Retrievable device having a reticulation portion with staggered struts

Information

  • Patent Grant
  • 8845677
  • Patent Number
    8,845,677
  • Date Filed
    Friday, December 23, 2011
    13 years ago
  • Date Issued
    Tuesday, September 30, 2014
    10 years ago
Abstract
A retrievable device for treatment of a stenotic lesion in a body vessel is disclosed. The device comprises a reticulation portion including a plurality of struts connected together in a singly staggered configuration distally along a longitudinal axis. The plurality of struts of the reticulation portion is configured to fold along the longitudinal axis defining a collapsed state of the device for retrieval. The device further includes an expandable body distally extending from the reticulation portion along an outer diameter for treatment of the stenotic lesion. The expandable body is configured to expand in the open state and collapsed in the collapsed state of the reticulation portion for retrieval. The device further comprises a retrieval stem extending proximally from the reticulation portion for retrieval of the device in the collapsed state.
Description
BACKGROUND OF THE INVENTION

The present invention relates to medical devices. More particularly, the present invention relates to retrievable devices, methods for treating a stenotic lesion in a body vessel, and methods for capturing emboli during treatment of a stenotic lesion within a body vessel.


Treatments for a stenotic lesion are continuously being improved. One example is the treatment for carotid artery stenosis. Generally, carotid artery stenosis is the narrowing of the carotid arteries, the main arteries in the neck that supply blood to the brain. Carotid artery stenosis (also called carotid artery disease) is a relatively high risk factor for ischemic stroke. The narrowing is usually caused by plaque build-up in the carotid artery. Plaque forms when cholesterol, fat and other substances form in the inner lining of an artery. This formation process is called atherosclerosis.


Depending on the degree of stenosis and the patient's overall condition, carotid artery stenosis has been treated with surgery. The procedure (with its inherent risks) is called carotid endarterectomy, which removes the plaque from the arterial walls. Carotid endarterectomy has proven to benefit patients with arteries substantially narrowed, e.g., by about 70% or more. For people with less narrowed arteries, e.g., less than about 50%, an anti-clotting drug may be prescribed to reduce the risk of ischemic stroke. Examples of these drugs are anti-platelet agents and anticoagulants.


Carotid angioplasty is a more recently developed treatment for carotid artery stenosis. This treatment uses balloons and/or stents to open a narrowed artery. Carotid angioplasty is a procedure that can be performed via a standard percutaneous transfemoral approach with the patient anesthetized using light intravenous sedation. At the stenosis area, an angioplasty balloon is delivered to predilate the stenosis in preparation for stent placement. The balloon is then removed and exchanged via catheter for a stent delivery device. Once in position, a stent is deployed across the stenotic area. If needed, an additional balloon can be placed inside the deployed stent for post-dilation to make sure the struts of the stent are pressed firmly against the inner surface of the vessel wall.


Currently, stents used for treatment of a stenosis are typically permanent devices when deployed in a body vessel. In many situations, when a stenosis condition has passed, the deployed stent can not be removed from the patient.


Thus, there is a need to provide a retrievable device, e.g., a stent, for treatment of a stenosis in a body vessel.


BRIEF SUMMARY OF THE INVENTION

The present invention generally provides a retrievable device for treatment of a stenotic lesion in a body vessel, allowing for removal of the device after a stenosis condition has passed in the body vessel. Embodiments of the present invention provide a device for treating a stenotic lesion of a blood vessel while allowing removal of the device after the stenosis condition has passed.


In one embodiment, the present invention provides a retrievable device for treatment of a stenotic lesion in a body vessel. The device comprises a reticulation portion having a deployed state and a collapsed state. The reticulation portion includes a plurality of struts connected together in a singly staggered configuration distally along a longitudinal axis. The plurality of struts of the reticulation portion is configured to fold along the longitudinal axis defining a collapsed state of the device for retrieval. The device further comprises an expandable body distally extending from the reticulation portion along on outer diameter for treatment of the stenotic lesion. The expandable body is configured to expand in the deployed state and collapsed in the collapsed state of the reticulation portion for retrieval. The device further comprises a retrieval stem extending proximally from the reticulation portion for retrieval of the device in the collapsed state.


In another embodiment, the present invention provides for an angioplasty assembly having a retrievable stent for treating a stenotic lesion in a body vessel. The assembly comprises an outer catheter including a tubular body having a distal end. The assembly further comprises a retrievable stent coaxially disposable within the tubular body of the outer catheter and deployable through the distal end thereof for treatment of the stenotic lesion in the body vessel. In this embodiment, the stent comprises the reticulation portion, the expandable body, and the retrieval stem.


In another example, the present invention provides a method for treating a stenotic lesion in a body vessel. The method comprises providing the retrievable stent deployed from the outer catheter at the stenotic lesion in the body and singly folding each of the struts about each pivotal joint to collapse the reticulation portion in the collapsed state. The method further comprises retracting a stent in the outer catheter to retrieve the stent from the body vessel.


Further objects, features, and advantages of the present invention will become apparent from consideration of the following description and the appended claims when taken in connection with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an environmental view of a retrievable device for treatment of a stenotic lesion in a body vessel in accordance with one embodiment of the present invention;



FIG. 2
a is a side view of the retrievable device in a collapsed state;



FIG. 2
b is a side view of the retrievable device in an expanded state;



FIG. 2
c is a plan view of the retrievable device;



FIG. 3 is an end view of the retrievable device;



FIG. 4
a a side view of a delivery assembly for a retrievable stent for treatment of a stenotic lesion in accordance with one embodiment of the present invention;



FIG. 4
b is an exploded view of the assembly of FIG. 4a;



FIG. 5 is a flow chart depicting one method for treating a stenotic lesion in a body vessel;



FIG. 6 is an environmental view of a retrievable device for treatment of a stenotic lesion in a body vessel in accordance with another embodiment of the present invention;



FIG. 7
a is a side view of the retrieval device of FIG. 6 in a collapsed state; and



FIG. 7
b is a side view of the retrieval device of FIG. 6 in an expanded state.





DETAILED DESCRIPTION OF THE INVENTION

The present invention generally provides a retrievable device that is removable from a body vessel after a stenosis condition has passed or after treatment of a stenotic lesion. Embodiments of the present invention generally provide a device, e.g., a retrievable stent, comprising a reticulation portion including a plurality of struts connected together in a singly staggered configuration distally along a longitudinal axis. The singly staggered configuration allows for relatively easy retrieval of the device. Moreover, the device comprises an expandable body that distally extends from the reticulation portion along an outer diameter for treatment of the stenotic lesion.



FIG. 1 illustrates a retrievable device 10 for treatment of a stenotic lesion in a body vessel 11 in accordance with one embodiment of the present invention. As shown, in FIGS. 1 through 2b, the device 10 comprises a reticulation portion 12 having an expanded state and a collapsed state. The reticulation portion 12 includes a plurality of struts 14 connected together in a singly staggered configuration 16 distally along a longitudinal axis A. The plurality of struts 14 of the reticulation portion 12 is configured to fold along the longitudinal axis, defining the collapsed state of the device 10 for retrieval.


In this embodiment, the reticulation portion 12 extends along an outer diameter 22 when in the expanded state. As shown, the singly staggered configuration 16 of the plurality of struts 14 distally extends from a proximal portion 17 of the reticulation portion 12 along the longitudinal axis A to a distal portion 18 thereof. In the expanded state, each of the struts 14 of the reticulation portion 12 is configured to fold singly in pairs along the longitudinal axis A to the collapsed state. As will be described in greater detail below, the singly staggered configuration 16 allows the device 10 to be relatively easily collapsed and retrieved when deployed at a stenotic area within the vasculature of a patient.


