2001 | B1 |
6325812 | Dubrul et al. | Dec 2001 | B1 |
6348034 | Thompson | Feb 2002 | B1 |
6352503 | Matsui et al. | Mar 2002 | B1 |
6440061 | Wenner et al. | Aug 2002 | B1 |
6440063 | Beane et al. | Aug 2002 | B1 |
6447489 | Peterson | Sep 2002 | B1 |
6454783 | Piskun | Sep 2002 | B1 |
6458077 | Boebel et al. | Oct 2002 | B1 |
6488620 | Segermark et al. | Dec 2002 | B1 |
6551270 | Bimbo et al. | Apr 2003 | B1 |
6551282 | Exline et al. | Apr 2003 | B1 |
6589167 | Shimomura et al. | Jul 2003 | B1 |
6605063 | Bousquet | Aug 2003 | B2 |
6669674 | Macoviak et al. | Dec 2003 | B1 |
6702787 | Racenet et al. | Mar 2004 | B2 |
6706033 | Martinez et al. | Mar 2004 | B1 |
6706050 | Giannadakis | Mar 2004 | B1 |
6908430 | Caldwell et al. | Jun 2005 | B2 |
6939296 | Ewers et al. | Sep 2005 | B2 |
6945932 | Caldwell et al. | Sep 2005 | B1 |
6972026 | Caldwell et al. | Dec 2005 | B1 |
7014628 | Bousquet | Mar 2006 | B2 |
7052454 | Taylor | May 2006 | B2 |
7083626 | Hart et al. | Aug 2006 | B2 |
7118528 | Piskun | Oct 2006 | B1 |
7163510 | Kahle et al. | Jan 2007 | B2 |
7163525 | Franer | Jan 2007 | B2 |
7214185 | Rosney et al. | May 2007 | B1 |
7229408 | Douglas et al. | Jun 2007 | B2 |
7338473 | Campbell et al. | Mar 2008 | B2 |
7344547 | Piskun | Mar 2008 | B2 |
7371227 | Zeiner | May 2008 | B2 |
7393322 | Wenchell | Jul 2008 | B2 |
7449011 | Wenchell et al. | Nov 2008 | B2 |
7481795 | Thompson et al. | Jan 2009 | B2 |
20020156432 | Racenet et al. | Oct 2002 | A1 |
20030028179 | Piskun | Feb 2003 | A1 |
20030139756 | Brustad | Jul 2003 | A1 |
20030216770 | Persidsky et al. | Nov 2003 | A1 |
20040015185 | Ewers et al. | Jan 2004 | A1 |
20040019322 | Hoffmann | Jan 2004 | A1 |
20040082969 | Kerr | Apr 2004 | A1 |
20040092965 | Parihar | May 2004 | A1 |
20040106942 | Taylor et al. | Jun 2004 | A1 |
20040117032 | Roth | Jun 2004 | A1 |
20040138528 | Richter et al. | Jul 2004 | A1 |
20040199121 | Wenchell et al. | Oct 2004 | A1 |
20040215063 | Bonadio et al. | Oct 2004 | A1 |
20040230160 | Blanco | Nov 2004 | A1 |
20040230161 | Zeiner | Nov 2004 | A1 |
20040254426 | Wenchell | Dec 2004 | A1 |
20050020884 | Hart et al. | Jan 2005 | A1 |
20050033342 | Hart et al. | Feb 2005 | A1 |
20050085842 | Eversull et al. | Apr 2005 | A1 |
20050137609 | Guiraudon | Jun 2005 | A1 |
20050148823 | Vaugh et al. | Jul 2005 | A1 |
20050155611 | Vaugh et al. | Jul 2005 | A1 |
20050192483 | Bonadio et al. | Sep 2005 | A1 |
20050209608 | O'Heeron | Sep 2005 | A1 |
20050215862 | Larson et al. | Sep 2005 | A1 |
20050216028 | Hart et al. | Sep 2005 | A1 |
20050222582 | Wenchell | Oct 2005 | A1 |
20050267419 | Smith | Dec 2005 | A1 |
20050273132 | Shluzas et al. | Dec 2005 | A1 |
20050277946 | Greenhalgh | Dec 2005 | A1 |
20060012965 | Beall et al. | Jan 2006 | A1 |
20060019592 | Kupferberg et al. | Jan 2006 | A1 |
20060019723 | Vorenkamp et al. | Jan 2006 | A1 |
20060020241 | Piskun et al. | Jan 2006 | A1 |
20060020281 | Smith | Jan 2006 | A1 |
20060021061 | Cerri et al. | Jan 2006 | A1 |
20060021891 | Franer et al. | Feb 2006 | A1 |
20060025813 | Shelton et al. | Feb 2006 | A1 |
20060030755 | Ewers et al. | Feb 2006 | A1 |
20060071432 | Staudner | Apr 2006 | A1 |
20060129165 | Edoga et al. | Jun 2006 | A1 |
20060212061 | Wenchell | Sep 2006 | A1 |
20060212062 | Farascioni | Sep 2006 | A1 |
20060217665 | Prosek | Sep 2006 | A1 |
20060224129 | Beasley et al. | Oct 2006 | A1 |
20060224164 | Hart et al. | Oct 2006 | A1 |
