Retrofit auxiliary device for supporting operations of a cleaning appliance

Information

  • Patent Grant
  • 11946188
  • Patent Number
    11,946,188
  • Date Filed
    Tuesday, March 14, 2023
    a year ago
  • Date Issued
    Tuesday, April 2, 2024
    9 months ago
Abstract
A retrofit auxiliary device that supports operations of at least one cleaning appliance. The retrofit auxiliary device including at least one fluid channel and a device controller. The device controller being communicatively coupled to the at least one cleaning appliance to monitor or control the operation of the at least one cleaning appliance, and a user display.
Description
BACKGROUND

Household cleaning appliances include various appliances such as dishwashers and washing machines. The household cleaning appliance may have a controller that implements a number of pre-programmed cycles of operation having one or more operating parameters. The controller may control a motor or rotate the drum according to one of the pre-programmed cycles of operation. The controller may control the motor or rotate the drum at the same speeds for a given pre-programmed cycle of operation regardless of the characteristics of the items loaded into the household cleaning appliance, or changes in the system. There are a great many different makes and models of household cleaning appliances currently in the marketplace. They each support different cycles, have different cycle times, inlet and outlet water flow rates, different methods and times of introducing treating chemistry, different amounts of wash and rinse phases, etc. It would be advantageous to have a smart retrofittable device that could regulate these parameters externally and detect aberrations in the cycles of operation, if any.


BRIEF SUMMARY

In one aspect, the present disclosure relates to a retrofit auxiliary device for supporting operations of at least one cleaning appliance, the retrofit auxiliary device comprising at least one fluid channel fluidly coupling a supply of fluid to the at least one cleaning appliance, and a device controller being communicatively coupled to the at least one cleaning appliance to monitor or control the operation of the at least one cleaning appliance, the device controller being communicatively coupled to the at least one cleaning appliance through a communication line, and communicatively coupled to a user display that allows a user to at least one of monitor or control the operation of the at least one cleaning appliance.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 is a schematic diagram of an aspect of a retrofit auxiliary device according to the present disclosure coupled to a household appliance.



FIG. 2 is a schematic diagram of an aspect of a retrofit auxiliary appliance according to the present disclosure.



FIG. 3 is a schematic diagram of various potential configurations of a retrofit auxiliary appliance according to the present disclosure.





DETAILED DESCRIPTION


FIG. 1 schematically illustrates a retrofit auxiliary device 100 for distributing cleaning resources to a household cleaning appliance 102. This device may be designed to be compatible with a range of makes and models of various household appliances, including but not limited to, a dishwasher or a washing machine. For example, the device 100 may be capable of connecting and providing hot water, cold water, detergent, power or any combination thereof, to a variety of makes of household cleaning appliances offered by a variety of manufacturers. The retrofit auxiliary device 100 may accomplish this by connecting to inlets that are available on a variety of household cleaning appliances (e.g., pre-existing hot water inlets, cold water inlets, or power inlets). The retrofit auxiliary device 100 is capable of distributing appropriate quantities of hot water, cold water, detergent and/or power to any of a variety of household cleaning appliances, even though various household cleaning appliances may implement different types of cycles that have different respective requirements. In exemplary implementations, the retrofit auxiliary device 100 monitors at least one of hot water, cold water, detergent, power and/or drain activity of household cleaning appliances in order to make appropriate determinations of what type of cycle that household cleaning appliance is executing. In response, the retrofit auxiliary device 100 distributes at least one of hot water, cold water, detergent, power, or combinations thereof as appropriate for a particular cycle.


The retrofit auxiliary device 100 comprises at least one hot water inlet 106 and at least one cold water inlet 108. The hot water inlet 106 and the cold water inlet 108 are connected to a hot water supply line 163 and a cold water supply line 165 respectively. The hot water supply line 163 and the cold water supply line 165 are, in turn, coupled to the hot water inlet 106 and the cold water inlet 108 via a hot water inlet connection 110 and a cold water inlet connection 112. The hot water supply line 163 and the cold water supply line 165 will typically draw from a hot water mains 166 and a cold water mains 168, respectively. The hot water supply line 163 and the cold water supply line 165 may in turn pass through a hot water inlet valve 170 and a cold water inlet valve 172 respectively, on their way from the hot water mains 166 or the cold water mains 168 to the hot water inlet connection 110 or the cold water inlet connection 112 respectively. The hot water inlet valve 170 and the cold water inlet valve 172 are typically manually operated valves. From the hot water inlet 106 and the cold water inlet 108, a hot water line 162 and a cold water line 164 respectively conduct the respective fluids through the retrofit auxiliary device 100 and to the household cleaning appliance 102.


