Retrieval and repositioning system for prosthetic heart valve

Information

  • Patent Grant
  • 11364119
  • Patent Number
    11,364,119
  • Date Filed
    Wednesday, September 4, 2019
    5 years ago
  • Date Issued
    Tuesday, June 21, 2022
    2 years ago
Abstract
This invention relates to the design and function of a retrieval device for a prosthetic heart valve for re-positioning or removal of a previously implanted valve prosthesis from a beating heart without extracorporeal circulation using a transcatheter retrieval system.
Description
BACKGROUND
Field of the Invention

This invention relates to a novel device and method for retrieval of a transcatheter heart valve replacement or for capture and repositioning of a deployed transcatheter heart valve replacement.


Background of the Invention

Valvular heart disease and specifically aortic and mitral valve disease is a significant health issue in the US. Annually approximately 90,000 valve replacements are conducted in the US. Traditional valve replacement surgery, the orthotopic replacement of a heart valve, is an “open heart” surgical procedure. Briefly, the procedure necessitates a surgical opening of the thorax, initiation of extra-corporeal circulation with a heart-lung machine, stopping and opening the heart, excision and replacement of the diseased valve, and re-starting of the heart. While valve replacement surgery typically carries a 1-4% mortality risk in otherwise healthy persons, a significantly higher morbidity is associated to the procedure largely due to the necessity for extra-corporeal circulation. Further, open heart surgery is often poorly tolerated in elderly patients.


Thus if the extra-corporeal component of the procedure could be eliminated, morbidities and cost of valve replacement therapies would be significantly reduced.


While replacement of the aortic valve in a transcatheter manner is the subject of intense investigation, lesser attention has been focused on the mitral valve. This is in part reflective of the greater level of complexity associated to the native mitral valve apparatus and thus a greater level of difficulty with regards to inserting and anchoring the replacement prosthesis.


Several designs for catheter-deployed (transcatheter) aortic valve replacement are under various stages of development. The Edwards SAPIEN® transcatheter heart valve is currently undergoing clinical trial in patients with calcific aortic valve disease who are considered high-risk for conventional open-heart valve surgery. This valve is deployable via a retrograde transarterial (transfemoral) approach or an antegrade transapical (transventricular) approach. A key aspect of the Edwards SAPIEN® and other transcatheter aortic valve replacement designs is their dependence on lateral fixation (e.g. tines) that engages the valve tissues as the primary anchoring mechanism. Such a design basically relies on circumferential friction around the valve housing or stent to prevent dislodgement during the cardiac cycle. This anchoring mechanism is facilitated by, and may somewhat depend on, a calcified aortic valve annulus. This design also requires that the valve housing or stent have a certain degree of rigidity.


At least one transcatheter mitral valve design is currently in development. The Endovalve uses a folding tripod-like design that delivers a tri-leaflet bioprosthetic valve. It is designed to be deployed from a minimally invasive transatrial approach, and could eventually be adapted to a transvenous atrial septotomy delivery. This design uses “proprietary gripping features” designed to engage the valve annulus and leaflets tissues. Thus the anchoring mechanism of this device is essentially equivalent to that used by transcatheter aortic valve replacement designs.


Various problems continue to exist in this field, including problems with how to retrieve a collapsible heart valve prosthetic from the native valve once the prosthetic has reached the end of its useful life. For example, a prosthetic heart valve may be delivered and secured percutaneously or intravenously using a catheter and endoscope or similar device, but the process of disengaging anchoring mechanisms and collapsing the prosthetic for retrieval is often more difficult to accomplish than is the delivery. Accordingly, there is a need for an improved device and method for retrieval when such valves need to be replaced.


SUMMARY

The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.


In one embodiment, there is provided a prosthetic heart valve retrieval and repositioning device, comprising: a dilator sheath, said dilator sheath having a lumen therethrough and a dilator base mounted on a proximal side of said dilator sheath, said dilator base having a sheath lock for operatively engaging the dilator sheath for opening and closing the lumen of said dilator sheath, said dilator base having a slidably removable inner catheter disposed within the lumen, said inner catheter having a tapered tip at a distal end and an inner catheter base at a proximal end wherein said inner catheter base is adjacent and proximal to the dilator base, said dilator base having a guide rod aperture for engaging a guide rod that is connected to a guide rod handle mount that is attached to a handle apparatus, said inner catheter base having a traveler strap affixed on a proximal side and said traveler strap extending proximally to engage a tensioning unit on the handle apparatus, said handle apparatus having an actuator and a spring operatively connected to the traveler strap, wherein when the actuator is engaged the traveler strap is pulled proximally through the tensioning unit and the inner catheter base slides along guide rod towards the handle apparatus.


In another preferred embodiment, there is provided a prosthetic heart valve retrieval and removal device, comprising: a dilator sheath having a lumen therethrough and a dilator base mounted on a proximal side of said dilator sheath, said dilator base having a sheath lock for operatively engaging the dilator sheath for opening and closing the lumen of said dilator sheath, said dilator base having a slidably removable intermediate beveled catheter disposed within the lumen, said intermediate beveled catheter having an intermediate base mounted on a proximal side of said intermediate beveled catheter, said intermediate beveled catheter having a lumen therethrough and having inner catheter having a tapered tip at a distal end disposed within the intermediate beveled catheter, said inner catheter having an inner catheter base mounted on a proximal side of said inner catheter, wherein said inner catheter base is adjacent and proximal to the intermediate base and said intermediate base is adjacent and proximal to the dilator base, said dilator base having a guide rod aperture for engaging a guide rod that is connected to a guide rod handle mount that is attached to a handle apparatus, said inner catheter base having a traveler strap affixed on a proximal side and said traveler strap extending proximally to engage a tensioning unit on the handle apparatus, said handle apparatus having an actuator and a spring, wherein when the actuator is engaged the traveler strap is pulled proximally through the tensioning unit and the inner catheter base slides along guide rod towards the handle apparatus.


In another preferred embodiment, there is provided a prosthetic heart valve retrieval device wherein the tapered tip is bullet-shaped, cone-shaped, hooded, or otherwise shaped to guide the valve tether into the lumen of the dilator sheath.


In another preferred embodiment, there is provided wherein the dilator has a radio band affixed thereto.


In another preferred embodiment, there is provided a method of using the retrieval device for capturing a tethered expandable prosthetic heart valve to retrieve and re-position said valve, comprising the steps of: (i) inserting said retrieval and repositioning device into a body cavity of a patient containing a tethered and expandable prosthetic heart valve into a patient, (ii) capturing and retracting the tether into the retrieval device, and (iii) repositioning the tethered expandable prosthetic heart valve.


In another preferred embodiment, the method of retrieving and re-positioning also includes the step of (iv) removing the tethered and expandable heart valve from the patient by collapsing the expandable prosthetic heart valve apparatus into the dilator sheath catheter and retracting the dilator sheath.


In another preferred embodiment, there is provided a method of using the retrieval device for capturing a tethered expandable prosthetic heart valve to retrieve and remove said valve, comprising the steps of: (i) inserting said retrieval and removal device into a body cavity of a patient containing a tethered and expandable prosthetic heart valve into a patient, and (ii) capturing and retracting the tethered expandable prosthetic heart valve into the retrieval and removal device.


In another preferred embodiment, there is provided wherein the step of inserting the retrieval device by directly accessing the heart through the intercostal space, or using an apical approach to enter a heart ventricle.


In another preferred embodiment, there is provided wherein the step of inserting the retrieval device by directly accessing the heart through a thoracotomy, sternotomy, or minimally-invasive thoracic, thorascopic, or trans-diaphragmatic approach to enter the left ventricle.


To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.





BRIEF DESCRIPTION OF THE DRAWINGS

The attached figures provide enabling and non-limiting example of certain features of the present invention. The figures are not intended to be limiting in any way to the description that is provided in the text.



FIG. 1 is a side perspective view of one embodiment of a handle and support/pusher rod apparatus for the prosthetic valve retrieval system provided herein.



FIG. 2 is a side perspective view of a double-sleeved dilator & catheter assembly with tensioning/traveler strap and two-part retaining collar and gated bore collar.



FIG. 3 is a side perspective view of a partially disassembled double-sleeved dilator & catheter assembly with outer sheath having distance/location markings and gated bore collar and the tapered inner catheter disposed within the outer sheath which has tensioning/traveler strap and retaining collar operatively associated therewith.



FIG. 4 is a side detailed view of two-part retaining collar and gated bore collar showing how support rod fits into the key slot of the retaining collar and the double-sleeved retrieval and repositioning catheter extends from gated bore collar.



FIG. 5 is a side detailed view of the handle and actuator with support/pusher rod and traveler strap disposed within the strap tensioning jaw.



FIG. 6 is a side perspective view of the tapered conical catheter tip having capture wire extending therethrough and capturing the tether of a deployed prosthetic valve in a demonstration model of a body cavity such as a ventricle.



FIG. 7 is a side perspective view of the double-sleeved retrieval and repositioning catheter that has been partially advanced into the ventricle or cavity of the demonstration model of a ventricle towards the valve/device to be retrieved while the tether slack is reeled in or gathered.



FIG. 8 is a side perspective view of the double-sleeved retrieval and repositioning catheter that has been advanced into the ventricle or cavity of a demonstration model of a ventricle towards the valve/device to be retrieved while the tether slack is reeled in or gathered.



FIG. 9 is a side perspective view of the double-sleeved retrieval and repositioning catheter that has been advanced into the ventricle or cavity of the demonstration model of a ventricle towards the valve/device to be retrieved while the tether slack is reeled in or gathered and the tapered tip engages the strut bundle of the valve.



FIG. 10 is a perspective view of the retaining collar and gated-bore collar with the captured tether exiting the proximal end of the stylet and tether screw in an open position prior to adjustment to secure the tether.



FIG. 11 is a perspective view of the retaining collar and gated-bore collar with the tether screw fully adjusted into a locked or closed position for securing the tether.



FIG. 12 is a perspective view of the support rod/pusher rod after the tether has been secured and shows distance markers.



FIG. 13 is a perspective view of the double-sleeved catheter that has been advanced through the ventricle or cavity of the demonstration model of a ventricle beyond the location of the valve annulus of the demonstration model. FIG. 13 shows the tapered tip of the inner catheter engaging the strut bundle of the valve and expelling the deployed valve from the annulus into an atrial location of the demonstration model.



FIG. 14 is a perspective detail view of the double-sleeved retrieval and repositioning catheter that has been advanced through the ventricle or cavity of the demonstration model of a ventricle beyond the location of the valve annulus of the demonstration model. FIG. 14 shows the tapered tip of the inner catheter engaging the strut bundle of the valve and expelling the deployed valve from the annulus into an atrium location of the demonstration model.



FIG. 15 is a detail view of the retaining collar with the tether screw fully adjusted into a locked or closed position for securing the tether and the marker on the support rod illustrating the initial pre-retrieval distance that actuating the traveler strap has accomplished during the initial capture and securing of the valve to be retrieved.



FIG. 16 is a detail view of the traveler strap entering the tensioning jaw.



FIG. 17 is a detail view of the misaligned valve prior to being re-positioned into a better alignment, e.g. A2 conforming segment of the atrial cuff on the valve aligned with A2 location of native annulus.



FIG. 18 is a detail view of the valve after re-positioning and redeployment into the valve annulus of the demonstration model framework.



FIG. 19 is a side view of the retrieved and re-positioned valve mounted in the tethered valve deployment demonstration model, e.g. left ventricle, right ventricle, body cavity, etc. and shows the struts, strut bundle, and tether extending across the cavity and out through the body wall access port.



FIG. 20 is a side view of a three-part triple-sheathed retrieval and removal catheter having a flared outer dilator sheath with an intermediate beveled catheter disposed within and an inner catheter having a tapered tip disposed within the intermediate beveled catheter.



FIG. 21 is a detail view of the two outermost catheters of the triple-sheathed retrieval and removal catheter and shows a flared outer dilator sheath with an intermediate beveled catheter disposed within.



FIG. 22 is a detail view of the assembled retrieval and removal catheter apparatus and shows support rod extending from the retaining collar across a collar stabilizer to the gated bore collar, traveler strap attached to the retaining collar and sliding gate mounted on the gated-bore collar, with the triple-sheathed catheter attached to a distal end of the gated-bore collar and stylet and inner catheter extending through the axis of the entire apparatus.



FIG. 23 is a perspective view of the triple-sheathed catheter that has been advanced through the ventricle or cavity of the demonstration model of a ventricle beyond the location of the valve annulus of the demonstration model. FIG. 23 shows the tapered tip of the inner catheter engaging the strut bundle of the valve just prior to expelling the deployed valve from the annulus into an atrial location of the demonstration model.



FIG. 24 is a perspective view of the triple-sheathed removal catheter and shows the valve partially withdrawn in the flared outer dilator sheath after the inner catheter has taken control of the strut bundle using the tapered tip and the intermediate beveled catheter has controllably collapsed and compressed the valve struts.



FIG. 25 is a side perspective view of the valve being further drawn into the protective flared end of the flared outer dilator sheath. FIG. 25 also shows the catheter extending across the lumen of the ventricle of the model with the gated-bore collar outside of the body wall access port (proximal side) and the valve being removed from inside an atrial space of the demonstration model.



FIG. 26 is a side perspective view of the valve being further drawn into the protective flared end of the flared outer dilator sheath. FIG. 26 also shows radio-marker band at the tip of the outer catheter.



FIG. 27 is a side perspective view and shows the valve entirely removed and withdrawn into the outer catheter.





DETAILED DESCRIPTION

Various aspects are now described with reference to the drawings. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of one or more aspects. It may be evident, however, that such aspect(s) may be practiced without these specific details.


Functions of the Retrieval System


The present invention provides in one embodiment a retrieval system for a previously deployed prosthetic heart valve wherein a valve tether is attached to the valve or to a collapsible stent containing the valve and the apparatus provided herein provides a method for capturing the tether of said valve, dislodging the deployed valve from the valve annulus, and then either re-positioning the valve and redeploying it, or removing the valve entirely.


The invention also allows for the capture of one or more retrieval tethers by a catheter-based extraction device, and for the re-positioning or removing the entire deployed valve apparatus via the retrieval device using an outpatient catheterization procedure without requiring major surgery.


Access & Deployment of the Retrieval Device


In one aspect of the retrieval, the catheter retrieval system accesses the heart and pericardial space by intercostal delivery. In this case, the pusher unit and catheters may be short, e.g. 12-38 cm.


In another retrieval approach, the catheter retrieval system retrieves the prosthetic heart valve using either an antegrade or retrograde approach using a flexible catheter system, and without requiring the rigid tube system commonly used. In another embodiment, the catheter system accesses the heart via a trans-septal approach. In either case, where a long distance must be traveled the pusher unit and associated catheters and equipment is contemplated as being within the range of 60-150 cm long.


Prosthetic Valve Devices


The prosthetic heart valve contemplated for retrieval using the retrieval device comprises a self-expanding tubular stent having a cuff at one end and tether loops for attaching tether(s) at the other end, and disposed within the tubular stent is a leaflet assembly that contains the valve leaflets, the valve leaflets being formed from stabilized tissue or other suitable biological or synthetic material. In one embodiment, the leaflet assembly comprises a wire form where a formed wire structure is used in conjunction with stabilized tissue to create a leaflet support structure which can have anywhere from 1, 2, 3 or 4 leaflets, or valve cusps disposed therein. In another embodiment, the leaflet assembly is wireless and uses only the stabilized tissue and stent body to provide the leaflet support structure, without using wire, and which can also have anywhere from 1, 2, 3 or 4 leaflets, or valve cusps disposed therein.


The tether anchors the valve to an anchoring location within the ventricle. Preferably, the location is the apex of the heart and uses an epicardial attachment pad. However, other tether attachment locations may be used in the deployment of the valve and also therefore, for the retrieval.


The cuff of the valve functions to counter the forces that act to displace the prosthesis toward/into the ventricle (i.e., atrial pressure and flow-generated shear stress) during ventricular filling. Accordingly, the stent containing the valve is positioned and pulled between the ventricular tether and the atrial cuff.


Cuff Structure


The cuff is a substantially flat plate that projects beyond the diameter of the tubular stent to form a rim or border. As used herein, the term cuff, flange, collar, bonnet, apron, or skirting are considered to be functionally equivalent. When the tubular stent is pulled through the mitral valve aperture, the mitral annulus, by the tether loops in the direction of the left ventricle, the cuff acts as a collar to stop the tubular stent from traveling any further through the mitral valve aperture. The entire prosthetic valve is held by longitudinal forces between the cuff which is seated in the left atrium and mitral annulus, and the ventricular tethers attached to the left ventricle.


The cuff is formed from a stiff, flexible shape-memory material such as the nickel-titanium alloy material Nitinol® wire that is covered by stabilized tissue or other suitable biocompatible or synthetic material. In one embodiment, the cuff wire form is constructed from independent loops of wire that create lobes or segments extending axially around the circumference of the bend or seam where the cuff transitions to the tubular stent (in an integral cuff) or where the cuff is attached to the stent (where they are separate, but joined components).


Once covered by stabilized tissue or material, the loops provide the cuff with the ability to travel up and down, to articulate, along the longitudinal axis that runs through the center of the tubular stent. In other words, the individual spindles or loops can independently move up and down, and can spring back to their original position due to the relative stiffness of the wire. The tissue or material that covers the cuff wire has a certain modulus of elasticity such that, when attached to the wire of the cuff, such tissue or material allows the wire spindles to move.


The cuff counteracts the longitudinal ventricular pressure during systole against the prosthesis in the direction of the left ventricle to keep the valve from being displaced or slipping into the ventricle. The tether(s) counteracts this force and is used to maintain the valve position and withstand the ventricular force during ventricular contraction or systole. Accordingly, the entire valve must be positioned in a proper position and cannot be radially misplaced during the deployment process. After a period of time, changes in the geometry of the heart and/or fibrous adhesion between prosthesis and surrounding cardiac tissues may assist or replace the function of the ventricular tethers in resisting longitudinal forces on the valve prosthesis during ventricular contraction, so the initial deployment must be accurate.


Stent Structure


Preferably, superelastic metal wire, such as Nitinol® wire, is also used for the stent, for the inner wire-based leaflet assembly that is disposed within the stent, and for the cuff wire form. Such stents are available from any number of commercial manufacturers, such as Pulse Systems. Laser cut stents are preferably made from Nickel-Titanium (Nitinol®), but also without limitation made from stainless steel, cobalt chromium, titanium, and other functionally equivalent metals and alloys, or Pulse Systems braided stent that is shape-set by heat treating on a fixture or mandrel.


One key aspect of the stent design is that it be compressible and when released have the stated property that it return to its original (uncompressed) shape. This requirement limits the potential material selections to metals and plastics that have shape memory properties. With regards to metals, Nitinol® has been found to be especially useful since it can be processed to be austenitic, martensitic or super elastic. Martensitic and super elastic alloys can be processed to demonstrate the required compression features.


Laser Cut Stent


One possible construction of the stent envisions the laser cutting of a thin, isodiametric Nitinol® tube. The laser cuts form regular cutouts in the thin Nitinol tube. Secondarily the tube is placed on a mold of the desired shape, heated to the martensitic temperature and quenched. The treatment of the stent in this manner will form a stent or stent/cuff that has shape memory properties and will readily revert to the memory shape at the calibrated temperature.


Leaflet and Inner Wireform


The valve leaflets are held by, or within, a leaflet assembly. In one preferred embodiment of the invention, the leaflet assembly comprises a leaflet wire support structure to which the leaflets are attached and the entire leaflet assembly is housed within the stent body. In this embodiment, the assembly is constructed of wire and stabilized tissue to form a suitable platform for attaching the leaflets. In this aspect, the wire and stabilized tissue allow for the leaflet structure to be compressed when the prosthetic valve is compressed within the deployment catheter, and to spring open into the proper functional shape when the prosthetic valve is opened during deployment. In this embodiment, the leaflet assembly may optionally be attached to and housed within a separate cylindrical liner made of stabilized tissue or material, and the liner is then attached to line the interior of the stent body.


In this embodiment, the leaflet wire support structure is constructed to have a collapsible/expandable geometry. In a preferred embodiment, the structure is a single piece of wire. The wireform is, in one embodiment, constructed from a shape memory alloy such as Nitinol®. The structure may optionally be made of a plurality of wires, including between 2 to 10 wires. Further, the geometry of the wire form is without limitation, and may optionally be a series of parabolic inverted collapsible arches to mimic the saddle-like shape of the native annulus when the leaflets are attached. Alternatively, it may optionally be constructed as collapsible concentric rings, or other similar geometric forms that are able to collapse or compress, then expand back to its functional shape. In certain preferred embodiments, there may be 2, 3 or 4 arches. In another embodiment, closed circular or ellipsoid structure designs are contemplated. In another embodiment, the wire form may be an umbrella-type structure, or other similar unfold-and-lock-open designs. A further preferred embodiment utilizes super elastic Nitinol® wire approximately 0.015″ in diameter. In this embodiment, the wire is wound around a shaping fixture in such a manner that 2-3 commissural posts are formed. The fixture containing the wrapped wire is placed in a muffle furnace at a pre-determined temperature to set the shape of the wire form and to impart it's super elastic properties. Secondarily, the loose ends of the wireform are joined with a stainless steel or Nitinol tube and crimped to form a continuous shape. In another preferred embodiment, the commissural posts of the wireform are adjoined at their tips by a circular connecting ring, or halo, whose purpose is to minimize inward deflection of the post(s).


Tether


The tether(s) is attached to the prosthetic heart valve and extend to one or more tissue anchor locations within the heart. In one preferred embodiment, the tether(s) extend downward through the left ventricle, exiting the left ventricle at the apex of the heart to be fastened on the epicardial surface outside of the heart. In another preferred embodiment, the tether is optionally anchored to other tissue locations depending on the particular application of the prosthetic heart valve, such as one or both papillary muscles, septum, and/or ventricular wall.


The tether is made from surgical-grade materials such as biocompatible polymer suture material. Examples of such material include without limitation: ultra high molecular weight polyethylene (UHWPE); 2-0 exPFTE (polytetrafluoroethylene); or 2-0 polypropylene.


DESCRIPTION OF THE FIGURES

Referring now to the FIGURES, FIGS. 1 and 2 shows one embodiment of a retrieval and repositioning apparatus. FIG. 1 shows handle 110 and support/pusher rod 116 apparatus for the prosthetic valve retrieval system provided herein. The handle 110 operates with actuator 112 and spring 114 in concert with support rod 116 and tensioning strap 122 to provide a reciprocal motion responsive to the operation of the actuator 112. The support rod 116 is fitted in key slot 132 of retaining collar 126. The traveler strap 122 is loaded into tensioning jaw 118 and upon actuating the handle 112 divides the retaining collar 126 from the gated-bore collar 128. Using tether screw 134 on retaining collar 126 to secure a tether from the valve to be retrieved, the reciprocal motion of the strap 122 and the rod 116 operate to pull the tether. FIG. 2 shows detail of a double-sleeved dilator & catheter assembly 120 for retrieval and repositioning with outer dilator sheath 138 having inner catheter disposed therein. Tapered tip 144 is used to abut strut bundle (not shown) secure the deployed tether. Stylet 124 has a lumen therethrough for accepting the tether and locks into retaingin collar 126. Gated-bore collar 128 has sliding gate 130 for closing off communication with the ventricle to avoid blood loss. Blind distance markers 146 are labelled on the pusher rod to provide the operator with the relative distance that the pusher rod has been advanced. Since the procedure is a catheter-based, non-surgical procedure, the valve is deployed into the patient's heart using only radiographic visualization. Thus, the blind distance markers avoid advancing the pusher rod 116 too far.



FIG. 3 shows a partially disassembled double-sleeved dilator & catheter assembly 120 with outer sheath 138 having distance/location markings 146 and gated bore collar 128 and the tapered inner catheter 142 disposed within the outer sheath 138 which has tensioning/traveler strap 122 and retaining collar 126 operatively associated therewith. FIG. 3 also shows removable stylet 124, tether screw 134 and gasket 142 on retaining collar/inner catheter base 126. FIG. 3 shows tapered tip 156 at the distal end of inner catheter 140. FIG. 3 shows sliding gate 130 on the gated-bore collar/dilator base 128 and radio band 158 at the distal end of dilator sheath 138.



FIG. 4 shows a two-part retaining collar 126 and gated bore collar 128 showing how support rod 116 fits into the key slot 132 of the retaining collar 126 and the double-sleeved retrieval and repositioning catheter 120 extends from gated bore collar 128. FIG. 4 also shows tether screw 134 on retaining collar for securing the captured tether, as well as rod screw 136 located on the gated-bore collar 128 for securing the position of the rod 116 within the gated-bore collar 128. Stylet 124, distance marker 146 and sliding gate 130 are also shown.



FIG. 5 shows the handle 110 and actuator 112 with support/pusher rod 116 and traveler strap 122 disposed within the strap tensioning jaw 118. Operating the actuator 112 pulls the strap 122 into the tensioning jaw 118 towards the handle 110.



FIG. 6 shows an over-the-wire catheter-based equipment delivery technique and specifically shows the tapered conical catheter tip 156 having capture wire 148 extending therethrough and capturing the tether 150 of a deployed prosthetic valve in a demonstration model 166 of a body cavity such as a ventricle. Demonstration model includes simulated body wall access port 154 anatomically spaced from simulated annulus 170 and shows in cross-section how the retrieval device works in the context of a body cavity.



FIG. 7 shows the double-sleeved retrieval and repositioning catheter 120 that has been partially advanced through the body wall access port 154 and into the ventricle or cavity of the demonstration model 166 of a ventricle towards the valve/device 168 to be retrieved while the tether 150 slack is reeled in or gathered. The dilator outer sheath 138 of catheter 120 establishes a conduit for delivery of the retrieval and repositioning inner catheter 140 (not shown). Sliding gate 130 prevents blood loss down the catheter assembly during cavity access.



FIGS. 8 and 9 show the double-sleeved retrieval and repositioning catheter 120 that has been advanced into the ventricle or cavity of a demonstration model 166 of a ventricle towards the valve/device 168 to be retrieved while the tether 150 slack is reeled in or gathered. FIG. 8 specifically shows how tapered tip 156 is advanced until it abuts the strut bundle 152. The positioning is used to control the release of the deployed valve 168 from the annulus 170.



FIG. 10 shows the retaining collar 126 and gated-bore collar 128 with the captured tether 150 exiting the proximal end of the stylet 124 and tether screw 134 in an open position prior to adjustment to secure the tether 150. FIG. 10 also shows rod 116 disposed with key slot/guide rod aperture 132 and traveler strap 122 extending parallel to the rod towards the handle 110 (not shown). Distance marker 146 is shown on rod 116. Sliding gate 130 is also shown on dilator base/gated-bore collar 128. Collar luer 164 is shown and provides a port for adding saline and/or removing blood or fluids.



FIG. 11 shows the retaining collar 126 and gated-bore collar 128 with the tether screw 134 fully adjusted into a locked or closed position for securing the tether 150. Sliding gate 130 is also shown on dilator base/gated-bore collar 128.



FIG. 12 shows the support rod/pusher rod 116 after the tether 150 exiting stylet 124 has been secured and shows distance markers 146. Tensioning strap/traveler strap 122 is shown parallel to rod 116.



FIG. 13 shows the double-sleeved catheter 120 that has been advanced through the ventricle or cavity of the demonstration model 166 of a ventricle beyond the location of the valve annulus of the demonstration model. FIG. 13 shows the tapered tip 156 of the inner catheter 140 engaging the strut bundle 152 of the valve and expelling the deployed valve 168 from the annulus 170 into an atrial location 172 of the demonstration model 166.



FIG. 14 shows the double-sleeved retrieval and repositioning catheter 120 that has been advanced through the annulus 170 of the ventricle or cavity of the demonstration model 166 of a ventricle beyond the location of the valve annulus 170 of the demonstration model. FIG. 14 shows the tapered tip 156 of the inner catheter 142 engaging the strut bundle 152 of the valve 168 and expelling the deployed valve 168 from the annulus 170 into an atrial space 172 of the demonstration model 166.



FIG. 15 shows the retaining collar 126 with the tether screw 134 fully adjusted into a locked or closed position for securing the tether 150, seen exiting the stylet 124. Marker 146 on the support rod 116 illustrates the initial pre-retrieval distance that actuating the traveler strap 122 has accomplished during the initial capture and securing of the valve to be retrieved. Gasket 142 and key slot/rod aperture 132 are shown on inner catheter base 126.



FIG. 16 shows the traveler strap 122 entering the tensioning jaw 118. Support rod 116 and handle 110 are shown mounted with tensioning jaw 118.



FIG. 17 shows the misaligned valve 168 prior to being re-positioned into a better alignment under control of the dilator assembly 120, e.g. A2 conforming segment of the atrial cuff on the valve aligned with A2 location of native annulus.



FIG. 18 shows the valve 168 after re-positioning and redeployment into the valve annulus of the demonstration model framework 166 while under control of the dilator assembly 120.



FIG. 19 shows the retrieved and re-positioned valve 168 mounted in the tethered valve deployment demonstration model 166, e.g. left ventricle, right ventricle, body cavity, etc. and shows the struts 174, strut bundle 152, and tether 150 extending across the cavity and out through the body wall access port 154.



FIG. 20 shows a three-part triple-sheathed retrieval and removal catheter 258 having a flared outer dilator sheath 260 with an intermediate beveled catheter 240 disposed within and an inner catheter 242 having a tapered tip 256, said inner catheter 242 disposed within the intermediate beveled catheter 240. For removal, in operation the three-part catheter assembly uses the tapered tip 256 to engage and control the valve or device to be removed. The inner catheter 242 is then slightly withdrawn to allow the intermediate beveled catheter 240 to engage the struts 174 of the valve. Then, the intermediate beveled catheter 240 is slightly withdrawn to allow the outer-most flared dilator sheath 260 to compress and extract the valve. This multi-staged process allows the expandable valves, which have a large expansion force, to be compressed and withdrawn into a catheter. Without addressing such issues, such as is provided by these stages, there is an increased chance that the valve struts will break, the valve will be damaged, or the valve will get stuck and not be compressed, making catheter-based retrieval difficult and potentially unfeasible.



FIG. 21 shows the two outermost catheters of the triple-sheathed retrieval and removal catheter 258 and shows a flared outer dilator sheath 260 with an intermediate beveled catheter 240 disposed within.



FIG. 22 shows the assembled retrieval and removal catheter apparatus 258 and shows support rod 216 extending from the retaining collar 226 across a secondary collar 262 to the gated bore collar 228, traveler strap 222 attached to the retaining collar 226 and sliding gate 230 mounted on the gated-bore collar 228, with the triple-sheathed catheter 258 attached to a distal end of the gated-bore collar 228 and stylet 224 and inner catheter 242 extending through the axis of the entire apparatus. Key slot/Rod aperture 232 and distance markers 246 are shown along with rod screw 236. In operation, the use of multiple stages requires the use of multiple catheter bases, with each engaging the support rod 216 and the retaining collar/inner catheter base 226 and secondary collar/intermediate base 262 operationally attached to the traveler strap for advancing the tethered valve in staged steps.



FIG. 23 shows the triple-sheathed catheter 258 that has been advanced through the body wall access port 154 of the the ventricle or cavity of the demonstration model 166. Once the valve or device is under control, the valve or device is expelled from the annulus 170. FIG. 23 shows the tapered tip 256 of the inner catheter engaging the strut bundle 152 of the valve just prior to expelling the deployed valve from the annulus 170 into an atrial location of the demonstration model.



FIG. 24 shows the triple-sheathed removal catheter 258 and shows the valve 168 partially withdrawn in the flared outer dilator sheath 260 after the inner catheter 242 (not seen) has taken control of the strut bundle 152 (not seen) using the tapered tip 256 and the intermediate beveled catheter 240 (not seen) has controllably collapsed and compressed the valve struts 174 (not seen).



FIG. 25 shows the valve 168 being further drawn into the protective flared end of the flared outer dilator sheath 260. FIG. 25 also shows the outer dilator sheath catheter 260 extending across the lumen of the ventricle of the model with the gated-bore collar 228 outside of the body wall access port 154 (proximal side) and the valve being removed from inside an atrial space 172 of the demonstration model 166.



FIG. 26 shows the valve 168 being further drawn into the protective flared end of the flared outer dilator sheath 260. FIG. 26 also shows radio-marker band 266 at the tip of the outer catheter/dilator sheath 260. Sliding gate 230 of dilator base/gated collar 228 is shown ‘outside’ of the cavity and sliding gate 230 is in the open (lumen) position which is used during valve removal.



FIG. 27 shows the valve entirely removed and withdrawn into the outer catheter and out of the simulated body cavity 166. FIG. 27 shows luer 264 on the outer collar 228.


For convenience, the following parts list is provided corresponding to the drawing figures herein to assist in better understanding the inventive subject matter.


RETRIEVAL PARTS






    • 110 handle


    • 112 actuator


    • 114 spring


    • 116 support rod


    • 118 (strap) tensioning jaw


    • 120 double-sheathed dilator assembly


    • 122 (tensioning) strap


    • 124 stylet


    • 126 retaining collar/inner catheter base


    • 128 gated bore collar/dilator base


    • 130 sliding gate


    • 132 key slot/guide rod aperture


    • 134 tether screw


    • 136 rod screw


    • 138 dilator (outer) sheath


    • 140 inner catheter


    • 142 gasket


    • 144 strut coupler


    • 146 rod distance markers


    • 148 capture wire


    • 150 tether


    • 152 strut bundle


    • 154 body wall access port


    • 156 tapered tip


    • 158 radio band


    • 162 collar stabilizer


    • 164 collar luer


    • 166 demonstration model


    • 168 valve


    • 170 annulus


    • 172 atrial space


    • 174 struts


    • 210 handle


    • 212 actuator


    • 214 spring


    • 216 support rod


    • 218 (strap) tensioning jaw


    • 222 (tensioning) strap


    • 224 stylet


    • 226 retaining collar


    • 228 gated bore collar


    • 230 sliding gate


    • 232 key slot/rod aperture


    • 234 tether screw


    • 236 rod screw


    • 240 intermediate beveled catheter


    • 242 inner catheter


    • 244 strut coupler


    • 246 rod distance markers


    • 248 capture wire


    • 256 tapered tip


    • 258 triple-sheathed dilator assembly


    • 260 flared dilator (outer) sheath


    • 262 secondary collar


    • 264 collar luer


    • 266 radio band





The references recited herein are incorporated herein in their entirety, particularly as they relate to teaching the level of ordinary skill in this art and for any disclosure necessary for the commoner understanding of the subject matter of the claimed invention. It will be clear to a person of ordinary skill in the art that the above embodiments may be altered or that insubstantial changes may be made without departing from the scope of the invention. Accordingly, the scope of the invention is determined by the scope of the following claims and their equitable Equivalents.

Claims
  • 1. A method for capturing a tethered prosthetic heart valve implanted within a heart of a patient to retrieve and re-position the prosthetic heart valve, the method comprising: inserting a retrieval and repositioning device at least partially into a heart of patient in which a tethered and expandable prosthetic heart valve is implanted;capturing and retracting a tether coupled to the expandable prosthetic heart valve into a lumen of a catheter of the retrieval and repositioning device; andrepositioning the expandable prosthetic heart valve within the heart of the patient using the retrieval and repositioning device,wherein the tethered and expandable prosthetic heart valve includes the tether fixedly coupled to the expandable prosthetic heart valve such that after implantation of the expandable prosthetic heart valve, the tether is anchored to tissue of the heart.
  • 2. The method of claim 1, further comprising: after the capturing and retracting the tether, securing the tether to a portion of the retrieval and removal device with a locking device.
  • 3. The method of claim 1, further comprising: prior to repositioning the expandable prosthetic heart valve, actuating an actuator of the retrieval and repositioning device such that the prosthetic heart valve is pulled proximally and a portion of the prosthetic heart valve is at least partially engaged with the retrieval and repositioning device.
  • 4. The method of claim 3, wherein the repositioning the expandable prosthetic heart valve within the heart of the patient includes actuating the actuator of the retrieval and repositioning device such that the prosthetic heart valve is moved distally within the heart and released from engagement with the retrieval and repositioning device.
  • 5. The method of claim 1, wherein: the capturing and retracting the tether includes actuating an actuator of the retrieval and repositioning device such that an inner catheter of the retrieval and repositioning device is moved distally and a distal tip of the inner catheter engages the prosthetic heart valve within the heart.
  • 6. The method of claim 1, wherein the inserting the retrieval and repositioning device includes inserting the retrieval and repositioning device by directly accessing the heart through the intercostal space, or using an apical approach to enter a heart ventricle.
  • 7. The method of claim 1, wherein the inserting the retrieval and repositioning device includes inserting the retrieval and repositioning device by directly accessing the heart through a thoracotomy, sternotomy, or a minimally-invasive thoracic, thorascopic, or transdiaphragmatic approach to enter the left ventricle.
  • 8. A method of capturing a tethered expandable prosthetic heart valve implanted within a heart to retrieve and remove the prosthetic heart valve from the heart, the method comprising: inserting a retrieval and removal device into a heart of a patient containing a tethered and expandable prosthetic heart valve wherein the tethered and expandable prosthetic heart valve includes the tether fixedly coupled to the expandable prosthetic heart valve and the tether is anchored to tissue of the heart;capturing and retracting the tether attached to the expandable prosthetic heart valve into a first lumen of the retrieval and removal device;capturing the expandable prosthetic heart valve within a second lumen of the retrieval and removal device; andremoving the retrieval and removal device with the captured prosthetic heart valve from the body cavity of the patient within.
  • 9. The method of claim 8, further comprising: prior to the removing the retrieval and removal device with the captured prosthetic heart valve, withdrawing the captured prosthetic heart valve within a third lumen of the retrieval and removal device.
  • 10. The method of claim 8, wherein: the capturing the expandable prosthetic heart valve within a second lumen of the retrieval and removal device includes actuating an actuator of the retrieval and removal device such that an inner catheter of the retrieval and removal device is pulled proximally within a lumen of an intermediate catheter of the retrieval and removal device and at least a portion of the prosthetic heart valve is pulled proximally within the lumen of the intermediate catheter of the retrieval and removal device.
  • 11. The method of claim 8, wherein: the capturing and retracting the tether includes actuating an actuator of the retrieval and removal device such that an inner catheter of the retrieval and removal device is moved distally and a distal tip of the inner catheter engages the prosthetic heart valve within the heart.
  • 12. The method of claim 8, wherein the inserting the retrieval and repositioning device includes inserting the retrieval and repositioning device by directly accessing the heart through the intercostal space, or using an apical approach to enter a heart ventricle.
  • 13. The method of claim 8, wherein the inserting the retrieval and repositioning device includes inserting the retrieval and repositioning device by directly accessing the heart through a thoracotomy, sternotomy, or a minimally-invasive thoracic, thorascopic, or transdiaphragmatic approach to enter the left ventricle.
  • 14. The method of claim 8, further comprising: after the capturing and retracting the tether, securing the tether to a portion of the retrieval and removal device with a locking device.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 14/329,215, filed Jul. 11, 2014, which is a continuation-in-part of U.S. patent application Ser. No. 14/154,816, filed Jan. 14, 2014, which claims priority to and the benefit of U.S. Provisional Application No. 61/808,458, filed Apr. 4, 2013, the contents of each of which are incorporated by reference herein in their entirety.

US Referenced Citations (783)
Number Name Date Kind
2697008 Ross Dec 1954 A
3409013 Berry Nov 1968 A
3472230 Fogarty et al. Oct 1969 A
3476101 Ross Nov 1969 A
3548417 Kischer Dec 1970 A
3587115 Shiley Jun 1971 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
3976079 Samuels et al. Aug 1976 A
4003382 Dyke Jan 1977 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4073438 Meyer Feb 1978 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4297749 Davis et al. Nov 1981 A
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4470157 Love Sep 1984 A
4490859 Black et al. Jan 1985 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4585705 Broderick et al. Apr 1986 A
4592340 Boyles Jun 1986 A
4605407 Black et al. Aug 1986 A
4612011 Kautzky Sep 1986 A
4626255 Reichart et al. Dec 1986 A
4638886 Marietta Jan 1987 A
4643732 Pietsch et al. Feb 1987 A
4655771 Wallsten Apr 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4733665 Palmaz Mar 1988 A
4759758 Gabbay Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4824180 Levrai Apr 1989 A
4829990 Thuroff et al. May 1989 A
4830117 Capasso May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4922905 Strecker May 1990 A
4923013 De Gennaro May 1990 A
4960424 Grooters Oct 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
4996873 Takeuchi Mar 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5035706 Giantureo et al. Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5064435 Porter Nov 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5192297 Hull Mar 1993 A
5201880 Wright et al. Apr 1993 A
5266073 Wall Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5306296 Wright et al. Apr 1994 A
5332402 Teitelbaum Jul 1994 A
5336616 Livesey et al. Aug 1994 A
5344442 Deac Sep 1994 A
5360444 Kusuhara Nov 1994 A
5364407 Poll Nov 1994 A
5370685 Stevens Dec 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411055 Kane May 1995 A
5411552 Andersen et al. May 1995 A
5415667 Frater May 1995 A
5443446 Shturman Aug 1995 A
5480424 Cox Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545209 Roberts et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554184 Machiraju Sep 1996 A
5554185 Block et al. Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5591185 Kilmer et al. Jan 1997 A
5607462 Imran Mar 1997 A
5607464 Trescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5639274 Fischell et al. Jun 1997 A
5662704 Gross Sep 1997 A
5665115 Cragg Sep 1997 A
5674279 Wright et al. Oct 1997 A
5697905 d'Ambrosio Dec 1997 A
5702368 Stevens et al. Dec 1997 A
5716417 Girard et al. Feb 1998 A
5728068 Leone et al. Mar 1998 A
5728151 Garrison et al. Mar 1998 A
5735842 Krueger et al. Apr 1998 A
5741333 Frid Apr 1998 A
5749890 Shaknovich May 1998 A
5756476 Epstein et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5792179 Sideris Aug 1998 A
5800508 Goicoechea et al. Sep 1998 A
5833673 Ockuly et al. Nov 1998 A
5840081 Andersen et al. Nov 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855602 Angell Jan 1999 A
5904697 Gifford, III et al. May 1999 A
5925063 Khosravi Jul 1999 A
5957949 Leonhardt Sep 1999 A
5968052 Sullivan, III et al. Oct 1999 A
5968068 Dehdashtian et al. Oct 1999 A
5972030 Garrison et al. Oct 1999 A
5993481 Marcade et al. Nov 1999 A
6027525 Suh et al. Feb 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6045497 Schweich, Jr. et al. Apr 2000 A
6063112 Sgro May 2000 A
6077214 Mortier et al. Jun 2000 A
6099508 Bousquet Aug 2000 A
6132473 Williams et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6174327 Mertens et al. Jan 2001 B1
6183411 Mortier et al. Feb 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217585 Houser et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6245102 Jayaraman Jun 2001 B1
6260552 Mortier et al. Jul 2001 B1
6261222 Schweich, Jr. et al. Jul 2001 B1
6264602 Mortier et al. Jul 2001 B1
6287339 Vazquez et al. Sep 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6312465 Griffin et al. Nov 2001 B1
6332893 Mortier et al. Dec 2001 B1
6350277 Kocur Feb 2002 B1
6358277 Duran Mar 2002 B1
6379372 Dehdashtian et al. Apr 2002 B1
6402679 Mortier et al. Jun 2002 B1
6402680 Mortier et al. Jun 2002 B2
6402781 Langberg et al. Jun 2002 B1
6406420 McCarthy et al. Jun 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468660 Ogle et al. Oct 2002 B2
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6537198 Vidlund et al. Mar 2003 B1
6540782 Snyders Apr 2003 B1
6569196 Vesely May 2003 B1
6575252 Reed Jun 2003 B2
6582462 Andersen et al. Jun 2003 B1
6605112 Moll et al. Aug 2003 B1
6616684 Vidlund et al. Sep 2003 B1
6622730 Ekvall et al. Sep 2003 B2
6629534 St. Goar et al. Oct 2003 B1
6629921 Schweich, Jr. et al. Oct 2003 B1
6648077 Hoffman Nov 2003 B2
6648921 Anderson et al. Nov 2003 B2
6652578 Bailey et al. Nov 2003 B2
6669724 Park et al. Dec 2003 B2
6706065 Langberg et al. Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6726715 Sutherland Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6740105 Yodfat et al. May 2004 B2
6746401 Panescu Jun 2004 B2
6746471 Mortier et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6797002 Spence et al. Sep 2004 B2
6810882 Langberg et al. Nov 2004 B2
6830584 Seguin Dec 2004 B1
6854668 Wancho et al. Feb 2005 B2
6855144 Lesh Feb 2005 B2
6858001 Aboul-Hosn Feb 2005 B1
6890353 Cohn et al. May 2005 B2
6893460 Spenser et al. May 2005 B2
6896690 Lambrecht et al. May 2005 B1
6908424 Mortier et al. Jun 2005 B2
6908481 Cribier Jun 2005 B2
6936067 Buchanan Aug 2005 B2
6945996 Sedransk Sep 2005 B2
6955175 Stevens et al. Oct 2005 B2
6974476 McGuckin, Jr. et al. Dec 2005 B2
6976543 Fischer Dec 2005 B1
6997950 Chawla Feb 2006 B2
7018406 Seguin et al. Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7044905 Vidlund et al. May 2006 B2
7060021 Wilk Jun 2006 B1
7077862 Vidlund et al. Jul 2006 B2
7087064 Hyde Aug 2006 B1
7100614 Stevens et al. Sep 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7108717 Freidberg Sep 2006 B2
7112219 Vidlund et al. Sep 2006 B2
7115141 Menz et al. Oct 2006 B2
7141064 Scott et al. Nov 2006 B2
7175656 Khairkhahan Feb 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7247134 Vidlund et al. Jul 2007 B2
7252682 Seguin Aug 2007 B2
7267686 DiMatteo et al. Sep 2007 B2
7275604 Wall Oct 2007 B1
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7316706 Bloom et al. Jan 2008 B2
7318278 Zhang et al. Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329278 Seguin et al. Feb 2008 B2
7331991 Kheradvar et al. Feb 2008 B2
7335213 Hyde et al. Feb 2008 B1
7374571 Pease et al. May 2008 B2
7377941 Rhee et al. May 2008 B2
7381210 Zarbatany et al. Jun 2008 B2
7381218 Schreck Jun 2008 B2
7393360 Spenser et al. Jul 2008 B2
7404824 Webler et al. Jul 2008 B1
7416554 Lam et al. Aug 2008 B2
7422072 Dade Sep 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7445631 Salahieh et al. Nov 2008 B2
7462191 Spenser et al. Dec 2008 B2
7470285 Nugent et al. Dec 2008 B2
7500989 Solem et al. Mar 2009 B2
7503931 Kowalsky et al. Mar 2009 B2
7510572 Gabbay Mar 2009 B2
7510575 Spenser et al. Mar 2009 B2
7513908 Lattouf Apr 2009 B2
7524330 Berreklouw Apr 2009 B2
7527647 Spence May 2009 B2
7534260 Lattouf May 2009 B2
7556646 Yang et al. Jul 2009 B2
7579381 Dove Aug 2009 B2
7585321 Cribier Sep 2009 B2
7591847 Navia et al. Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7621948 Herrmann et al. Nov 2009 B2
7632304 Park Dec 2009 B2
7632308 Loulmet Dec 2009 B2
7635386 Gammie Dec 2009 B1
7674222 Nikolic et al. Mar 2010 B2
7674286 Altieri et al. Mar 2010 B2
7695510 Bloom et al. Apr 2010 B2
7708775 Rowe et al. May 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7766961 Patel et al. Aug 2010 B2
7789909 Andersen et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7803184 McGuckin, Jr. et al. Sep 2010 B2
7803185 Gabbay Sep 2010 B2
7806928 Rowe et al. Oct 2010 B2
7837727 Goetz et al. Nov 2010 B2
7854762 Speziali et al. Dec 2010 B2
7892281 Seguin et al. Feb 2011 B2
7896915 Guyenot et al. Mar 2011 B2
7901454 Kapadia et al. Mar 2011 B2
7927370 Webler et al. Apr 2011 B2
7931630 Nishtala et al. Apr 2011 B2
7942928 Webler et al. May 2011 B2
7955247 Levine et al. Jun 2011 B2
7955385 Crittenden Jun 2011 B2
7972378 Tabor et al. Jul 2011 B2
7988727 Santamore et al. Aug 2011 B2
7993394 Hariton et al. Aug 2011 B2
8007992 Tian et al. Aug 2011 B2
8029556 Rowe Oct 2011 B2
8043368 Crabtree Oct 2011 B2
8052749 Salahieh et al. Nov 2011 B2
8052750 Tuval et al. Nov 2011 B2
8052751 Aklog et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8062359 Marquez et al. Nov 2011 B2
8070802 Lamphere et al. Dec 2011 B2
8109996 Stacchino et al. Feb 2012 B2
8142495 Hasenkam et al. Mar 2012 B2
8152821 Gambale et al. Apr 2012 B2
8157810 Case et al. Apr 2012 B2
8167932 Bourang et al. May 2012 B2
8167934 Styrc et al. May 2012 B2
8187299 Goldfarb et al. May 2012 B2
8206439 Gomez Duran Jun 2012 B2
8216301 Bonhoeffer et al. Jul 2012 B2
8226711 Mortier et al. Jul 2012 B2
8236045 Benichou et al. Aug 2012 B2
8241274 Keogh et al. Aug 2012 B2
8252051 Chau et al. Aug 2012 B2
8303653 Bonhoeffer et al. Nov 2012 B2
8308796 Lashinski et al. Nov 2012 B2
8323334 Deem et al. Dec 2012 B2
8353955 Styrc et al. Jan 2013 B2
RE44075 Williamson et al. Mar 2013 E
8449599 Chau et al. May 2013 B2
8454656 Tuval Jun 2013 B2
8470028 Thornton et al. Jun 2013 B2
8480730 Maurer et al. Jul 2013 B2
8486138 Vesely Jul 2013 B2
8506623 Wilson et al. Aug 2013 B2
8506624 Vidlund et al. Aug 2013 B2
8578705 Sindano et al. Nov 2013 B2
8579913 Nielsen Nov 2013 B2
8591573 Barone Nov 2013 B2
8591576 Hasenkam et al. Nov 2013 B2
8597347 Maurer et al. Dec 2013 B2
8685086 Navia et al. Apr 2014 B2
8790394 Miller et al. Jul 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8888843 Khairkhahan et al. Nov 2014 B2
8900214 Nance et al. Dec 2014 B2
8900295 Migliazza et al. Dec 2014 B2
8926696 Cabiri et al. Jan 2015 B2
8932342 McHugo et al. Jan 2015 B2
8932348 Solem et al. Jan 2015 B2
8945208 Jimenez et al. Feb 2015 B2
8956407 Macoviak et al. Feb 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8986376 Solem Mar 2015 B2
9011522 Annest Apr 2015 B2
9023099 Duffy et al. May 2015 B2
9034032 McLean et al. May 2015 B2
9034033 McLean et al. May 2015 B2
9039757 McLean et al. May 2015 B2
9039759 Alkhatib et al. May 2015 B2
9078645 Conklin et al. Jul 2015 B2
9078749 Lutter et al. Jul 2015 B2
9084676 Chau et al. Jul 2015 B2
9095433 Lutter et al. Aug 2015 B2
9125742 Yoganathan et al. Sep 2015 B2
9149357 Seguin Oct 2015 B2
9161837 Kapadia Oct 2015 B2
9168137 Subramanian et al. Oct 2015 B2
9232995 Kovalsky et al. Jan 2016 B2
9232998 Wilson et al. Jan 2016 B2
9232999 Maurer et al. Jan 2016 B2
9241702 Maisano et al. Jan 2016 B2
9254192 Lutter et al. Feb 2016 B2
9265608 Miller et al. Feb 2016 B2
9289295 Aklog et al. Mar 2016 B2
9289297 Wilson et al. Mar 2016 B2
9345573 Nyuli et al. May 2016 B2
9480557 Pellegrini et al. Nov 2016 B2
9480559 Vidlund et al. Nov 2016 B2
9526611 Tegels et al. Dec 2016 B2
9597181 Christianson et al. Mar 2017 B2
9610159 Christianson et al. Apr 2017 B2
9675454 Vidlund et al. Jun 2017 B2
9730792 Lutter et al. Aug 2017 B2
9827092 Vidlund et al. Nov 2017 B2
9833315 Vidlund et al. Dec 2017 B2
9867700 Bakis et al. Jan 2018 B2
9883941 Hastings et al. Feb 2018 B2
9895221 Vidlund Feb 2018 B2
9986993 Vidlund et al. Jun 2018 B2
20010018611 Solem et al. Aug 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010025171 Mortier et al. Sep 2001 A1
20020010427 Scarfone et al. Jan 2002 A1
20020116054 Lundell et al. Aug 2002 A1
20020139056 Finnell Oct 2002 A1
20020151961 Lashinski et al. Oct 2002 A1
20020161377 Rabkin Oct 2002 A1
20020173842 Buchanan Nov 2002 A1
20020183827 Derus et al. Dec 2002 A1
20030010509 Hoffman Jan 2003 A1
20030036698 Kohler et al. Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030078652 Sutherland Apr 2003 A1
20030100939 Yodfat et al. May 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030105520 Alferness et al. Jun 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030130731 Vidlund et al. Jul 2003 A1
20030149476 Damm et al. Aug 2003 A1
20030212454 Scott et al. Nov 2003 A1
20040039436 Spenser et al. Feb 2004 A1
20040049266 Anduiza et al. Mar 2004 A1
20040064014 Melvin et al. Apr 2004 A1
20040092858 Wilson et al. May 2004 A1
20040093075 Kuehne May 2004 A1
20040097865 Anderson et al. May 2004 A1
20040127983 Mortier et al. Jul 2004 A1
20040133263 Dusbabek et al. Jul 2004 A1
20040147958 Lam et al. Jul 2004 A1
20040152947 Schroeder et al. Aug 2004 A1
20040162610 Liska et al. Aug 2004 A1
20040163828 Silverstein et al. Aug 2004 A1
20040181239 Dorn et al. Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040260317 Bloom et al. Dec 2004 A1
20040260389 Case et al. Dec 2004 A1
20050004652 van der Burg et al. Jan 2005 A1
20050004666 Alfieri et al. Jan 2005 A1
20050075727 Wheatley Apr 2005 A1
20050080402 Santamore et al. Apr 2005 A1
20050085900 Case et al. Apr 2005 A1
20050096498 Houser et al. May 2005 A1
20050107661 Lau et al. May 2005 A1
20050113798 Slater et al. May 2005 A1
20050113810 Houser et al. May 2005 A1
20050113811 Houser et al. May 2005 A1
20050119519 Girard et al. Jun 2005 A9
20050121206 Dolan Jun 2005 A1
20050125012 Houser et al. Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050148815 Mortier et al. Jul 2005 A1
20050177180 Kaganov et al. Aug 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203615 Forster et al. Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050251209 Saadat et al. Nov 2005 A1
20050256567 Lim et al. Nov 2005 A1
20050283231 Haug et al. Dec 2005 A1
20050288766 Plain et al. Dec 2005 A1
20060004442 Spenser et al. Jan 2006 A1
20060025784 Starksen et al. Feb 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060042803 Gallaher Mar 2006 A1
20060047338 Jenson et al. Mar 2006 A1
20060052868 Mortier et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060094983 Burbank et al. May 2006 A1
20060129025 Levine et al. Jun 2006 A1
20060142784 Kontos Jun 2006 A1
20060161040 McCarthy et al. Jul 2006 A1
20060161249 Realyvasquez et al. Jul 2006 A1
20060167541 Lattouf Jul 2006 A1
20060195134 Crittenden Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060229719 Marquez et al. Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060247491 Vidlund et al. Nov 2006 A1
20060252984 Rahdert et al. Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060271172 Tehrani Nov 2006 A1
20060276874 Wilson et al. Dec 2006 A1
20060282161 Huynh et al. Dec 2006 A1
20060287716 Banbury et al. Dec 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20070005131 Taylor Jan 2007 A1
20070005231 Seguchi Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070027535 Purdy et al. Feb 2007 A1
20070038291 Case et al. Feb 2007 A1
20070050020 Spence Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070073387 Forster et al. Mar 2007 A1
20070078297 Rafiee et al. Apr 2007 A1
20070083076 Lichtenstein Apr 2007 A1
20070083259 Bloom et al. Apr 2007 A1
20070093890 Eliasen et al. Apr 2007 A1
20070100439 Cangialosi et al. May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070112425 Schaller et al. May 2007 A1
20070118151 Davidson May 2007 A1
20070118154 Crabtree May 2007 A1
20070118210 Pinchuk May 2007 A1
20070118213 Loulmet May 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070161846 Nikolic et al. Jul 2007 A1
20070162048 Quinn et al. Jul 2007 A1
20070162103 Case et al. Jul 2007 A1
20070168024 Khairkhahan Jul 2007 A1
20070185565 Schwammenthal et al. Aug 2007 A1
20070185571 Kapadia et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070215362 Rodgers Sep 2007 A1
20070221388 Johnson Sep 2007 A1
20070233239 Navia et al. Oct 2007 A1
20070239265 Birdsall Oct 2007 A1
20070255394 Ryan Nov 2007 A1
20070256843 Pahila Nov 2007 A1
20070265658 Nelson et al. Nov 2007 A1
20070267202 Mariller Nov 2007 A1
20070270932 Headley et al. Nov 2007 A1
20070270943 Solem et al. Nov 2007 A1
20070293944 Spenser et al. Dec 2007 A1
20080009940 Cribier Jan 2008 A1
20080033543 Gurskis et al. Feb 2008 A1
20080039934 Styrc Feb 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071362 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071368 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080082163 Woo Apr 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080091264 Machold et al. Apr 2008 A1
20080114442 Mitchell et al. May 2008 A1
20080125861 Webler et al. May 2008 A1
20080147179 Cai et al. Jun 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080154356 Obermiller et al. Jun 2008 A1
20080161911 Revuelta et al. Jul 2008 A1
20080172035 Starksen et al. Jul 2008 A1
20080177381 Navia et al. Jul 2008 A1
20080183203 Fitzgerald et al. Jul 2008 A1
20080183273 Mesana et al. Jul 2008 A1
20080188928 Salahieh et al. Aug 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080243150 Starksen et al. Oct 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080255661 Straubinger et al. Oct 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080288060 Kaye et al. Nov 2008 A1
20080293996 Evans et al. Nov 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090048668 Wilson et al. Feb 2009 A1
20090054968 Bonhoeffer et al. Feb 2009 A1
20090054969 Salahieh Feb 2009 A1
20090054974 McGuckin, Jr. et al. Feb 2009 A1
20090062908 Bonhoeffer et al. Mar 2009 A1
20090076598 Salahieh et al. Mar 2009 A1
20090082619 De Marchena Mar 2009 A1
20090088836 Bishop et al. Apr 2009 A1
20090099410 De Marchena Apr 2009 A1
20090112309 Jaramillo et al. Apr 2009 A1
20090131849 Maurer et al. May 2009 A1
20090132035 Roth et al. May 2009 A1
20090137861 Goldberg et al. May 2009 A1
20090138079 Tuval et al. May 2009 A1
20090157175 Benichou Jun 2009 A1
20090164005 Dove et al. Jun 2009 A1
20090171432 Von Segesser et al. Jul 2009 A1
20090171447 Von Segesser et al. Jul 2009 A1
20090171456 Kveen et al. Jul 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090192601 Rafiee et al. Jul 2009 A1
20090210052 Forster et al. Aug 2009 A1
20090216322 Le et al. Aug 2009 A1
20090222076 Figulla et al. Sep 2009 A1
20090224529 Gill Sep 2009 A1
20090234318 Loulmet et al. Sep 2009 A1
20090234435 Johnson et al. Sep 2009 A1
20090234443 Ottma et al. Sep 2009 A1
20090240320 Tuval et al. Sep 2009 A1
20090248149 Gabbay Oct 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20090292262 Adams et al. Nov 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20090326575 Galdonik et al. Dec 2009 A1
20100016958 St. Goar et al. Jan 2010 A1
20100021382 Dorshow et al. Jan 2010 A1
20100023117 Yoganathan et al. Jan 2010 A1
20100036479 Hill et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100161041 Maisano et al. Jun 2010 A1
20100168839 Braido et al. Jul 2010 A1
20100179641 Ryan et al. Jul 2010 A1
20100185277 Braido et al. Jul 2010 A1
20100185278 Schankereli Jul 2010 A1
20100191326 Alkhatib Jul 2010 A1
20100192402 Yamaguchi et al. Aug 2010 A1
20100204781 Alkhatib Aug 2010 A1
20100210899 Schankereli Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100249489 Jarvik Sep 2010 A1
20100249923 Alkhatib et al. Sep 2010 A1
20100280604 Zipory et al. Nov 2010 A1
20100286768 Alkhatib Nov 2010 A1
20100298755 McNamara et al. Nov 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20110004296 Lutter et al. Jan 2011 A1
20110015616 Straubinger et al. Jan 2011 A1
20110015728 Jimenez et al. Jan 2011 A1
20110015729 Jimenez et al. Jan 2011 A1
20110029072 Gabbay Feb 2011 A1
20110066231 Cartledge et al. Mar 2011 A1
20110066233 Thornton et al. Mar 2011 A1
20110112632 Chau et al. May 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110137408 Bergheim Jun 2011 A1
20110208297 Tuval et al. Aug 2011 A1
20110224655 Asirvatham et al. Sep 2011 A1
20110224678 Gabbay Sep 2011 A1
20110224728 Martin et al. Sep 2011 A1
20110224784 Quinn Sep 2011 A1
20110245911 Quill et al. Oct 2011 A1
20110251682 Murray, III et al. Oct 2011 A1
20110264191 Rothstein Oct 2011 A1
20110264206 Tabor Oct 2011 A1
20110288637 De Marchena Nov 2011 A1
20110319988 Schankereli et al. Dec 2011 A1
20110319989 Lane et al. Dec 2011 A1
20120010694 Lutter et al. Jan 2012 A1
20120016464 Seguin Jan 2012 A1
20120016468 Robin et al. Jan 2012 A1
20120022633 Olson et al. Jan 2012 A1
20120022640 Gross et al. Jan 2012 A1
20120035703 Lutter et al. Feb 2012 A1
20120035713 Lutter et al. Feb 2012 A1
20120035722 Tuval Feb 2012 A1
20120053686 McNamara et al. Mar 2012 A1
20120059458 Buchbinder et al. Mar 2012 A1
20120059487 Cunanan et al. Mar 2012 A1
20120089171 Hastings et al. Apr 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120101572 Kovalsky et al. Apr 2012 A1
20120116351 Chomas et al. May 2012 A1
20120123529 Levi et al. May 2012 A1
20120158129 Duffy et al. Jun 2012 A1
20120165930 Gifford, III et al. Jun 2012 A1
20120179244 Schankereli et al. Jul 2012 A1
20120203336 Annest Aug 2012 A1
20120215303 Quadri et al. Aug 2012 A1
20120226348 Lane et al. Sep 2012 A1
20120283824 Lutter et al. Nov 2012 A1
20120289945 Segermark Nov 2012 A1
20130030522 Rowe et al. Jan 2013 A1
20130053950 Rowe et al. Feb 2013 A1
20130066341 Ketai et al. Mar 2013 A1
20130079873 Migliazza et al. Mar 2013 A1
20130131788 Quadri et al. May 2013 A1
20130172978 Vidlund et al. Jul 2013 A1
20130184811 Rowe et al. Jul 2013 A1
20130190860 Sundt, III Jul 2013 A1
20130190861 Chau et al. Jul 2013 A1
20130197622 Mitra et al. Aug 2013 A1
20130226288 Goldwasser et al. Aug 2013 A1
20130231735 Deem et al. Sep 2013 A1
20130274874 Hammer Oct 2013 A1
20130282101 Eidenschink et al. Oct 2013 A1
20130310928 Morriss et al. Nov 2013 A1
20130317603 McLean et al. Nov 2013 A1
20130325041 Annest et al. Dec 2013 A1
20130325110 Khalil et al. Dec 2013 A1
20130338752 Geusen et al. Dec 2013 A1
20140046433 Kovalsky Feb 2014 A1
20140081323 Hawkins Mar 2014 A1
20140094918 Vishnubholta et al. Apr 2014 A1
20140142691 Pouletty May 2014 A1
20140163668 Rafiee Jun 2014 A1
20140194981 Menk et al. Jul 2014 A1
20140194983 Kovalsky et al. Jul 2014 A1
20140214159 Vidlund et al. Jul 2014 A1
20140222142 Kovalsky et al. Aug 2014 A1
20140243966 Garde et al. Aug 2014 A1
20140277419 Garde et al. Sep 2014 A1
20140296969 Tegels et al. Oct 2014 A1
20140296970 Ekvall et al. Oct 2014 A1
20140296971 Tegels et al. Oct 2014 A1
20140296972 Tegels et al. Oct 2014 A1
20140296975 Tegels et al. Oct 2014 A1
20140303718 Tegels et al. Oct 2014 A1
20140309732 Solem Oct 2014 A1
20140316516 Vidlund et al. Oct 2014 A1
20140324160 Benichou et al. Oct 2014 A1
20140324161 Tegels et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140331475 Duffy et al. Nov 2014 A1
20140358224 Tegels et al. Dec 2014 A1
20140364942 Straubinger et al. Dec 2014 A1
20140364944 Lutter et al. Dec 2014 A1
20140379076 Vidlund et al. Dec 2014 A1
20150005874 Vidlund et al. Jan 2015 A1
20150011821 Gorman et al. Jan 2015 A1
20150025553 Del Nido et al. Jan 2015 A1
20150057705 Vidlund Feb 2015 A1
20150073542 Heldman Mar 2015 A1
20150073545 Braido Mar 2015 A1
20150094802 Buchbinder et al. Apr 2015 A1
20150105856 Rowe et al. Apr 2015 A1
20150119936 Gilmore et al. Apr 2015 A1
20150119978 Tegels et al. Apr 2015 A1
20150127093 Hosmer et al. May 2015 A1
20150127096 Rowe et al. May 2015 A1
20150134050 Solem et al. May 2015 A1
20150142100 Morriss et al. May 2015 A1
20150142101 Coleman et al. May 2015 A1
20150142103 Mdlund May 2015 A1
20150142104 Braido May 2015 A1
20150173897 Raanani et al. Jun 2015 A1
20150196393 Vidlund et al. Jul 2015 A1
20150196688 James Jul 2015 A1
20150202044 Chau et al. Jul 2015 A1
20150216653 Freudenthal Aug 2015 A1
20150216660 Pintor Aug 2015 A1
20150223820 Olson Aug 2015 A1
20150223934 Vidlund et al. Aug 2015 A1
20150238312 Lashinski Aug 2015 A1
20150238729 Jenson et al. Aug 2015 A1
20150265401 Braido Sep 2015 A1
20150272731 Racchini et al. Oct 2015 A1
20150305860 Wang et al. Oct 2015 A1
20150305864 Quadri et al. Oct 2015 A1
20150305868 Lutter et al. Oct 2015 A1
20150327995 Morin et al. Nov 2015 A1
20150328001 McLean Nov 2015 A1
20150335424 McLean Nov 2015 A1
20150335429 Morriss et al. Nov 2015 A1
20150342717 O'Donnell et al. Dec 2015 A1
20150351903 Morriss et al. Dec 2015 A1
20150351906 Hammer et al. Dec 2015 A1
20160000562 Siegel Jan 2016 A1
20160008131 Christianson et al. Jan 2016 A1
20160038280 Morriss et al. Feb 2016 A1
20160067042 Murad et al. Mar 2016 A1
20160074160 Christianson et al. Mar 2016 A1
20160106537 Christianson et al. Apr 2016 A1
20160113764 Sheahan Apr 2016 A1
20160143736 Vidlund May 2016 A1
20160151155 Lutter et al. Jun 2016 A1
20160206280 Vidlund et al. Jul 2016 A1
20160242902 Morriss Aug 2016 A1
20160262879 Meiri et al. Sep 2016 A1
20160262881 Schankereli et al. Sep 2016 A1
20160278955 Liu et al. Sep 2016 A1
20160317290 Chau Nov 2016 A1
20160324635 Vidlund et al. Nov 2016 A1
20160331527 Vidlund et al. Nov 2016 A1
20160346086 Solem Dec 2016 A1
20160367365 Conklin Dec 2016 A1
20160367367 Maisano et al. Dec 2016 A1
20160367368 Vidlund et al. Dec 2016 A1
20170079790 Vidlund et al. Mar 2017 A1
20170100248 Tegels et al. Apr 2017 A1
20170128208 Christianson et al. May 2017 A1
20170181854 Christianson et al. Jun 2017 A1
20170196688 Christianson et al. Jul 2017 A1
20170252153 Chau et al. Sep 2017 A1
20170266001 Vidlund et al. Sep 2017 A1
20170281343 Christianson et al. Oct 2017 A1
20170312076 Lutter et al. Nov 2017 A1
20170312077 Vidlund et al. Nov 2017 A1
20170319333 Tegels et al. Nov 2017 A1
20180028314 Ekvall et al. Feb 2018 A1
20180078368 Vidlund et al. Mar 2018 A1
20180078370 Kovalsky et al. Mar 2018 A1
20180147055 Vidlund et al. May 2018 A1
20180193138 Vidlund Jul 2018 A1
20180263618 Vidlund et al. Sep 2018 A1
20180271653 Vidlund et al. Sep 2018 A1
Foreign Referenced Citations (133)
Number Date Country
1486161 Mar 2004 CN
1961845 May 2007 CN
2902226 May 2007 CN
101146484 Mar 2008 CN
101180010 May 2008 CN
101984938 Mar 2011 CN
102869317 Jan 2013 CN
102869318 Jan 2013 CN
102869321 Jan 2013 CN
103220993 Jul 2013 CN
102639179 Oct 2014 CN
2246526 Mar 1973 DE
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049815 Apr 2002 DE
102006052564 Dec 2007 DE
102006052710 May 2008 DE
102007043830 Apr 2009 DE
102007043831 Apr 2009 DE
0103546 Mar 1984 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
1469797 Nov 2005 EP
2111800 Oct 2009 EP
2193762 Jun 2010 EP
2278944 Feb 2011 EP
2747707 Jul 2014 EP
2918248 Sep 2015 EP
2788217 Jul 2000 FR
2815844 May 2002 FR
2003505146 Feb 2003 JP
2005515836 Jun 2005 JP
2009514628 Apr 2009 JP
2009519783 May 2009 JP
2013512765 Apr 2013 JP
2013539395 Oct 2013 JP
1017275 Aug 2002 NL
1271508 Nov 1986 SU
9217118 Oct 1992 WO
9301768 Feb 1993 WO
9829057 Jul 1998 WO
9940964 Aug 1999 WO
9947075 Sep 1999 WO
2000018333 Apr 2000 WO
2000030550 Jun 2000 WO
2000041652 Jul 2000 WO
2000047139 Aug 2000 WO
2001035878 May 2001 WO
200149213 Jul 2001 WO
0154625 Aug 2001 WO
2001054624 Aug 2001 WO
2001056512 Aug 2001 WO
2001061289 Aug 2001 WO
0176510 Oct 2001 WO
2001082840 Nov 2001 WO
2002004757 Jan 2002 WO
2002022054 Mar 2002 WO
2002028321 Apr 2002 WO
2002036048 May 2002 WO
2002041789 May 2002 WO
2002043620 Jun 2002 WO
2002049540 Jun 2002 WO
2002076348 Oct 2002 WO
2003003943 Jan 2003 WO
2003030776 Apr 2003 WO
03047468 Jun 2003 WO
2003049619 Jun 2003 WO
2004019825 Mar 2004 WO
2005102181 Nov 2005 WO
2006014233 Feb 2006 WO
2006034008 Mar 2006 WO
2006064490 Jun 2006 WO
2006070372 Jul 2006 WO
2006105009 Oct 2006 WO
2006113906 Oct 2006 WO
2006127756 Nov 2006 WO
2007081412 Jul 2007 WO
2007100408 Sep 2007 WO
2008005405 Jan 2008 WO
2008035337 Mar 2008 WO
2008091515 Jul 2008 WO
2008125906 Oct 2008 WO
2008147964 Dec 2008 WO
2009024859 Feb 2009 WO
2009026563 Feb 2009 WO
2009045338 Apr 2009 WO
2009132187 Oct 2009 WO
2010090878 Aug 2010 WO
2010098857 Sep 2010 WO
2010121076 Oct 2010 WO
2011017440 Feb 2011 WO
2011022658 Feb 2011 WO
2011069048 Jun 2011 WO
2011072084 Jun 2011 WO
2011106735 Sep 2011 WO
2011109813 Sep 2011 WO
2011159342 Dec 2011 WO
2011163275 Dec 2011 WO
2012027487 Mar 2012 WO
2012036742 Mar 2012 WO
2012095116 Jul 2012 WO
2012177942 Dec 2012 WO
2013021374 Feb 2013 WO
2013021375 Feb 2013 WO
2013045262 Apr 2013 WO
2013059747 Apr 2013 WO
2013096411 Jun 2013 WO
2013175468 Nov 2013 WO
2014121280 Aug 2014 WO
2014144937 Sep 2014 WO
2014162306 Oct 2014 WO
2014189974 Nov 2014 WO
2014210124 Dec 2014 WO
2015051430 Apr 2015 WO
2015058039 Apr 2015 WO
2015063580 May 2015 WO
2015065646 May 2015 WO
2015120122 Aug 2015 WO
2015138306 Sep 2015 WO
2015173609 Nov 2015 WO
2016112085 Jul 2016 WO
2016126942 Aug 2016 WO
2016168609 Oct 2016 WO
2016196933 Dec 2016 WO
2017096157 Jun 2017 WO
2017132008 Aug 2017 WO
2017218375 Dec 2017 WO
2018005779 Jan 2018 WO
2018013515 Jan 2018 WO
Non-Patent Literature Citations (53)
Entry
US 9,155,620 B2, 10/2015, Gross et al. (withdrawn)
European Search Report for Appln No. EP19211967, dated Mar. 27, 2020, 3 pages.
Office Action for U.S. Appl. No. 14/154,816, dated Dec. 22, 2015, 8 pages.
Al Zaibag, Muayed, et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenos's,” British Heart Journal, Jan. 1987, vol. 57, No. 1, pp. 51-53.
Al-Khaja, N. et al., “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery, Jun. 30, 1989, 3:305-311.
Almagor, Y. et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits,” Journal of the American College of Cardiology, Nov. 1, 1990, 16(6):1310-1314.
Andersen, H. R., “History of Percutaneous Aortic Valve Prosthesis,” Herz, Aug. 2009, 34(5):343-346.
Andersen, H. R., “Transluminal catheter implanted prosthetic heart valves,” International Journal of Angiology, 1998, 7(2):102-106.
Benchimol, A. et al., “Simultaneous Left Ventricular Echocardiography and Aortic Blood Velocity During Rapid Right Ventricular Pacing in Man,” The American Journal of the Medical Sciences, Jan -Feb. 1977, 273(1):55-62.
Boudjemline, Y. et al., “Steps Toward the Percutaneous Replacement of Atrioventricular Valves: An Experimental Study,” Journal of the American College of Cardiology, Jul. 2005, 46(2):360-365.
Buckberg, G. et al., “Restoring Papillary Muscle Dimensions During Restoration In Dilated Hearts,” Interactive Cardiovascular and Thoracic Surgery, 2005, 4:475-477.
Chamberlain, G., “Ceramics Replace Body Parts,” Design News, Jun. 9, 1997, Issue 11, vol. 52, 5 pages.
Choo, S. J. et al., “Aortic Root Geometry: Pattern of Differences Between Leaflets and Sinuses of Valsava,” The Journal of Heart Valve Disease, Jul. 1999, 8:407-415.
Declaration of Malcolm J. R. Dalrymple-Hay, Nov. 9, 2012, pp. 1-11; with Curriculum Vitae, Oct. 4, 2012.
Dotter, C. T. et al., “Transluminal Treatment of Arteriosclerotic Obstruction. Description of a New Technic and a Preliminary Report of its Application,” Circulation, Nov. 1964, 30:654-670.
Drawbaugh, K., “Feature—Heart Surgeons Explore Minimally Invasive Methods,” Reuters Limited, Jul. 16, 1996, 3 pages.
Gray, H., The Aorta, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://www.bartleby.com/107/142.html>, Oct. 12, 2012, 5 pages.
Gray, H., The Heart, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://education.yahoo.com/reference/gray/subjects/subject/138>, Oct. 10, 2012, 9 pages.
Greenhalgh, E. S., “Design and characterization of a biomimetic prosthetic aortic heart valve,” 1994, ProQuest Dissertations and Theses, Department of Fiber and Polymer Science, North Carolina State University at Raleigh, 159 pages.
Inoue, K. et al., “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” The Journal of Thoracic and Cardiovascular Surgery, 1984, 87:394-402.
Jin, X. Y. et al., “Aortic Root Geometry and Stentless Porcine Valve Competence,” Seminars in Thoracic and Cardiovascular Surgery, Oct. 1999, 11(4):145-150.
L. L. Knudsen et al., “Catheter-Implanted Prosthetic Heart Valves. Transluminal Catheter Implantation of a New Expandable Artificial Heart Valve in the Descending Thoracic Aorta in Isolated Vessels and Closed Chest Pigs,” International Journal ofArtificial Organs, 1993, Issue 5, vol. 16, pp. 253-262.
Kolata, G., “Device That Opens Clogged Arteries Gets a Failing Grade in a New Study,” New York Times [online], <http://www.nytimes.com/1991/01/03/health/device-that-opens-clogged-ar- teries-gets-a-faili . . . ,>, published Jan. 3, 1991,retrieved from the Internet on Feb. 5, 2016, 3 pages.
Lawrence, D. D., “Percutaneous Endovascular Graft: Experimental Evaluation,” Radiology, 1987, 163:357-360.
Lozonschi, L., et al. “Transapical mitral valved stent implantation: A survival series in swine,” The Journal of Thoracic and Cardiovascular Surgery, 140(2):422-426 (Aug. 2010) published online Mar. 12, 2010, 1 page.
Lutter, Georg, et al., Mitral valved stent implantation, European Journal of Cardio-Thoracic Surgery, 2010, vol. 38, pp. 350-355.
Ma, L. et al., “Double-crowned valved stents for off-pump mitral valve replacement,” European Journal of Cardio-Thoracic Surgery, Aug. 2005, 28(2): 194-198.
Moazami, N. et al., “Transluminal aortic valve placement: A feasibility study with a newly designed collapsible aortic valve,” ASAIO Journal, Sep./ Oct. 1996, 42(5):M381-M385.
Pavcnik, M.D., Ph.D., Dusan, et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology 1992; 183:151-154.
Porstmann, W. et al., “Der Verschluß des Ductus Arteriosus Persistens ohne Thorakotomie,” Thoraxchirurgie Vaskuläre Chirurgie, Band 15, Heft 2, Stuttgart, Apr. 1967, pp. 199-203.
Rashkind, W. J., “Creation of an Atrial Septal Defect Without Thoracotomy,” The Journal of the American Medical Association, Jun. 13, 1966,196( 11 ): 173-174.
Rashkind, W. J., “Historical Aspects of Interventional Cardiology: Past, Present, Future,” Texas Heart Institute Journal, Dec. 1986, 13(4):363-367.
Reul, H. et al., “The Geomety of the Aortic Root in Health, at Valve Disease and After Valve Replacement,” J. Biomechanics, 1990, 23(2):181-191.
Rosch, J. et al., “The Birth, Early Years and Future of Interventional Radiology,” J Vasc Interv Radiol., Jul. 2003, 4:841-853.
Ross, D. N., “Aortic Valve Surgery,” Guys Hospital, London, 1968, pp. 192-197.
Rousseau, E. P. M. et al., “A Mechanical Analysis of the Closed Hancock Heart Valve Prosthesis,” Journal of Biomechanics, 1998, 21(7):545-562.
Sabbah, A. N. et al., “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Dec. 1989, Journal of Cardiac Surgery, 4(4):302-309.
Selby, M.D., J. Bayne, “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems,” Radiology 1990; 176:535-538.
Serruys, P.W., et al., “Stenting of Coronary Arteries. Are we the Sorcerer's Apprentice?,” European Heart Journal (1989) 10, 774-782, pp. 37-45, Jun. 13, 1989.
Sigwart, U., “An Overview of Intravascular Stents: Old and New,” Chapter 48, Interventional Cardiology, 2nd Edition, W.B. Saunders Company, Philadelphia, PA, © 1994, 1990, pp. 803-815.
Tofeig, M. et al., “Transcatheter Closure of a Mid-Muscular Ventricular Septal Defect with an Amplatzer VSD Occluder Device,” Heart, 1999, 81:438-440.
Uchida, Barry T., et al., “Modifications of Gianturco Expandable Wire Stents,” AJR:150, May 1988, Dec. 3, 1987, pp. 1185-1187.
Watt, A.H., et al. “Intravenous Adenosine in the Treatment of Supraventricular Tachycardia; a Dose-Ranging Study and Interaction with Dipyridamole,” British Journal of Clinical Pharmacology (1986), 21, pp. 227-230.
Webb, J. G. et al., “Percutaneous Aortic Valve Implantation Retrograde from the Femoral Artery,” Circulation, 2006, 113:842-850.
Wheatley, M.D., David J., “Valve Prostheses,” Rob & Smith's Operative Surgery, Fourth Edition, pp. 415-424, ButtenNorths 1986.
Yoganathan, A. P. et al., “The Current Status of Prosthetic Heart Valves,” In Polymetric Materials and Artificial Organs, Mar. 20, 1983, pp. 111-150, American Chemical Society.
Andersen, H. R. et al., “Transluminal implantation of arlificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs,” European Heart Journal, 1992, 13(5):704-708.
Ashton, R. C., Jr. et al., “Development of an Intraluminal Device for the Treatment of Aortic Regurgitation: Prototype and in Vitro Testing System,” Journal of Thoracic and Cardiovascular Surgery, 1996, 112:979-983.
Bernacca, G. M. et al., “Polyurethane heart valves: Fatigue failure, calcification, and polyurethane structure,” Journal of Biomedical Materials Research, Mar. 5, 1997, 34(3):371-379.
“Shape Memory Alloys,” Retrieved from the Internet: <http://webdocs.cs.ualberta.ca/˜database/MEMS/sma.html>, Feb. 5, 2016, 3 pages.
International Search Report and Written Opinion for International Application No. PCT/IB2014/060821, dated Oct. 10, 2014, 10 pages.
Office Action for U.S. Appl. No. 14/219,591, dated Mar. 11, 2016, 18 pages.
Orton, C., “Mitralseal: Hybrid Transcatheter Mitral Valve Replacement,” Symposium: Small Animal Proceedings, 2011, pp. 311-312.
Related Publications (1)
Number Date Country
20200008942 A1 Jan 2020 US
Provisional Applications (1)
Number Date Country
61808458 Apr 2013 US
Divisions (1)
Number Date Country
Parent 14329215 Jul 2014 US
Child 16560094 US
Continuation in Parts (1)
Number Date Country
Parent 14154816 Jan 2014 US
Child 14329215 US