20060229501 | Jensen et al. | Oct 2006 | A1 |
20060241651 | Wilk | Oct 2006 | A1 |
20060241671 | Greenhalgh | Oct 2006 | A1 |
20060247498 | Bonadio et al. | Nov 2006 | A1 |
20060247500 | Voegele et al. | Nov 2006 | A1 |
20060247516 | Hess et al. | Nov 2006 | A1 |
20060247586 | Voegele et al. | Nov 2006 | A1 |
20060247673 | Voegele et al. | Nov 2006 | A1 |
20060247678 | Weisenburgh et al. | Nov 2006 | A1 |
20060258899 | Gill et al. | Nov 2006 | A1 |
20060264706 | Piskun | Nov 2006 | A1 |
20060270911 | Voegele et al. | Nov 2006 | A1 |
20070049966 | Bonadio et al. | Mar 2007 | A1 |
20070060939 | Lancial et al. | Mar 2007 | A1 |
20070085232 | Brustad et al. | Apr 2007 | A1 |
20070088202 | Albrecht et al. | Apr 2007 | A1 |
20070088204 | Albrecht et al. | Apr 2007 | A1 |
20070088258 | Wenchell et al. | Apr 2007 | A1 |
20070088277 | McGinley et al. | Apr 2007 | A1 |
20070118021 | Pokorney | May 2007 | A1 |
20070118175 | Butler et al. | May 2007 | A1 |
20070151566 | Kahle et al. | Jul 2007 | A1 |
20070185453 | Michael et al. | Aug 2007 | A1 |
20070208312 | Norton et al. | Sep 2007 | A1 |
20070255219 | Vaugh et al. | Nov 2007 | A1 |
20080009797 | Stellon et al. | Jan 2008 | A1 |
20080025519 | Yu et al. | Jan 2008 | A1 |
20080027476 | Piskun | Jan 2008 | A1 |
20080051739 | McFarlane | Feb 2008 | A1 |
20080058728 | Soltz et al. | Mar 2008 | A1 |
20080065021 | Jenkins et al. | Mar 2008 | A1 |
20080086080 | Mastri et al. | Apr 2008 | A1 |
20080119821 | Agnihotri et al. | May 2008 | A1 |
20080132765 | Beckman et al. | Jun 2008 | A1 |
20080255519 | Piskun et al. | Oct 2008 | A1 |
20080281161 | Albrecht et al. | Nov 2008 | A1 |
20090005799 | Franer et al. | Jan 2009 | A1 |
20090082731 | Moreno | Mar 2009 | A1 |
20090118587 | Voegele et al. | May 2009 | A1 |
20090187079 | Albrecht et al. | Jul 2009 | A1 |
20090270685 | Moreno et al. | Oct 2009 | A1 |
20090270686 | Duke et al. | Oct 2009 | A1 |
20090270818 | Duke | Oct 2009 | A1 |
20100010310 | Weisenburgh, II et al. | Jan 2010 | A1 |
20100081863 | Hess et al. | Apr 2010 | A1 |
20100081864 | Hess et al. | Apr 2010 | A1 |
20100081871 | Widenhouse et al. | Apr 2010 | A1 |
20100081880 | Widenhouse et al. | Apr 2010 | A1 |
20100081881 | Murray et al. | Apr 2010 | A1 |
20100081882 | Hess et al. | Apr 2010 | A1 |
20100081883 | Murray et al. | Apr 2010 | A1 |
20100081995 | Widenhouse et al. | Apr 2010 | A1 |
20100228090 | Weisenburgh, II et al. | Sep 2010 | A1 |
20100228091 | Widenhouse et al. | Sep 2010 | A1 |
20100228092 | Ortiz et al. | Sep 2010 | A1 |
20100228094 | Ortiz et al. | Sep 2010 | A1 |
20100228096 | Weisenburgh, II et al. | Sep 2010 | A1 |
20100228198 | Widenhouse et al. | Sep 2010 | A1 |
20100249525 | Shelton, IV et al. | Sep 2010 | A1 |
20100261970 | Shelton, IV et al. | Oct 2010 | A1 |
20100261972 | Widenhouse et al. | Oct 2010 | A1 |
20100261974 | Shelton, IV et al. | Oct 2010 | A1 |
20100262080 | Shelton, IV et al. | Oct 2010 | A1 |
20100268162 | Shelton, IV et al. | Oct 2010 | A1 |
20100274093 | Shelton, IV | Oct 2010 | A1 |
20100280327 | Nobis et al. | Nov 2010 | A1 |
20100312060 | Widenhouse et al. | Dec 2010 | A1 |
20100312061 | Hess et al. | Dec 2010 | A1 |
20100312062 | Cropper et al. | Dec 2010 | A1 |
20100312063 | Hess et al. | Dec 2010 | A1 |
20100312064 | Weisenburgh, II et al. | Dec 2010 | A1 |
20100312065 | Shelton, IV et al. | Dec 2010 | A1 |
20100312066 | Cropper et al. | Dec 2010 | A1 |