The retrofit auxiliary device receives electric power from a source of power 136 via a power line 184. The power thus received is also used to power a user interface 150 and the household cleaning appliance 102. The user interface is supplied power from the retrofit auxiliary device via a user interface power line 186. The user interface power line 186 may also be used to send various communication signals to the user interface 150. The user interface 150 uses a user interface input line 188 to communicate various user inputs to the retrofit auxiliary device 100. The household cleaning appliance 102 receives electric power from the retrofit auxiliary device 100 via a household appliance power line 148. The household appliance power line 148 may also be used to send various communication signals to the household cleaning appliance 102. Communication between the household cleaning appliance 102 and the retrofit auxiliary device 100 may also occur through other means such as various types of networks, including but not limited to a wireless network such as a local Wi-Fi network, a cellular network, Bluetooth, NFC, or RF communications.


The retrofit auxiliary device 100 also comprises an antenna 160 that enables the device to connect to a network 154. The network 154 can be a wireless network including but not limited to a local Wi-Fi network. The antenna 160 may be used to transmit various data to the user's home devices, including but not limited to a cellular phone and a printer. This network 154 may be used to transmit various data, including but not limited to appliance performance, appliance energy consumption, treating chemistry levels, and water softener levels. In addition, it may also be used to transmit various signals to the household cleaning appliance to regulate its operation, in a wireless manner.


While the user interface has been shown here to be physically distinct from the retrofit auxiliary device, it should be noted that it may also be an integral part of the device. If the user interface is to be physically distinct, it may also send and receive data wirelessly via the antenna 160 over the network 154.


The retrofit auxiliary device 100 also comprises at least one hot water outlet 114 and at least one cold water outlet 116. The hot water outlet 114 and the cold water outlet 116 are connected to the hot water line 162 and the cold water line 164 respectively as shown in FIG. 1, such that the hot water line 162 and the cold water line 164 feed the household cleaning appliance 102. The hot water line 162 and the cold water line 164 are in turn coupled to the hot water outlet 114 and the cold water outlet 116 via a hot water outlet connection 118 and a cold water outlet connection 120. The hot water line 162 and the cold water line 164 may in turn pass through a hot water outlet valve 174 and a cold water outlet valve 176 respectively, on their way from the hot water outlet connection 118 or the cold water outlet connection 120 to the household cleaning appliance 102. The hot water outlet valve 174 and the cold water outlet valve 176 may be manually operated valves.


The retrofit auxiliary appliance also comprises a drain line 144 that conducts used fluids out of the household cleaning appliance 102. A drain connection 142 couples a drain outlet 192 to the drain line 144. A main drain line 145 is also coupled to the household cleaning appliance via a drain inlet connection 194, the drain line 144 and a drain inlet 196. The drain inlet connection 194 feeds a drain inlet 196. A drain inlet valve 178 may be placed along drain line 144 and a drain outlet valve 180 may be placed along main drain line 145 as shown in FIG. 1 and are manually operated valves.



FIG. 2 schematically illustrates the retrofit auxiliary device 100. The power line 184 is coupled to the retrofit auxiliary device 100 via a power inlet connection 134 and a power inlet 198 and feeds power to the household cleaning appliance 102 through a power outlet 200 and a power outlet connection 138. The power inlet 198 is electrically connected to the power outlet 200 via a power pass through channel 202, a power consumption monitor 140 and a switch 204.


The user interface power line 186 is coupled to a user interface connection 206. A controller 132 may control the functioning of the retrofit auxiliary device 100. The controller 132 has a memory 158. The controller 132 may be coupled to the power inlet 198 via a controller power line 208. The power consumption monitor 140 is coupled to the controller 132 via a power consumption monitoring line 210. Antenna 160 is coupled to controller 132 via an antenna signal line 212.