As shown in FIGS. 2b and 2c, the reticulation portion 12 is formed so that each strut 14 is singly connected to another strut 14 in pairs relative to the longitudinal axis. Preferably, the struts 14 are connected together at pivotal joints 20 along the reticulation portion 12. In this embodiment, one pair of struts 14 is connected to one pivotal joint 20. Each of the pivotal joints 20 is configured to allow a pair of struts 14 to singly fold distally along the longitudinal axis. As shown, a pair of struts 14 distally extends from a single pivotal joint 20 at the proximal stem 24. In this embodiment, two struts 14 are disposed on and extend from the proximal stem 24 and up to ten struts 14 may be formed at the distal portion 18 of the reticulation portion 12. When each of the pairs of struts 14 is folded at the pivotal joints 20, the reticulation portion 12 is collapsed to its collapsed state for delivery or retrieval of the device 10. This feature allows a catheter or sheath to circumferentially ride over each pivotal joint 20 for relatively easy collapse and retrieval of the device 10.


The reticulation portion 12 distally extends from the proximal portion 17 to the distal portion 18 along the outer diameter 22. Preferably, the reticulation portion 12 extends substantially constant along the outer diameter 22 when in the expanded state. As shown in FIGS. 2b and 3, the reticulation portion 12 extends along the outer diameter 22 and maintains substantially the same or constant diameter therealong from the proximal portion 17 to the distal portion 18 of the reticulation portion 12. In the expanded state, the reticulation portion 12 avoids placement at or near the center of the body vessel in which it is deployed. Preferably, the number of struts 14 and pivotal joints 20 on the reticulation portion 12 distally increases in a singly staggered configuration 16 along the longitudinal axis.


As mentioned above, FIGS. 2b and 3 illustrate that the device 10 maintains a substantially constant outer diameter 22 relative to the longitudinal axis. As shown, the outer diameter 22 of the device 10 is substantially constant. In this embodiment, the term “constant” outer diameter 22 or “substantially constant” outer diameter 22 of the device 10 means that the device 10 extends along the longitudinal axis A having about the same outer diameter. For instance, if the outer diameter 22 of the device 10 at the proximal portion 17 is about 5 millimeters (mm), then the outer diameter 22 of the portion along the remainder of the device 10 is also about 5 mm. Thus, the outer diameter 22 of the reticulation portion 12 is substantially constant distally extending therealong to the expandable body 30.



FIG. 2
a illustrates the device 10 in its collapsed or closed state in accordance with one embodiment of the present invention. As shown, the device 10 has a reduced diameter, occupying a cross-sectional profile less than the outer diameter 22 of the device 10 in the expanded state. The pivotal joints 20 of the reticulation portion 12 singly increase distally along the longitudinal axis of the device 10. Thus, the reticulation portion 12 in the collapsed state distally increases in width in a singly staggered configuration 16. For example, the reticulation portion 12 in the collapsed configuration includes pairs of folded struts 14 singly staggered at their respective pivotal joints 20 which distally increase in number, thereby distally increasing the width as the reticulation portion 12 distally extends.



FIGS. 2
a-2c further depict the device 10 having a proximal stem 24. As shown, the proximal stem 24 proximally extends from the proximal portion 17 of the reticulation portion 12 along the outer diameter 22 thereof. Thus, the proximal stem 24 is positioned off-centered to allow maximum blood flow through the device 10 when deployed in a body vessel. The proximal stem 24 may proximally extend from the reticulation portion 12 and take on any suitable shape along the outer diameter 22 of the reticulation portion 12. For example, the proximal stem 24 may take on a shape of an elongated member that may be disposed within an outer catheter 60 for placement within a body vessel for stenosis treatment. However, it is understood that the proximal stem 24 may take on other shapes without falling beyond the scope or spirit of the present invention.


As mentioned, the proximal stem 24 extends in alignment with the outer diameter 22 of the reticulation portion 12 relative to a radial axis of the device 10. This allows for more effective filtering and lessens the risk of blood flow issues within the vasculature during angioplasty, while maintaining a relatively easy way for delivery and retrieval. However, the proximal stem 24 may be configured as desired to extend circumferentially within, in non-alignment with, the outer diameter 22 of the device 10.


In this embodiment, the device 10 further includes an expandable body 30 distally extending from the reticulation portion 12 along the outer diameter 22 for treatment of the stenotic lesion. The expandable body 30 is configured to open in the expanded state for angioplasty and close in the collapsed state for delivery and retrieval. The expandable body 30 may be configured in any suitable manner to expand and collapse. For example, the expandable body 30 may comprise a plurality of branches 32 connected together as shown in FIGS. 2b and 2c. In this embodiment, the plurality of branches 32 is configured to fold along the longitudinal axis as the struts 14 of the reticulation portion 12 fold therealong. The expandable body 30 may be made of the same material as the reticulation portion 12, e.g., shape memory material.


The device 10 may be comprised of any suitable material such as a superelastic material, stainless steel wire, cobalt-chromium-nickel-molybdenum-iron alloy, or cobalt-chrome alloy. It is understood that the device 10 may be formed of any other suitable material that will result in a self-opening or self-expanding device 10, such as shape memory material. Shape memory materials or alloys have the desirable property of becoming rigid, i.e., returning to a remembered state, when heated above a transition temperature. A shape memory alloy suitable for the present invention is Ni—Ti available under the more commonly known name Nitinol. When this material is heated above the transition temperature, the material undergoes a phase transformation from martensite to austenic, such that material returns to its remembered state. The transition temperature is dependent on the relative proportions of the alloying elements Ni and Ti and the optional inclusion of alloying additives.


In one embodiment, the device 10 is made from Nitinol with a transition temperature that is slightly below normal body temperature of humans, which is about 98.6° F. Thus, when the device 10 is deployed in a body vessel and exposed to normal body temperature, the alloy of the device 10 will transform to austenite, that is, the remembered state, which for one embodiment of the present invention is the expanded configuration when the device 10 is deployed in the body vessel. To remove the device 10, the device 10 is cooled to transform the material to martensite which is more ductile than austenite, making the device 10 more malleable. As such, the device 10 can be more easily collapsed and pulled into a lumen of a catheter for removal.


In another embodiment, the device 10 is made from Nitinol with a transition temperature that is above normal body temperature of humans, which is about 98.6° F. Thus, when the device 10 is deployed in a body vessel and exposed to normal body temperature, the device 10 is in the martensitic state so that the device 10 is sufficiently ductile to bend or form into a desired shape, which for the present invention is an expanded configuration. To remove the device 10, the device 10 is heated to transform the alloy to austenite so that the device 10 becomes rigid and returns to a remembered state, which for the device 10 in a collapsed configuration.



FIGS. 4
a-4b depict an assembly 40 which implements the device 10 for treating a stenotic lesion of a body vessel in accordance with one embodiment of the present invention. As shown, the assembly 40 includes a balloon catheter 42 having a tubular body 44 and an expandable balloon 46 disposed thereabout. The expandable balloon 46 is preferably attached to and in fluid communication with the tubular body 44 for angioplasty at the stenotic lesion. The device 10 is configured to be disposed about the expandable balloon 46 for deployment at the stenotic lesion. The device 10 may be placed about the angioplasty balloon of the angioplasty catheter prior to insertion into the vasculature.


Generally, the balloon catheter 42 has a proximal end 50, a distal end 52, and a plastic adapter or hub 54 to receive the assembly 40 to be advanced therethrough. The hub 54 is in fluid communication with the balloon for fluid to be passed therethrough for inflation and deflation of the balloon during angioplasty. In one embodiment, the balloon catheter 42 may include an outer lumen and an inner lumen. The outer lumen is preferably in fluid communication with the expandable balloon 46 for inflating and deflating the balloon. The inner lumen is formed therethrough for percutaneous guidance through the body vessel. The balloon catheter 42 is preferably made of a soft, flexible material such as a silicone or any other suitable material.


The size of the expandable balloon 46 may vary. For example, the balloon size may range between about 2 and 10 millimeters in diameter. The expandable balloon 46 has distal and proximal portions 17. The expandable balloon 46 may be made of any suitable material such as low density polymer material such as polyvinyl chloride.


The assembly 40 further includes a wire guide 56 which via an introducer sheath 58 (discussed in greater detail below) is percutaneously inserted to provide a path for the balloon catheter 42 within the vasculature of a patient. The balloon catheter 42 is configured to be disposed about the wire guide 56 for percutaneous guidance through the vasculature. The size of the wire guide 56 is based on the inside diameter of the introducer sheath 58.


As mentioned above, the assembly 40 further includes a polytetrafluoroethylene (PTFE) introducer sheath 58 for percutaneously introducing the wire guide 56 and the balloon catheter 42 in vasculature. Of course, any other suitable material may be used without falling beyond the scope or spirit of the present invention. The introducer sheath 58 is percutaneously inserted into the vasculature of the patient. The sheath 58 may have a size of about 4-French to 8-French and allows the balloon catheter 42 to be inserted therethrough to the deployment location in the body vessel. In one embodiment, the sheath receives the balloon catheter 42 and the device 10, and provides stability thereto at the deployment location.


The assembly 40 may further include an outer catheter 60 disposed co-axially about the balloon catheter 42 within the introducer sheath 58. As shown, the outer catheter 60 is preferably configured to house the balloon catheter 42 and the device 10 during delivery and retrieval thereof to and from the stenotic lesion. The outer catheter 60 is preferably advanced with the balloon catheter 42 and the device 10 to the deployment location. When the distal end 52 of the expandable balloon 46 of the balloon catheter 42 is placed across the stenotic lesion in the body vessel, the expandable balloon 46 may then be inflated preferably with saline. For deployment of the expandable balloon 46 and the device 10, the outer catheter 60 is then retracted to expose the device 10 and angioplasty balloon at the stenotic lesion. The angioplasty balloon is inflated, and both the device 10 and balloon expands to break plaque of the stenotic lesion.


It is to be understood that the assembly described above is merely one example of an assembly that may be used to deploy the capturing device in a body vessel. Of course, other apparatus, assemblies, and systems may be used to deploy any embodiment of the capturing device without falling beyond the scope or spirit of the present invention.



FIG. 5 is a flow chart depicting one method 110 for treating a stenotic lesion in a body vessel. As shown, the method comprises providing in box 112 a retrievable stent deployed from an outer catheter at the stenotic lesion in the body vessel. One embodiment of the retrievable stent is the retrievable device 10 discussed above. The retrievable stent and a balloon catheter are preferably used to dilate a stenosis condition or stenotic lesion in a body vessel. Dilatation of a stenosed vessel may be accomplished in any desirable manner known in the art. After treatment of the stenotic lesion is completed, the balloon catheter is proximally retracted and removed from the vasculature. As discussed below, the stent may be also retrieved.


In this example, an outer catheter is used to fold the struts of the retrievable stent to its collapsed state for retrieval. The outer catheter is percutaneously inserted in the vasculature proximally adjacent the location of the stent. The outer catheter is then moved distally to receive the stent starting from the proximal portion thereof. In one example, the retrieval stem is pulled to proximally move the reticulation portion toward the distal end of the outer catheter, receiving the reticulation portion. Alternatively, the outer catheter may be distally moved toward the device to initiate folding of the struts. As the outer catheter longitudinally receives the stent, each pair of the struts is singly folded about each pivotal joint to move the reticulation portion in the collapsed state in box 114.


Once the stent is in its collapsed state, i.e., each pair of struts is folded about its respective pivotal joint, the stent may be retracted. As the outer catheter is proximally retracted to retract and retrieve the stent from the vasculature of the body vessel in box 116.



FIG. 6 illustrates a retrievable device 210 for capturing emboli during treatment of a stenotic lesion in a body vessel 211 in accordance with another embodiment of the present invention. As shown, the retrievable device 210 in this embodiment comprises components similar to the components mentioned in the retrievable device 10 of the embodiment mentioned above. For example, the device 210 includes a reticulation portion 212 having a plurality of struts 214 in a singly staggered configuration 216, an expandable body 230, and a retrieval stem 224 similar to the reticulation portion 12 having the plurality of struts 14, the expandable body 30, and the retrieval stem 24 of the retrievable device 10 mentioned above. As described in greater detail below, the retrievable device 210 of this embodiment is preferably used as an embolic protection device for capturing emboli during a stenotic procedure, e.g., angioplasty.


The retrieval device 210 of this embodiment further includes a filter portion 213 for capturing emboli during treatment of a stentic lesion, e.g., angioplasty. FIGS. 7a and 7b illustrate that the filter portion 213 has a lip 283. As shown, the lip 283 is attached to the distal portion 218 of the reticulation portion 212 and is disposed about the expandable body 230, defining an opening 284 of the filter portion when the device is in the expanded state for capturing emboli. The lip 283 may be attached to the distal portion 218 by any suitable means including sonic bonding, thermal bonding, or adhesive bonding. The filter portion 213 extends from the lip 283 to a filter end 286 formed to be a proximally facing concave shape. The opening 284 of the filter portion is configured to face toward the stenotic lesion.


As shown in FIG. 6, the expandable body of the device engages the vessel wall, placing the filter portion therebetween. This ensures that the filter portion captures emboli that disengage from the vessel wall during an angioplasty treatment upstream therefrom. In use, the device expands from the collapsed state to the expanded state, engaging the reticulation portion and expandable body with the body vessel. In turn, the lip of the filter portion expands to engage the vessel wall for capturing emboli during treatment of the stenotic lesion. After the need for such device in the vasculature passes, e.g., after angioplasty, the device may be retrieved by folding the struts of the reticulation portion and collapsing the device as described above.


The filter portion may be comprised of any suitable material to be used for capturing emboli from the stenotic lesion during treatment thereof. In one embodiment, the filter portion is made of connective tissue material for capturing emboli. In this embodiment, the connective tissue comprises extracellular matrix (ECM). As known, ECM is a complex structural entity surrounding and supporting cells that are found within mammalian tissues. More specifically, ECM comprises structural proteins (e.g., collagen and elastin), specialized protein (e.g., fibrillin, fibronectin, and laminin), and proteoglycans, a protein core to which are attached are long chains of repeating disaccharide units termed of glycosaminoglycans.


Most preferably, the extracellular matrix is comprised of small intestinal submucosa (SIS). As known, SIS is a resorbable, acellular, naturally occurring tissue matrix composed of ECM proteins and various growth factors. SIS is derived from the porcine jejunum and functions as a remodeling bioscaffold for tissue repair. SIS has characteristics of an ideal tissue engineered biomaterial and can act as a bioscaffold for remodeling of many body tissues including skin, body wall, musculoskeletal structure, urinary bladder, and also supports new blood vessel growth. In many aspects, SIS is used to induce site-specific remodeling of both organs and tissues depending on the site of implantation. In theory, host cells are stimulated to proliferate and differentiate into site-specific connective tissue structures, which have been shown to completely replace the SIS material in time.


In this embodiment, SIS is used to temporarily adhere the filter portion to the walls of a body vessel in which the device is deployed. SIS has a natural adherence or wettability to body fluids and connective cells comprising the connective tissue of a body vessel wall. Due to the temporary nature of the duration in which the device is deployed in the body vessel, host cells of the wall will adhere to the filter portion but not differentiate, allowing for retrieval of the device from the body vessel.


In other embodiments, the filter portion may also be made of a mesh/net cloth, nylon, polymeric material, Teflon™, or woven mixtures thereof without falling beyond the scope or spirit of the present invention.


While the present invention has been described in terms of preferred embodiments, it will be understood, of course, that the invention is not limited thereto since modifications may be made to those skilled in the art, particularly in light of the foregoing teachings.

Claims
  • 1. An assembly for treating a stenotic lesion in a body vessel, the assembly comprising: an outer catheter including a tubular body having a distal end; anda retrievable device coaxially disposable within the tubular body of the outer catheter and deployable through the distal end thereof for treatment of the stenotic lesion in the body vessel, the device comprising: a reticulation portion having a deployed state and a collapsed state, the reticulation portion forming an axial section of the retrievable device and including a plurality of struts and at least three longitudinally spaced single pivoting joints defining longitudinal reticulation sections therebetween, each pivoting joint of the reticulation portion being longitudinally offset from all other pivoting joints of the reticulation portion, each of the pivoting joints connecting a longitudinally coextending pair of the plurality of struts, the number of struts within each of the reticulation sections singly increasing from the reticulation section to a distally adjacent reticulation section along the entire reticulation portion, the pairs of struts of the reticulation portion being configured to fold along the longitudinal axis defining a collapsed state of the device for retrieval;an expandable body distally extending from the reticulation portion along an outer diameter for treatment of the stenotic lesion, the expandable body being configured to expand in the deployed state and collapsed in the collapsed state of the reticulation portion for retrieval; anda retrieval stem extending proximally from the reticulation portion for retrieval of the device in the collapsed state.
  • 2. The assembly of claim 1 further comprising: a balloon catheter comprising a tube member having an inner lumen, the balloon catheter further having an expandable balloon attached to and in fluid communication with the tube member for angioplasty at the stenotic lesion, the expandable balloon having distal and proximal portions;a wire guide configured to be disposed through the inner lumen of the balloon catheter for percutaneous guidance through the body vessel; andan introducer sheath through which the outer catheter is inserted for percutaneous insertion to the body vessel.
  • 3. The assembly of claim 2 wherein the balloon catheter further includes a proximal end, the proximal end having a hub in fluid communication with the balloon for fluid to be passed therethrough for inflation and deflation of the balloon during treatment of the stenotic lesion.
  • 4. The assembly of claim 1 wherein the reticulation portion extends along the outer diameter.
  • 5. The assembly of claim 1 wherein the number of struts on the reticulation portion increases in a singly staggered configuration along the longitudinal axis.
  • 6. The assembly of claim 5 wherein the number of struts adjacent the retrieval stem of the device is one strut and the number of struts at the distal end is up to 10 struts.
  • 7. The assembly of claim 1 wherein the outer diameter of the reticulation portion is substantially constant distally extending therealong to the expandable body.
  • 8. The assembly of claim 1 wherein the retrieval stem extends proximally along the outer diameter of the reticulation portion.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a Continuation of U.S. application Ser. No. 11/455,421, filed on Jun. 19, 2006 and issued as U.S. Pat. No. 8,109,962, and claims the benefit of U.S. Provisional Application No. 60/692,317, filed on Jun. 20, 2005, entitled “Retrievable Device Having A Reticulation Portion With Staggered Struts,” the entire contents of which are incorporated herein by reference.

US Referenced Citations (672)
Number Name Date Kind
3547103 Cook Dec 1970 A
3635223 Klieman Jan 1972 A
3923065 Nozick et al. Dec 1975 A
3952747 Kimmell, Jr. Apr 1976 A
3978863 Fettel et al. Sep 1976 A
3996938 Clark, III Dec 1976 A
4425908 Simon Jan 1984 A
4494531 Gianturco Jan 1985 A
4548206 Osborne Oct 1985 A
4561439 Bishop et al. Dec 1985 A
4619246 Molgaard-Nielsen et al. Oct 1986 A
4643184 Mobin-Uddin Feb 1987 A
4646736 Auth Mar 1987 A
4650472 Bates Mar 1987 A
4665906 Jervis May 1987 A
4669464 Sulepov Jun 1987 A
4688553 Metals Aug 1987 A
4723549 Wholey et al. Feb 1988 A
4727873 Mobin-Uddin Mar 1988 A
4817600 Herms et al. Apr 1989 A
4824435 Giesy et al. Apr 1989 A
4832055 Palestrant May 1989 A
4873978 Ginsburg Oct 1989 A
4943297 Saveliev et al. Jul 1990 A
4957501 Lahille et al. Sep 1990 A
4990156 Lefebvre Feb 1991 A
5053008 Bajaj Oct 1991 A
5059205 El-Nounou et al. Oct 1991 A
5069226 Yamauchi et al. Dec 1991 A
5100423 Fearnot Mar 1992 A
5108418 Lefebvre Apr 1992 A
5108419 Reger et al. Apr 1992 A
5112347 Taheri May 1992 A
5129890 Bates et al. Jul 1992 A
5133733 Rasmussen et al. Jul 1992 A
5147379 Sabbaghian et al. Sep 1992 A
5152777 Goldberg Oct 1992 A
5160342 Reger Nov 1992 A
5234458 Metais Aug 1993 A
5242462 El-Nounou Sep 1993 A
5243996 Hall Sep 1993 A
5251640 Osborne Oct 1993 A
5263964 Purdy Nov 1993 A
5300086 Gory et al. Apr 1994 A
5324304 Rasmussen Jun 1994 A
5329942 Gunther et al. Jul 1994 A
5344427 Cottenceau et al. Sep 1994 A
5350398 Pavcnik et al. Sep 1994 A
5370657 Irie Dec 1994 A
5375612 Cottenceau et al. Dec 1994 A
5383887 Nadal Jan 1995 A
5413586 Dibie et al. May 1995 A
5415630 Gory et al. May 1995 A
5417708 Hall et al. May 1995 A
5527338 Purdy Jun 1996 A
5531788 Dibie et al. Jul 1996 A
5549626 Miller et al. Aug 1996 A
5562698 Parker Oct 1996 A
5601595 Smith Feb 1997 A
5624461 Mariant Apr 1997 A
5626605 Irie et al. May 1997 A
5634942 Chevillon et al. Jun 1997 A
5649953 Lefebvre Jul 1997 A
5669933 Simon et al. Sep 1997 A
5681347 Cathcart et al. Oct 1997 A
5690667 Gia Nov 1997 A
5693067 Purdy Dec 1997 A
5695518 Laerum Dec 1997 A
5695519 Summers et al. Dec 1997 A
5709704 Nott et al. Jan 1998 A
5713853 Clark et al. Feb 1998 A
5720764 Naderlinger Feb 1998 A
5725550 Nadal Mar 1998 A
5746767 Smith May 1998 A
5755790 Chevillon et al. May 1998 A
5769816 Barbut et al. Jun 1998 A
5769871 Mers et al. Jun 1998 A
5795322 Boudewijn Aug 1998 A
5800457 Gelbfish et al. Sep 1998 A
5800525 Bachinski et al. Sep 1998 A
5810874 Lefebvre Sep 1998 A
5814064 Daniel et al. Sep 1998 A
5827324 Cassell et al. Oct 1998 A
5830230 Berryman et al. Nov 1998 A
5836968 Simon et al. Nov 1998 A
5836969 Kim et al. Nov 1998 A
5846260 Maahs Dec 1998 A
5853420 Chevillon et al. Dec 1998 A
5876367 Kaganov et al. Mar 1999 A
5893869 Barnhart et al. Apr 1999 A
5895391 Farnholtz Apr 1999 A
5895399 Barbut et al. Apr 1999 A
5895410 Forber et al. Apr 1999 A
5908435 Samuels Jun 1999 A
5910154 Tsugita et al. Jun 1999 A
5911704 Humes Jun 1999 A
5911717 Jacobsen et al. Jun 1999 A
5911734 Tsugita et al. Jun 1999 A
5919224 Thompson et al. Jul 1999 A
5925062 Purdy Jul 1999 A
5925063 Khosravi Jul 1999 A
5928260 Chine et al. Jul 1999 A
5928261 Ruiz Jul 1999 A
5938683 Lefebvre Aug 1999 A
5941896 Kerr Aug 1999 A
5944728 Bates Aug 1999 A
5947985 Imran Sep 1999 A
5947995 Samuels Sep 1999 A
5948017 Taheri Sep 1999 A
5951567 Javier, Jr. et al. Sep 1999 A
5954741 Fox Sep 1999 A
5954742 Osypka Sep 1999 A
5954745 Gertler et al. Sep 1999 A
5968057 Taheri Oct 1999 A
5968071 Chevillon et al. Oct 1999 A
5972019 Engelson et al. Oct 1999 A
5976162 Doan et al. Nov 1999 A
5976172 Homsma et al. Nov 1999 A
5980555 Barbut et al. Nov 1999 A
5984947 Smith Nov 1999 A
5989281 Barbut et al. Nov 1999 A
6001118 Daniel et al. Dec 1999 A
6007557 Ambrisco et al. Dec 1999 A
6007558 Ravenscroft et al. Dec 1999 A
6010522 Barbut et al. Jan 2000 A
6013093 Nott et al. Jan 2000 A
6015424 Rosenbluth et al. Jan 2000 A
6027520 Tsugita et al. Feb 2000 A
6036717 Mers Kelly et al. Mar 2000 A
6036720 Abrams et al. Mar 2000 A
6042598 Tsugita et al. Mar 2000 A
6051014 Jang Apr 2000 A
6051015 Maahs Apr 2000 A
6053932 Daniel et al. Apr 2000 A
6059745 Gelbfish May 2000 A
6059814 Ladd May 2000 A
6063113 Kavteladze et al. May 2000 A
6066158 Engelson et al. May 2000 A
6068645 Tu May 2000 A
6074357 Kaganov et al. Jun 2000 A
6077274 Ouchi et al. Jun 2000 A
6080178 Meglin Jun 2000 A
6083239 Addis Jul 2000 A
6086577 Ken et al. Jul 2000 A
6086605 Barbut et al. Jul 2000 A
6093199 Brown et al. Jul 2000 A
6096053 Bates Aug 2000 A
6099549 Bosma et al. Aug 2000 A
6106497 Wang Aug 2000 A
6126672 Berryman et al. Oct 2000 A
6126673 Kim et al. Oct 2000 A
6129739 Khosravi Oct 2000 A
6136016 Barbut et al. Oct 2000 A
6146396 Konya et al. Nov 2000 A
6146404 Kim et al. Nov 2000 A
6152931 Nadal et al. Nov 2000 A
6152946 Broome et al. Nov 2000 A
6152947 Ambrisco et al. Nov 2000 A
6156061 Wallace et al. Dec 2000 A
6159230 Samuels Dec 2000 A
6165179 Cathcart et al. Dec 2000 A
6165198 McGurk et al. Dec 2000 A
6165199 Barbut Dec 2000 A
6165200 Tsugita et al. Dec 2000 A
6168579 Tsugita Jan 2001 B1
6168603 Leslie et al. Jan 2001 B1
6168622 Mazzocchi Jan 2001 B1
6171327 Daniel et al. Jan 2001 B1
6171328 Addis Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6179851 Barbut et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6179860 Fulton, III et al. Jan 2001 B1
6179861 Khosravi et al. Jan 2001 B1
6187025 Machek Feb 2001 B1
6193739 Chevillon et al. Feb 2001 B1
6203561 Ramee et al. Mar 2001 B1
6214025 Thistle et al. Apr 2001 B1
6214026 Lepak et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6224620 Maahs May 2001 B1
6231588 Zadno-Azizi May 2001 B1
6231589 Wessman et al. May 2001 B1
6235044 Root et al. May 2001 B1
6235045 Barbut et al. May 2001 B1
6238412 Dubrul et al. May 2001 B1
6241746 Bosma et al. Jun 2001 B1
6245087 Addis Jun 2001 B1
6245088 Lowery Jun 2001 B1
6245089 Daniel et al. Jun 2001 B1
6251122 Tsukernik Jun 2001 B1
6254550 McNamara et al. Jul 2001 B1
6254633 Pinchuk et al. Jul 2001 B1
6258026 Ravenscroft et al. Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6258120 McKenzie et al. Jul 2001 B1
6261305 Marotta et al. Jul 2001 B1
6264672 Fisher Jul 2001 B1
6267776 O'Connell Jul 2001 B1
6267777 Bosma et al. Jul 2001 B1
6273900 Nott et al. Aug 2001 B1
6273901 Whitcher et al. Aug 2001 B1
6277125 Barry et al. Aug 2001 B1
6277126 Barry et al. Aug 2001 B1
6277138 Levinson et al. Aug 2001 B1
6277139 Levinson et al. Aug 2001 B1
6280451 Bates et al. Aug 2001 B1
6287321 Jang Sep 2001 B1
6290710 Cryer et al. Sep 2001 B1
6306163 Fitz Oct 2001 B1
6309399 Barbut et al. Oct 2001 B1
6312444 Barbut Nov 2001 B1
6319268 Ambrisco et al. Nov 2001 B1
6325815 Kusleika et al. Dec 2001 B1
6325816 Fulton, III et al. Dec 2001 B1
6328755 Marshall Dec 2001 B1
6331183 Suon Dec 2001 B1
6331184 Abrams Dec 2001 B1
6334864 Amplatz et al. Jan 2002 B1
6336934 Gilson et al. Jan 2002 B1
6340364 Kanesaka Jan 2002 B2
6342062 Suon et al. Jan 2002 B1
6342063 DeVries et al. Jan 2002 B1
6344048 Chin et al. Feb 2002 B1
6344049 Levinson et al. Feb 2002 B1
6346116 Brooks et al. Feb 2002 B1
6348041 Klint Feb 2002 B1
6348063 Yassour et al. Feb 2002 B1
6355051 Sisskind et al. Mar 2002 B1
6358228 Tubman et al. Mar 2002 B1
6361545 Macoviak et al. Mar 2002 B1
6361546 Khosravi Mar 2002 B1
6361547 Hieshima Mar 2002 B1
6364895 Greenhalgh Apr 2002 B1
6364896 Addis Apr 2002 B1
6368338 Konya et al. Apr 2002 B1
6371969 Tsugita et al. Apr 2002 B1
6371970 Khosravi et al. Apr 2002 B1
6371971 Tsugita et al. Apr 2002 B1
6375670 Greenhalgh Apr 2002 B1
6379374 Hieshima et al. Apr 2002 B1
6383146 Klint May 2002 B1
6383174 Eder May 2002 B1
6383193 Cathcart et al. May 2002 B1
6383196 Leslie et al. May 2002 B1
6383205 Samson et al. May 2002 B1
6383206 Gillick et al. May 2002 B1
6391044 Yadav et al. May 2002 B1
6391045 Kim et al. May 2002 B1
6395014 Macoviak et al. May 2002 B1
6402771 Palmer et al. Jun 2002 B1
6402772 Amplatz et al. Jun 2002 B1
6409742 Fulton, III et al. Jun 2002 B1
6413235 Parodi Jul 2002 B1
6416530 DeVries et al. Jul 2002 B2
6419686 McLeod et al. Jul 2002 B1
6423086 Barbut et al. Jul 2002 B1
6425909 Dieck et al. Jul 2002 B1
6428557 Hilaire Aug 2002 B1
6428558 Jones et al. Aug 2002 B1
6428559 Johnson Aug 2002 B1
6432122 Gilson et al. Aug 2002 B1
6436112 Wensel et al. Aug 2002 B2
6436120 Meglin Aug 2002 B1
6436121 Blom Aug 2002 B1
6443926 Kletschka Sep 2002 B1
6443971 Boylan et al. Sep 2002 B1
6443972 Bosma et al. Sep 2002 B1
6447530 Ostrovsky et al. Sep 2002 B1
6447531 Amplatz Sep 2002 B1
6458139 Palmer et al. Oct 2002 B1
6458145 Ravenscroft et al. Oct 2002 B1
6461370 Gray et al. Oct 2002 B1
6468290 Weldon et al. Oct 2002 B1
6468291 Bates et al. Oct 2002 B2
6482222 Bruckheimer et al. Nov 2002 B1
6485456 Kletschka Nov 2002 B1
6485500 Kokish et al. Nov 2002 B1
6485501 Green Nov 2002 B1
6485502 Michael et al. Nov 2002 B2
6491712 O'Connor Dec 2002 B1
6494895 Addis Dec 2002 B2
6497709 Heath Dec 2002 B1
6499487 McKenzie et al. Dec 2002 B1
6500166 Zadno Azizi et al. Dec 2002 B1
6500191 Addis Dec 2002 B2
6502606 Klint Jan 2003 B2
6506203 Boyle et al. Jan 2003 B1
6506205 Goldberg et al. Jan 2003 B2
6508826 Murphy et al. Jan 2003 B2
6511492 Rosenbluth et al. Jan 2003 B1
6511496 Huter et al. Jan 2003 B1
6511497 Braun et al. Jan 2003 B1
6511503 Burkett et al. Jan 2003 B1
6514273 Voss et al. Feb 2003 B1
6517559 O'Connell Feb 2003 B1
6520978 Blackledge et al. Feb 2003 B1
6527746 Oslund et al. Mar 2003 B1
6527791 Fisher Mar 2003 B2
6527962 Nadal Mar 2003 B1
6530935 Wensel et al. Mar 2003 B2
6530939 Hopkins et al. Mar 2003 B1
6530940 Fisher Mar 2003 B2
6533800 Barbut Mar 2003 B1
6537293 Berryman et al. Mar 2003 B1
6537294 Boyle et al. Mar 2003 B1
6537296 Levinson et al. Mar 2003 B2
6537297 Tsugita et al. Mar 2003 B2
6540722 Boyle et al. Apr 2003 B1
6540767 Walak et al. Apr 2003 B1
6540768 Diaz et al. Apr 2003 B1
6544221 Kokish et al. Apr 2003 B1
6544276 Azizi Apr 2003 B1
6544279 Hopkins et al. Apr 2003 B1
6544280 Daniel et al. Apr 2003 B1
6547759 Fisher Apr 2003 B1
6551303 Van Tassel et al. Apr 2003 B1
6551341 Boylan et al. Apr 2003 B2
6551342 Shen et al. Apr 2003 B1
6554849 Jones et al. Apr 2003 B1
6558404 Tsukernik May 2003 B2
6558405 McInnes May 2003 B1
6558406 Okada May 2003 B2
6562058 Seguin et al. May 2003 B2
6565591 Brady et al. May 2003 B2
6569147 Evans et al. May 2003 B1
6569183 Kim et al. May 2003 B1
6569184 Huter May 2003 B2
6575995 Huter et al. Jun 2003 B1
6575996 Denison et al. Jun 2003 B1
6575997 Palmer et al. Jun 2003 B1
6579303 Amplatz Jun 2003 B2
6582396 Parodi Jun 2003 B1
6582447 Patel et al. Jun 2003 B1
6582448 Boyle et al. Jun 2003 B1
6589230 Gia et al. Jul 2003 B2
6589263 Hopkins et al. Jul 2003 B1
6589264 Barbut et al. Jul 2003 B1
6589265 Palmer et al. Jul 2003 B1
6589266 Whitcher et al. Jul 2003 B2
6592546 Barbut et al. Jul 2003 B1
6592606 Huter et al. Jul 2003 B2
6596011 Johnson et al. Jul 2003 B2
6599307 Huter et al. Jul 2003 B1
6599308 Amplatz Jul 2003 B2
6602271 Adams et al. Aug 2003 B2
6602273 Marshall Aug 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6607506 Kletschka Aug 2003 B2
6610077 Hancock et al. Aug 2003 B1
6613074 Mitelberg et al. Sep 2003 B1
6616679 Khosravi et al. Sep 2003 B1
6616680 Thielen Sep 2003 B1
6616681 Hanson et al. Sep 2003 B2
6616682 Joergensen et al. Sep 2003 B2
6620148 Tsugita Sep 2003 B1
6620182 Khosravi et al. Sep 2003 B1
6623450 Dutta Sep 2003 B1
6623506 McGuckin, Jr. et al. Sep 2003 B2
6629953 Boyd Oct 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6635069 Teoh et al. Oct 2003 B1
6635070 Leeflang et al. Oct 2003 B2
6638293 Makower et al. Oct 2003 B1
6638294 Palmer Oct 2003 B1
6638372 Abrams et al. Oct 2003 B1
6641590 Palmer et al. Nov 2003 B1
6641605 Stergiopulos Nov 2003 B1
6645220 Huter et al. Nov 2003 B1
6645221 Richter Nov 2003 B1
6645222 Parodi et al. Nov 2003 B1
6645223 Boyle et al. Nov 2003 B2
6645224 Gilson et al. Nov 2003 B2
6652554 Wholey et al. Nov 2003 B1
6652557 MacDonald Nov 2003 B1
6652558 Patel et al. Nov 2003 B2
6656201 Ferrera et al. Dec 2003 B2
6656202 Papp et al. Dec 2003 B2
6656203 Roth et al. Dec 2003 B2
6656204 Ambrisco et al. Dec 2003 B2
6656351 Boyle Dec 2003 B2
6660021 Palmer et al. Dec 2003 B1
6663613 Evans et al. Dec 2003 B1
6663650 Sepetka et al. Dec 2003 B2
6663651 Krolik et al. Dec 2003 B2
6663652 Daniel et al. Dec 2003 B2
6695865 Boyle et al. Feb 2004 B2
6702834 Boylan et al. Mar 2004 B1
6712835 Mazzocchi et al. Mar 2004 B2
6726701 Gilson et al. Apr 2004 B2
6758855 Fulton, III et al. Jul 2004 B2
6761727 Ladd Jul 2004 B1
6780175 Sachdeva et al. Aug 2004 B1
6793668 Fisher Sep 2004 B1
6866677 Douk et al. Mar 2005 B2
20010000799 Wessman et al. May 2001 A1
20010001817 Humes May 2001 A1
20010005789 Root et al. Jun 2001 A1
20010007947 Kanesaka Jul 2001 A1
20010011181 DiMatteo Aug 2001 A1
20010011182 Dubrul et al. Aug 2001 A1
20010012951 Bates et al. Aug 2001 A1
20010016755 Addis Aug 2001 A1
20010020175 Yassour et al. Sep 2001 A1
20010023358 Tsukernik Sep 2001 A1
20010025187 Okada Sep 2001 A1
20010031980 Wensel et al. Oct 2001 A1
20010031981 Evans et al. Oct 2001 A1
20010031982 Peterson et al. Oct 2001 A1
20010039431 DeVries et al. Nov 2001 A1
20010039432 Whitcher et al. Nov 2001 A1
20010041908 Levinson et al. Nov 2001 A1
20010041909 Tsugita et al. Nov 2001 A1
20010044632 Daniel et al. Nov 2001 A1
20010044634 Don Michael et al. Nov 2001 A1
20010053921 Jang Dec 2001 A1
20020002384 Gilson et al. Jan 2002 A1
20020004667 Adams et al. Jan 2002 A1
20020016564 Courtney et al. Feb 2002 A1
20020016609 Wensel et al. Feb 2002 A1
20020022858 Demond et al. Feb 2002 A1
20020022859 Hogendijk Feb 2002 A1
20020026211 Khosravi et al. Feb 2002 A1
20020026212 Wholey et al. Feb 2002 A1
20020026213 Gilson et al. Feb 2002 A1
20020032460 Kusleika et al. Mar 2002 A1
20020032461 Marshall Mar 2002 A1
20020042626 Hanson et al. Apr 2002 A1
20020042627 Brady et al. Apr 2002 A1
20020045915 Balceta et al. Apr 2002 A1
20020045916 Gray et al. Apr 2002 A1
20020045918 Suon et al. Apr 2002 A1
20020049452 Kurz et al. Apr 2002 A1
20020049468 Streeter et al. Apr 2002 A1
20020052627 Boylan et al. May 2002 A1
20020058904 Boock et al. May 2002 A1
20020058911 Gilson et al. May 2002 A1
20020058963 Vale et al. May 2002 A1
20020058964 Addis May 2002 A1
20020062133 Gilson et al. May 2002 A1
20020062134 Barbut et al. May 2002 A1
20020062135 Mazzocchi et al. May 2002 A1
20020065507 Zadno-Azizi May 2002 A1
20020068954 Foster Jun 2002 A1
20020068955 Khosravi Jun 2002 A1
20020072764 Sepetka et al. Jun 2002 A1
20020072765 Mazzocchi et al. Jun 2002 A1
20020077596 McKenzie et al. Jun 2002 A1
20020082558 Samson et al. Jun 2002 A1
20020082639 Broome et al. Jun 2002 A1
20020087187 Mazzocchi et al. Jul 2002 A1
20020090389 Humes et al. Jul 2002 A1
20020091407 Zadno-Azizi et al. Jul 2002 A1
20020091408 Sutton et al. Jul 2002 A1
20020091409 Sutton et al. Jul 2002 A1
20020095170 Krolik et al. Jul 2002 A1
20020095171 Belef Jul 2002 A1
20020095172 Mazzocchi et al. Jul 2002 A1
20020095173 Mazzocchi et al. Jul 2002 A1
20020095174 Tsugita et al. Jul 2002 A1
20020099407 Becker et al. Jul 2002 A1
20020103501 Diaz et al. Aug 2002 A1
20020107541 Vale et al. Aug 2002 A1
20020111647 Khairkhahan et al. Aug 2002 A1
20020111648 Kusleika et al. Aug 2002 A1
20020111649 Russo et al. Aug 2002 A1
20020116024 Goldberg et al. Aug 2002 A1
20020120226 Beck Aug 2002 A1
20020120286 DoBrava et al. Aug 2002 A1
20020120287 Huter Aug 2002 A1
20020123720 Kusleika et al. Sep 2002 A1
20020123755 Lowe et al. Sep 2002 A1
20020123759 Amplatz Sep 2002 A1
20020123766 Seguin et al. Sep 2002 A1
20020128679 Turovskiy et al. Sep 2002 A1
20020128680 Pavlovic Sep 2002 A1
20020128681 Broome et al. Sep 2002 A1
20020133191 Khosravi et al. Sep 2002 A1
20020133192 Kusleika et al. Sep 2002 A1
20020138094 Borillo et al. Sep 2002 A1
20020138095 Mazzocchi et al. Sep 2002 A1
20020138096 Hieshima Sep 2002 A1
20020138097 Ostrovsky et al. Sep 2002 A1
20020143360 Douk et al. Oct 2002 A1
20020143361 Douk et al. Oct 2002 A1
20020143362 Macoviak et al. Oct 2002 A1
20020151927 Douk et al. Oct 2002 A1
20020151928 Leslie et al. Oct 2002 A1
20020156520 Boylan et al. Oct 2002 A1
20020161389 Boyle et al. Oct 2002 A1
20020161390 Mouw Oct 2002 A1
20020161391 Murphy et al. Oct 2002 A1
20020161392 Dubrul Oct 2002 A1
20020161393 Demond et al. Oct 2002 A1
20020161394 Macoviak et al. Oct 2002 A1
20020161395 Douk et al. Oct 2002 A1
20020161396 Jang et al. Oct 2002 A1
20020165557 McAlister Nov 2002 A1
20020165573 Barbut Nov 2002 A1
20020165576 Boyle et al. Nov 2002 A1
20020169472 Douk et al. Nov 2002 A1
20020169474 Kusleika et al. Nov 2002 A1
20020173815 Hogendijk et al. Nov 2002 A1
20020173819 Leeflang et al. Nov 2002 A1
20020177872 Papp et al. Nov 2002 A1
20020183781 Casey et al. Dec 2002 A1
20020183782 Tsugita et al. Dec 2002 A1
20020183783 Shadduck Dec 2002 A1
20020188313 Johnson et al. Dec 2002 A1
20020188314 Anderson et al. Dec 2002 A1
20020193824 Boylan et al. Dec 2002 A1
20020193825 McGuckin et al. Dec 2002 A1
20020193826 McGuckin et al. Dec 2002 A1
20020193827 McGuckin et al. Dec 2002 A1
20020193828 Griffin et al. Dec 2002 A1
20020198561 Amplatz Dec 2002 A1
20030004536 Boylan et al. Jan 2003 A1
20030004538 Secrest et al. Jan 2003 A1
20030004539 Linder et al. Jan 2003 A1
20030004540 Linder et al. Jan 2003 A1
20030004541 Linder et al. Jan 2003 A1
20030004542 Wensel et al. Jan 2003 A1
20030009146 Muni et al. Jan 2003 A1
20030009189 Gilson et al. Jan 2003 A1
20030009190 Kletschka et al. Jan 2003 A1
20030009191 Wensel et al. Jan 2003 A1
20030014072 Wensel et al. Jan 2003 A1
20030018354 Roth et al. Jan 2003 A1
20030018355 Goto et al. Jan 2003 A1
20030023263 Krolik et al. Jan 2003 A1
20030023264 Dieck et al. Jan 2003 A1
20030023265 Forber Jan 2003 A1
20030032976 Boucck Feb 2003 A1
20030032977 Brady Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030045897 Huter et al. Mar 2003 A1
20030045898 Harrison et al. Mar 2003 A1
20030050662 Don Michael Mar 2003 A1
20030055452 Joergensen et al. Mar 2003 A1
20030055480 Fischell et al. Mar 2003 A1
20030060843 Boucher Mar 2003 A1
20030060844 Borillo et al. Mar 2003 A1
20030065354 Boyle et al. Apr 2003 A1
20030065355 Weber Apr 2003 A1
20030065356 Tsugita et al. Apr 2003 A1
20030069596 Eskuri Apr 2003 A1
20030073979 Naimark et al. Apr 2003 A1
20030074019 Gray et al. Apr 2003 A1
20030078614 Salahieh et al. Apr 2003 A1
20030083692 Vrba et al. May 2003 A1
20030083693 Daniel et al. May 2003 A1
20030088211 Anderson et al. May 2003 A1
20030088266 Bowlin May 2003 A1
20030093110 Vale May 2003 A1
20030093112 Addis May 2003 A1
20030097094 Ouriel et al. May 2003 A1
20030097145 Goldberg et al. May 2003 A1
20030100917 Boyle et al. May 2003 A1
20030100918 Duane May 2003 A1
20030100919 Hopkins et al. May 2003 A1
20030105472 McAlister Jun 2003 A1
20030105484 Boyle et al. Jun 2003 A1
20030105486 Murphy et al. Jun 2003 A1
20030109824 Anderson et al. Jun 2003 A1
20030109897 Walak et al. Jun 2003 A1
20030114879 Euteneuer et al. Jun 2003 A1
20030114880 Hansen et al. Jun 2003 A1
20030120303 Boyle et al. Jun 2003 A1
20030120304 Kaganov et al. Jun 2003 A1
20030125764 Brady et al. Jul 2003 A1
20030125765 Blackledge et al. Jul 2003 A1
20030130680 Russell Jul 2003 A1
20030130681 Ungs Jul 2003 A1
20030130682 Broome et al. Jul 2003 A1
20030130684 Brady et al. Jul 2003 A1
20030130685 Daniel et al. Jul 2003 A1
20030130686 Daniel et al. Jul 2003 A1
20030130687 Daniel et al. Jul 2003 A1
20030130688 Daniel et al. Jul 2003 A1
20030135232 Douk et al. Jul 2003 A1
20030135233 Bates et al. Jul 2003 A1
20030139764 Levinson et al. Jul 2003 A1
20030139765 Patel et al. Jul 2003 A1
20030144685 Boyle et al. Jul 2003 A1
20030144686 Martinez et al. Jul 2003 A1
20030144687 Brady et al. Jul 2003 A1
20030144688 Brady et al. Jul 2003 A1
20030144689 Brady et al. Jul 2003 A1
20030150821 Bates et al. Aug 2003 A1
20030153935 Mialhe Aug 2003 A1
20030153942 Wang et al. Aug 2003 A1
20030153943 Michael et al. Aug 2003 A1
20030153944 Phung et al. Aug 2003 A1
20030153945 Patel et al. Aug 2003 A1
20030158518 Schonholz et al. Aug 2003 A1
20030158574 Esch et al. Aug 2003 A1
20030158575 Boylan et al. Aug 2003 A1
20030163158 White Aug 2003 A1
20030163159 Patel et al. Aug 2003 A1
20030167068 Amplatz Sep 2003 A1
20030167069 Gonzales et al. Sep 2003 A1
20030171769 Barbut Sep 2003 A1
20030171770 Kusleika et al. Sep 2003 A1
20030171771 Anderson et al. Sep 2003 A1
20030171772 Amplatz Sep 2003 A1
20030171803 Shimon Sep 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030176885 Broome et al. Sep 2003 A1
20030176886 Wholey et al. Sep 2003 A1
20030176887 Petersen Sep 2003 A1
20030176888 O'Connell Sep 2003 A1
20030176889 Boyle et al. Sep 2003 A1
20030181942 Sutton et al. Sep 2003 A1
20030181943 Daniel et al. Sep 2003 A1
20030187474 Keegan et al. Oct 2003 A1
20030187475 Tsugita et al. Oct 2003 A1
20030187495 Cully et al. Oct 2003 A1
20030191492 Gellman et al. Oct 2003 A1
20030191493 Epstein et al. Oct 2003 A1
20030195554 Shen et al. Oct 2003 A1
20030195555 Khairkhahan et al. Oct 2003 A1
20030199819 Beck Oct 2003 A1
20030199917 Knudson et al. Oct 2003 A1
20030199918 Patel et al. Oct 2003 A1
20030199919 Palmer et al. Oct 2003 A1
20030199920 Boylan et al. Oct 2003 A1
20030199921 Palmer et al. Oct 2003 A1
20030204168 Bosma et al. Oct 2003 A1
20030204202 Palmer et al. Oct 2003 A1
20030204203 Khairkhahan et al. Oct 2003 A1
20030208222 Zadno-Azizi Nov 2003 A1
20030208224 Broome Nov 2003 A1
20030208225 Goll et al. Nov 2003 A1
20030208226 Bruckheimer et al. Nov 2003 A1
20030208227 Thomas Nov 2003 A1
20030208228 Gilson et al. Nov 2003 A1
20030208229 Kletschka Nov 2003 A1
20030208253 Beyer et al. Nov 2003 A1
20030212428 Richter Nov 2003 A1
20030212429 Keegan et al. Nov 2003 A1
20030212432 Khairkhahan et al. Nov 2003 A1
20030212433 Ambrisco et al. Nov 2003 A1
20030216774 Larson Nov 2003 A1
20030220665 Eskuri et al. Nov 2003 A1
20030220667 Van der Burg et al. Nov 2003 A1
20030225435 Hunter et al. Dec 2003 A1
20030229374 Brady et al. Dec 2003 A1
20030233117 Adams et al. Dec 2003 A1
20040006364 Ladd Jan 2004 A1
20040006370 Tsugita Jan 2004 A1
20040039412 Isshiki et al. Feb 2004 A1
20040059372 Tsugita Mar 2004 A1
20040064067 Ward Apr 2004 A1
20040068271 McAlister Apr 2004 A1
20040078044 Kear Apr 2004 A1
20040082962 Demarais et al. Apr 2004 A1
20040093016 Root et al. May 2004 A1
20040098022 Barone May 2004 A1
20040098033 Leeflang et al. May 2004 A1
20040098112 DiMatteo et al. May 2004 A1
20040106944 Daniel et al. Jun 2004 A1
20040116831 Vrba Jun 2004 A1
20040133232 Rosenbluth et al. Jul 2004 A1
20040158278 Becker et al. Aug 2004 A1
20040164030 Lowe et al. Aug 2004 A1
20040167567 Cano et al. Aug 2004 A1
20040176794 Khosravi Sep 2004 A1
20040176833 Pavcnik et al. Sep 2004 A1
20040236369 Dubrul Nov 2004 A1
20050038468 Panetta et al. Feb 2005 A1
20060100544 Ayala et al. May 2006 A1
20060100545 Ayala et al. May 2006 A1
Foreign Referenced Citations (2)
Number Date Country
WO 9610591 Apr 1996 WO
WO 9944510 Sep 1999 WO
Related Publications (1)
Number Date Country
20120095543 A1 Apr 2012 US
Provisional Applications (1)
Number Date Country
60692317 Jun 2005 US
Continuations (1)
Number Date Country
Parent 11455421 Jun 2006 US
Child 13336031 US