20100312189 | Shelton, IV et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
19814576 | Oct 1999 | DE |
20022005 | Apr 2001 | DE |
568383 | Nov 1993 | EP |
577400 | Jan 1994 | EP |
0637431 | Feb 1995 | EP |
646358 | Apr 1995 | EP |
709918 | May 1996 | EP |
0776231 | Jun 1997 | EP |
950376 | Oct 1999 | EP |
1219251 | Jul 2002 | EP |
1219252 | Jul 2002 | EP |
1219253 | Jul 2002 | EP |
1350476 | Oct 2003 | EP |
1702575 | Sep 2006 | EP |
1731105 | Dec 2006 | EP |
1774918 | Apr 2007 | EP |
2119404 | Nov 2009 | EP |
2710270 | Mar 1995 | FR |
2006320750 | Nov 2006 | JP |
9407552 | Apr 1994 | WO |
9602297 | Feb 1996 | WO |
9608897 | Mar 1996 | WO |
9636283 | Nov 1996 | WO |
9743958 | Nov 1997 | WO |
0032263 | Jun 2000 | WO |
0041759 | Jul 2000 | WO |
0108563 | Feb 2001 | WO |
0217800 | Mar 2002 | WO |
2004030515 | Apr 2004 | WO |
2005000454 | Jan 2005 | WO |
2005002454 | Jan 2005 | WO |
2005087112 | Sep 2005 | WO |
2005094432 | Oct 2005 | WO |
2005097019 | Oct 2005 | WO |
2005097234 | Oct 2005 | WO |
2006057982 | Jun 2006 | WO |
2007008741 | Jan 2007 | WO |
2007119232 | Oct 2007 | WO |
2008024502 | Feb 2008 | WO |
2008028149 | Mar 2008 | WO |
2008121294 | Oct 2008 | WO |
2009035663 | Mar 2009 | WO |
Entry |
---|
U.S. Appl. No. 12/420,202 (“Surgical Access Device Having Removable and Replaceable Components” of Shelton et al.). |
International Search Report and Written Opinion for International App. No. PCT/US2010/036811 dated Sep. 14, 2010 (6 pages). |
International Search Report, from PCT/US10/36829, mailed Sep. 9, 2010 (5 pages). |
European Search Report, EP 10250732, dated Jul. 28, 2010. |
International Search Report and Written Opinion for Application No. PCT/US2010/037190, dated Sep. 22, 2010 (15 pages). |
“Surgeon performs single-port laparoscopic surgery > Kidney removal with instructions inserted through single port access SPA > One Port Umbilicus Surgery OPUS > Uretero-pelvic junction repair > Bilateral pyeloplasy > Triport > Quadport > R-Port laparoscopic access device > Advanced Surgical Concepts ASC” Ideas for Surgery.com, Dec. 2007, 4 pages. |
Desai, Mihir M. et al., “Laparoscopic and Robtic Urology-Scarless single port transumbilical nephrectomy and pyeloplasty: first clinical report,” Journal Compilation, 2008 BJU International, 101, pp. 83-88. |
Lee D, et al. Novel Approach to Minimizing Trocar Sites during Challenging Hand-Assisted Laparoscopic Surgery Utilizing the GelPort: Trans-Gel Instrument and Utilization, Journal of Endourology, vol. 17, No. 2, Mar. 2003, pp. 69-71. |
Nakajima K, et al. Hand-assisted laparoscopic colorectal surgery using GelPort, Surg Endosc. Jan. 2004; 18(1)102-5. Epub Sep. 10, 2003. |
Nakajima K, et al. Use of the surgical towel in colorectal hand-assisted laparoscopic surgery (HALS), Surg Endosc. Mar. 2004; 18(3):552-3. |
Patel, R. et al. “Hand-Assisted Laparoscopic Devices: The Second Generation,” Journal of Endourology, vol. 18, No. 7, Sep. 2004, pp. 649-653. |
Rane, A. et al., “Single-Port Access Nephrectomy and Other Laparoscopic Urologic Procedures Using a Novel Laparoscopic Port (R-Port),” Urology, Aug. 2008; 72(2):260-264. |
International Search Report and Written Opinion for Application No. PCT/US2010/036806, dated Sep. 3, 2010 (8 pages). |
International Search Report and Written Opinion for Application No. PCT/US2010/036820, dated Oct. 22, 2010 (18 pages). |
Number | Date | Country | |
---|---|---|---|
20100312064 A1 | Dec 2010 | US |