The hot water inlet 106, the cold water inlet 108 and the drain inlet 196 are fluidly coupled to the hot water outlet 114, the cold water outlet 116 and the drain outlet 192 respectively, via a hot water pass through channel 126, a cold water pass through channel 128 and a drain pass through channel 214 respectively. The hot water pass through channel has a hot water flow meter 216 and a hot water control valve 218. The cold water pass through channel has a cold water flow meter 220 and a cold water control valve 222. The drain pass through channel has a drain flow meter 146 and a drain control valve 224. It is within the scope of the disclosure to have a single pass through channel with multiple inlets and outlets and controlling valves. The flow meters 216, 220 and 146 could have designs, including but not limited to, an impeller, a turbine, an ultrasonic sensor, an electromagnetic sensor or a capacitive sensor.


The data collected from the hot and cold water flow meters 216 and 220 respectively, could be subsequently used by the device to assess an appropriate time to add treating chemistry to the household cleaning appliance 102, determine what stage the household cleaning appliance 102 is during its cycle of operation, or to measure how much water or treating chemistry has been used by the machine.


The data collected from the drain flow meter 146 could pertain to when treating chemistries have been removed from the household cleaning appliance 102, determine what stage the household cleaning appliance 102 is during its cycle of operation, or to measure how much water or treating chemistry has been evacuated by the machine.


The retrofit auxiliary device 100 also comprises a treating chemistry reservoir 104, to which is attached a sensor 152 which senses the level of remaining treating chemistry in the treating chemistry reservoir 104. The treating chemistry reservoir 104 includes, but is not limited to a laundry chemistry reservoir or a detergent reservoir for a dishwasher. The treating chemistry reservoir 104 could exist in various configurations with respect to the retrofit auxiliary device, and in various forms, including but not limited to, internal to the retrofit auxiliary laundry device, external to the retrofit auxiliary laundry device, disposable, or multipod. The treating chemistry reservoir 104 is fluidly coupled with a treating chemistry outlet 122 via a treating chemistry pass through channel 130, which in turn supplies treating chemistry to the household cleaning appliance 102 via a treating chemistry outlet connection 124. The treating chemistry pass through channel 130 has a treating chemistry flow meter 226 and a treating chemistry control valve 228. The treating chemistry reservoir 104 contains a treating chemistry, including but not limited to a liquid detergent, a powder detergent, water, enzymes, fragrances, stiffness/sizing agents, wrinkle releasers/reducers, softeners, antistatic or electrostatic agents, stain repellants, water repellants, energy reduction/extraction aids, antibacterial agents, medicinal agents, vitamins, moisturizers, shrinkage inhibitors, and color fidelity agents, and combinations thereof.


Monitoring lines 230, 232, 234, 236, and 238 monitor flow meters 216, 220, 146, 226, and sensor 152 respectively via the controller 132. Control lines 240, 242, 244, 246, and 248 control the valves 218, 222, 224, 228 and switch 204 respectively.


In addition, the hot water pass through channel 126 and the cold water pass through channel 128 may pass through an interface 156 that provides water pre-treatment utility, such as a water softening or chlorine removal.


Since the various inlet and outlet connections on the retrofit auxiliary device are configured to adapt to various makes and models of household cleaning appliances, they can be attached to the household cleaning appliance in virtually any household where better appliance performance and better appliance monitoring are desired.


The retrofit auxiliary device 100 can have a variety of different cycles of operation stored as data in the memory 158. If the household cleaning appliance 102 is to be operated using a cycle in the memory 158, then the household cleaning appliance 102 will be regulated and controlled via the power line 184, which can also be used to supply various signals to the household cleaning appliance 102. The flow of various lines can be monitored via the various flow meters and the power consumption monitor, and the data thus gathered can be used by the controller 132 to monitor the overall health of the household cleaning appliance 102. This data can be displayed on a selective or a detailed level on the user interface 150.


The household cleaning appliance 102 can have a factory default cycle of operation that is not stored in the memory 158 of the controller 132. The factory default cycle of operation is the cycle of operation that would be used by the appliance in the absence of the retrofit auxiliary device 100. In this case, the retrofit auxiliary device 100 can be run first through a learning cycle, where the retrofit auxiliary device 100 does not control the functioning of the household cleaning appliance 102, but instead simply monitors the flow through the various flow meters via the various monitoring lines, and stores the rates and duration for which those rates are maintains and effectively learns the cycle of operation of the particular household cleaning appliance. This data is then stored in the memory 158 of the controller 132, and can be subsequently used to run the cycle of operation of the particular household cleaning appliance via the retrofit auxiliary device 100.


The newly learned cycle of operation may then be uploaded via the network 154 to an online database from where it could be available for download to other users of the retrofit auxiliary device. The memory 158 in turn could also receive periodic firmware updates from the manufacturer regarding various newly known cycles of operation.


The retrofit auxiliary device may be connected to one or even more than one household cleaning appliance, thereby enabling it to monitor the energy, water and treating chemistry usage of multiple household cleaning appliances. This data could be used to provide real time feedback to the user regarding non-limiting examples including appliance resource usage, appliance cycle times, appliance cycle efficiency, an adverse event occurrence in the appliance, status of the currently ongoing cycle of operation. The data accrued could also be used to alert the user to actions that need user input or user action, including but not limited to re-ordering treating chemistry, or starting an appliance cycle at a predetermined time.


The controller 132 can also have a clock to record time and day when certain cleaning cycles are usually performed and then alert the user of the household cleaning appliance 102 via the antenna 160 over the network 154 to send the user a message including but not limited to a text message alert, reminding the user to run the cleaning cycle.


If the parameters such as flow of power and fluids during a cycle of operation are known or learnt by the controller 132, then a marked deviation from these parameters can be detected by the various monitoring lines, and this data can be used by the controller 132 to detect flaws, malfunctions and adverse events such as water leaks, to take appropriate corrective or safety action. A non-limiting example of this would be that if the controller 132 detects a leak, it would turn off switch 204 via control line 248 to prevent the danger of electric shock to the user.


The monitoring capabilities of the power consumption monitor 140 can be used to send the monthly or per cycle power consumption data to the user by sending the user a message that includes, but is not limited to a text message alert. This can be accomplished by the controller 132 via the antenna signal line 212 and the antenna 160 over the network 154. The user can be similarly alerted when the sensor 152 detects that the level of treating chemistry in the treating chemistry reservoir 104 is below a predetermined threshold, and thus the user knows to order an additional quantity of treating chemistry.


The retrofit auxiliary device 100 could be designed to dispense different levels of treating chemistry corresponding to the amounts of such treating chemistries dispensed manually by the user. These custom levels of dispensed treating chemistries would have to be actuated by settings adjusted on the device via the user interface 150 prior to the cycle of operation in order for the treating chemistry to be dispensed. A feature could be provided to allow the user to fluidly couple the treating chemistry reservoir 104 to the retrofit auxiliary device 100 and secure it in that position. Algorithms could be used to determine the start of a new cycle of operation based on the various being monitored, and the treating chemistry could be dispensed automatically without requiring the user to reload the system with treating chemistry. This could be done by a dispensing command sent from controller 132 by using the control line 246. Alternatively, the user could specify at least one of a concentration of the treating chemistry and a soil level of the load being washed and the device would automatically dispense detergent in the optimal ratio to the incoming water, achieving and maintaining an ideal treating chemistry concentration. This could also be done by using dispensing commands sent by the controller 132 via the control line 246.


As shown in FIG. 3, the retrofit auxiliary device 100 as described can be applicable to any household cleaning appliance, including, but not limited to a dishwasher and a household laundry appliance. In FIG. 3, the retrofit auxiliary device 100 is attached to utility lines similarly to as shown in FIG. 2, but the household cleaning appliance may be one of several options 302, 402, 502, 602, 702, 802 as shown, including but not limited to a top loading washing machine, a front loading washing machine or a dishwasher.


To the extent not already described, the different features and structures of the various aspects can be used in combination with each other as desired. That one feature cannot be illustrated in all of the aspects is not meant to be construed that it cannot be, but is done for brevity of description. Thus, the various features of the different aspects can be mixed and matched as desired to form new aspects, whether or not the new aspects are expressly described. Moreover, while “a set of” various elements have been described, it will be understood that “a set” can include any number of the respective elements, including only one element. Combinations or permutations of features described herein are covered by this disclosure.


This written description uses examples to disclose aspects of the present disclosure, and also to enable any person skilled in the art to practice aspects of the present disclosure, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the present disclosure is defined by the claims, and can include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.

Claims
  • 1. A retrofit auxiliary device for supporting operations of at least one cleaning appliance, the retrofit auxiliary device comprising: at least one fluid channel fluidly coupling a supply of fluid to the at least one cleaning appliance; anda device controller being: communicatively coupled to the at least one cleaning appliance through a communication line between the device controller and the at least one cleaning appliance, the device controller being configured to at least one of monitor or control the operation of the at least one cleaning appliance through the communication line; andcommunicatively coupled to a user display that allows a user to at least one of monitor or control the operation of the at least one cleaning appliance.
  • 2. The retrofit auxiliary device of claim 1, wherein the at least one cleaning appliance includes multiple cleaning appliances.
  • 3. The retrofit auxiliary device of claim 2, wherein the device controller is communicatively coupled to two or more cleaning appliances of the multiple cleaning appliances through respective communication lines.
  • 4. The retrofit auxiliary device of claim 1, wherein the user display is remote from the device controller.
  • 5. The retrofit auxiliary device of claim 4, wherein the device controller is communicatively couplable to the user display through a wireless network.
  • 6. The retrofit auxiliary device of claim 1, wherein the communication line is a wireless network.
  • 7. The retrofit auxiliary device of claim 1, wherein the at least one fluid channel is fluidly coupled to a household water supply.
  • 8. The retrofit auxiliary device of claim 7, wherein the at least one cleaning appliance is fluidly coupled to the household water supply through the at least one fluid channel.
  • 9. The retrofit auxiliary device of claim 1, further comprising a power pass through channel coupled to a power supply external to the retrofit auxiliary device.
  • 10. The retrofit auxiliary device of claim 9, wherein the at least one cleaning appliance is coupled to the power pass through channel.
  • 11. The retrofit auxiliary device of claim 1, wherein the device controller selectively controls an operation of a treating chemistry reservoir to supply treating chemistry to the at least one cleaning appliance.
  • 12. The retrofit auxiliary device of claim 11, wherein a treating chemistry is supplied to the at least one cleaning appliance through a treating chemistry channel fluidly coupled to the treating chemistry reservoir.
  • 13. The retrofit auxiliary device of claim 1, wherein the device controller is able to operate the at least one cleaning appliance according to a cycle of operation stored in a memory of the device controller.
  • 14. The retrofit auxiliary device of claim 13, wherein the device controller is able to download the cycle of operation over a wireless network.
  • 15. The retrofit auxiliary device of claim 13, wherein the cycle of operation is a factory cycle of operation of the at least one cleaning appliance that is not previously stored on the memory.
  • 16. The retrofit auxiliary device of claim 15, wherein the device controller is able to learn the factory cycle of operation by monitoring the operation of the at least one cleaning appliance.
  • 17. The retrofit auxiliary device of claim 1, wherein the at least one cleaning appliance is at least one of either a washing machine or a dishwasher.
  • 18. A retrofit auxiliary device for supporting operations of at least one cleaning appliance, the retrofit auxiliary device comprising: at least one fluid channel separate from the at least one cleaning appliance and configured to indirectly supply a fluid to the at least one cleaning appliance; anda device controller being: communicatively coupled to the at least one cleaning appliance to monitor or control the operation of the at least one cleaning appliance, the device controller being communicatively coupled to the at least one cleaning appliance through a communication line; andcommunicatively coupled to a user display that allows a user to at least one of monitor or control the operation of the at least one cleaning appliance.
  • 19. The retrofit auxiliary device of claim 18, wherein the device controller is provided fluidly between the at least one fluid channel and the at least one cleaning appliance.
  • 20. The retrofit auxiliary device of claim 19, wherein the at least one fluid channel defines a fluid input to the device controller, and the device controller includes a fluid output feeding directly to the at least one cleaning appliance.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 17/216,764, filed Mar. 30, 2021, now U.S. Pat. No. 11,624,140, issued Apr. 11, 2023, which is a continuation of U.S. patent application Ser. No. 16/565,415, filed Sep. 9, 2019, now U.S. Pat. No. 10,988,888, issued Apr. 27, 2021, which is a continuation application of U.S. patent application Ser. No. 16/359,227, filed Mar. 20, 2019, now U.S. Pat. No. 10,422,071, issued Sep. 24, 2019, which is a continuation application of U.S. patent application Ser. No. 15/363,310, filed Nov. 29, 2016, now U.S. Pat. No. 10,273,625, issued Apr. 30, 2019, all of which are incorporated herein by reference in their entirety.

US Referenced Citations (9)
Number Name Date Kind
5056542 Reinhard Oct 1991 A
5556478 Brady et al. Sep 1996 A
6143257 Spriggs et al. Nov 2000 A
7658088 Walker et al. Feb 2010 B2
8117703 Walker et al. Feb 2012 B2
20020117187 Helminger Aug 2002 A1
20110031272 Comiskey et al. