The present invention relates to a self-energizing top anchor tool that is retrievable from a borehole on a conveyance string.
In the oil and gas industry, a wellbore is typically formed by drilling a borehole in the earth, using a drill bit disposed at a downhole end of a drill string that is urged downwardly into the earth. After drilling a so-called open hole section to a predetermined depth, or when circumstances dictate, the drill string and bit are removed and the borehole is lined with a string of casing. The drilling operation is typically performed in stages and a number of strings of casing or liner may be run into the wellbore until the wellbore is at the desired depth and location.
In the past years, a novel technology has become available wherein well tubulars, such as casing, liner or clad tubes are radially expanded against a pre-set host casing set in the borehole. US patent application publication No. 2015/0247388 describes a top anchor tool comprising:
To activate the anchor tool of US 2015/0247388, the pusher ring is induced to slide along the work string under influence of a downward force, causing a downward movement of the anchor segments relative to the ramp surfaces upon which the anchor segments move radially outward towards the casing. The engagement surface of each segment, which are suitably provided with engagement teeth, will engage the casing. Springs also push the segments radially outward. A well tubular can be forced upward, for instance by pulling an expansion cone mounted at a distal end of the work string against or through the well tubular in an uphole direction, until the well tubular engages with its top rim against the top anchor tool. The upward load is transmitted from the well tubular to the ramp body, thereby further energizing the anchor segments into their engagement with the casing.
When the release sub reaches the top anchor, the release sub engages the release ring and push the release ring in the uphole direction. As the anchor segments are enclosed between the pusher ring and the release ring, the anchor segments will be caused to slide radially inward along the ramp surfaces, releasing the casing inner surface. The top anchor tool can then be retrieved from the borehole by carrying it out on the work string.
It has been found that at least in some occasions the outer engagement surface of the anchor segments have worn extensively.
In accordance with a first aspect of the present invention, there is provided a retrievable self-energizing top anchor tool for releasably locking a tubular in place in a previously installed host casing, comprising:
The invention will be further illustrated hereinafter by way of example only, and with reference to the non-limiting drawing in which;
The person skilled in the art will readily understand that, while the invention is illustrated making reference to one or more a specific combinations of features and measures, many of those features and measures are functionally independent from other features and measures, such that they can be equally or similarly applied independently in other embodiments or combinations.
A self-energizing top anchor tool is herein proposed, which is releasable by relative upward movement of a release sub against a release sub stop arranged within the central tool bore, and which has a release mechanism that comprises one or more pre-loaded release spring members locked with a release locking mechanism, which, when the release locking mechanism is unlocked exert a retracting bias force on the central energizing mandrel in downward direction along the longitudinal axis relative to the set of anchor segments.
This downward force on the central energizing mandrel causes a radially inward movement of the set of anchor segments. This force counteracts other forces that may cause the anchor segments to partially or fully deploy, for instance during the retrieval of the tool from the borehole, and therefore this force contributes to keeping the anchor segments to be retracted. Consequently, the outer engagement surfaces of the anchor segments are less exposed to wear and tear during retrieval.
Before unlocking the release locking mechanism, the release spring members may preferably be disengaged from exerting force between the central energizing mandrel and the set of anchor segments, in order not to cause obstruction or hindrance to moving the anchor segments outward during activating and/or energizing of the anchor tool as a result of exerting any release force prematurely.
The release spring members are particularly useful if the tool is provided with one or more energizing spring members exerting an energizing bias force on the central energizing mandrel in downward direction along the longitudinal axis relative to the set of anchor segments. In such a case the release spring members may at least partially, preferably fully, offset the energizing bias force exerted by the energizing spring members. Suitably, the retracting bias force exceeds the energizing bias force.
Referring now to both
A set of anchor segments 7 is arranged, the anchor segments 7 being distributed around a circumference of the central energizing mandrel 3. Each of the anchor segments 7 has one or more wedge surfaces 8 facing toward the tool axis L and corresponding to and engaging the inclined surfaces 4 of the central energizing mandrel 3. As a result of the interaction of these surfaces, an upward directed movement U of the central energizing mandrel 3 along the longitudinal axis L relative to the set of anchor segments 7 causes a radially outward movement of the set of anchor segments 7. Conversely, a downward movement D of the central energizing mandrel 3 along the longitudinal axis L relative to the set of anchor segments 7 causes a radially inward movement of the set of anchor segments 7. The anchor segments 7 comprise an outer facing engagement surface 9, configured to engage the inside wall of the host casing 2.
Suitably, the anchor segments 7 are slidingly engaging the inclined surfaces 4 of the central energizing mandrel 3, whereby only relative movement parallel to the corresponding inclined surface is possible. The wedge surfaces 8 of the anchor segments 7 may, for instance, be provided with a dovetail shaped ridge, fitting into a correspondingly shaped guide channel of the corresponding inclined surface 4 on the central energizing mandrel 3, and together forming a sliding dovetail joint. Alternatively, the guide channel may be provided in the anchor segments 7 and the dovetail on the central energizing mandrel 3. The outer facing engagement surface 9 of the anchor segments 7, facing the host casing 2, may be provided with teeth 10 to enhance gripping with the host casing 2.
At its lower end 5, the central energizing mandrel 3 is connected to a force transmission sub 30. The force transmission sub may comprise a tubular body 31 circumferencing the central tool bore 11. The tubular force transmission body 31 extends away from the upper end 6. Suitably, this tubular force transmission body 31 is a separate element fixed to the central energizing mandrel 3. However, it may also form an integral part of the central energizing mandrel 3. A tube stop 32 is provided on a lower end of the tubular force transmission body 31. The liner 1 can engage with the tube stop 32, and when pushed against the tube stop 32 the upward directed force of the liner against the tube stop is transmitted to the central energizing mandrel 3 translating in an upward movement of the central energizing mandrel 3 relative to the anchor segments 7. Thus the larger the upward directed force, the more the top anchor tool is energized and the stronger is the grip on the host casing 2. The tube stop 32 may be permanently connected to the tubular force transmission body 31 or form an integral part thereof. However, in certain advantageous embodiments, the tube stop 32 is locked to the tubular force transmission body 31 by means of, for instance, a tube stop lock mechanism 35. This will be described more extensively elsewhere in this description.
Still referring to
The self-energizing top anchor tool further is provided with a release mechanism. One embodiment of the release mechanism comprises a lift mechanism 15. The lift mechanism 15 comprises a lift device 16, which interacts with the set of anchor segments 7. The lift device 16 may suitably be embodied in the form of an axially slidable sleeve or ring that can engage with the anchor segments 7 and push them in upward direction. The lift device 16 also interacts with a release sub stop 17.
The release sub stop 17 is also depicted in
The release sub 18 may include a ridge having an increased outer diameter relative to the tool conveyance string 12. The ridge, which may be chamfered, may act as a lift shoulder as will be described below.
The release mechanism is further provided with one or more release spring members 20. Prior to being unlocked, the release spring members 20 are locked in a pre-loaded condition by means of a release locking mechanism 25. The function of the release locking mechanism 25 is to keep the release spring members 20 in pre-loaded condition and disengaged from exerting any force between the central energizing mandrel 3 and the set of anchor segments 7. Unlocking of the release locking mechanism 25 is triggered by an upward movement along the longitudinal tool axis L of the release sub stop 17 relative to the release locking mechanism 25. To this end, release locking mechanism 25 may be in mechanical communication with the release sub stop 17, suitably via the distance holder 19.
The release locking mechanism 25 can be embodied in a multitude of ways. In the shown example, the release locking mechanism 25 is schematically depicted by a locking ring 21 and a counter ring 22, held together by a release lock break member 23, whereby the release spring members 20 are sandwiched between the locking ring 21 and the counter ring 22. In this embodiment, the counter ring 22 is axially fixed with the lower end 5 of the central energizing mandrel 3. Failure of the release lock break members 23, upon a first break force exceeding a first threshold value, causes the release locking mechanism 25 to be unlocked. When the release locking mechanism 25 is unlocked, the locking ring 21 may slide upward under force exerted by the release spring members 20 and exert a reacting retracting bias force on the central energizing mandrel 3 in downward direction along the longitudinal axis, relative to the set of anchor segments 7.
Suitably, the release locking mechanism 25 is in mechanical communication with the release sub stop 17, whereby the first break force is transmitted from the release sub stop 17 to the release lock break members 23 via the distance holder 19. This is illustrated in
As shown in
The self-energizing top anchor tool may then be lifted out of the borehole by pulling the tool conveyance string 12 out of the borehole. The self-energizing top anchor tool is then carried on the lift shoulder 34 of release sub 18.
Suitably, protective shoulders are provided on the tool, with an outer shoulder circumference. In the schematic illustration of
The self-energizing top anchor tool is primarily intended to cooperate with an expander 40, which may suitably be attached at a distal end of the tool conveyance string 12 below the liner 1 that is to be expanded. The expander 40 is pulled through the liner 1, which is thereby forced upward against the tube stop 32. As described above, this force contributes to the energizing of the top anchor tool, which helps to secure the liner 1 in stages of the expansion operation. However, due to axial strain that builds up in the liner 1 during the expansion operation, the liner 1 may continue to contribute to the energizing of the top anchor tool when the release sub 18 engages with the release sub stop 17.
To facilitate the release of the top anchor tool, tube stop lock mechanism 35 is provided. At first, the tube stop 32 is longitudinally locked to the tubular force transmission body 31 with the tube stop lock mechanism 35, to prevent the tube stop 32 from moving upward relative to the force transmission body 31. Thus, with the tube stop lock mechanism 35 in locked condition, the upward directed force of liner 1 pressed against the tube stop 32 is transmitted via the force transmission sub 30 to the central energizing mandrel 3. Upon unlocking of the tube stop lock mechanism 35, the tube stop 32 is released to move at least in upward direction relative to force transmission body 31, as result of which the upward force transmission from the liner 1 to the body 31 is decoupled.
A suitable embodiment of the tube stop lock mechanism 35, and its operation, is illustrated in
Regardless of the precise implementation of the tube stop 17 in the tool, the tube stop lock mechanism 35 is preferably in mechanical communication with the release sub stop 17, such that an upward movement along the longitudinal tool axis L of the release sub stop 17 relative to the tube stop lock mechanism 35 triggers the unlocking of the tube stop lock mechanism 35. The axial decoupling of the liner 1 and the unlocking of the release locking mechanism 25 may, as a result, be inherently concerted actions. The distance holder break members 33 avoid premature unlocking and/or to keep the distance holder 19 in place before unlocking.
The axial force imposed via the liner 1 on the tubular force transmission body 31 can be significant, which may pose specific mechanical requirements on the tube stop lock mechanism 35. The embodiment shown in
In initial condition, i.e. prior to the release sub 18 contacting the release sub stop 17 and/or with the distance holder break members 33 intact, the longitudinal distance between the top of the distance holder 19 and the lift mechanism 15 is longer than a longitudinal unlocking stroke distance needed to unlock the tube stop lock mechanism 35 by the upward movement of the distance holder 19. This ensures that the tube stop lock mechanism 35 is always unlocked before the anchor segments 7 are lifted.
Upon further upward movement, the distance holder 19 contacts the lifting mechanism 15 and/or the release lock mechanism 25. After some further movement, the central energizing mandrel 3 no longer transmits load to the anchor segments 7, so that the latter can be lifted by the distance holder 19 assisted by the retracting bias force. Subsequently the self-energizing top anchor tool is carried out of the hole by the release sub 18 via the distance holder.
As best illustrated in
It is conceived that the tube stop lock mechanism 35 and/or the guide nose 45, each described herein, can be applied to other self-energizing top anchor tool designs, including designs that do not employ a release locking mechanism and/or release spring members. Examples of such designs are provided in, for instance, US pre-grant publication No. 2015/0247388 and U.S. Pat. No. 8,899,336.
The precise design and implementation of the various parts and functionalities of the tool, and of the release locking mechanism 25 as shown herein are not limiting on the disclosure. The person skilled in the art will agree that all sorts of solutions are available in mechanical engineering practices that are capable of carrying out the basic functionality of the release locking mechanism 25 as described herein. For example, the functionality of the release lock break members 23 may be provided by a collet and/or latch mechanism that is pushed aside and/or unlatched by action of the distance holder 19.
The tool conveyance string 12 may further be provided with an on/off sub (not shown) which allows the expander 40 (or other tool) to be connected to and/or disconnected from the tool conveyance string 12 if required. The on/off sub is suitably arranged between the release sub 18 and the expander 40, so that after disconnecting the expander 40 the self-energizing top anchor tool still can be lifted out of the borehole by means of the release sub 18.
It is further remarked that the spring members in the drawings, schematically represented by zig-zag lines, can be embodied in many forms without limitation. Possibilities include mechanical springs, spring disks, resilient elastic materials such as flexible rubber blocks, and hydraulic or pneumatic springs, and combinations of two or more options.
Various parts and features of the tool described herein have been described in detail in US pre-grant publication No. 2015/0247388 A1, which is incorporated herein by reference. Also, the contents of US pre-grant publication No. 2013/0312954 A1 and of International application No. PCT/EP2016/065113 are incorporated herein by reference.
The terms “upper”, “lower”, “upward”, and “downward” are intended to identify two distinct ends of the SETA tool on its longitudinal tool axis and longitudinal directions relative to these two ends. The terms are not intended to imply any direction compared to gravity. However, certain embodiments of the SETA tool disclosed herein are intended to be inserted into the borehole with the upper end trailing the lower end.
The person skilled in the art will understand that the present invention can be carried out in many various ways without departing from the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
16206380.4 | Dec 2016 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/083443 | 12/19/2017 | WO | 00 |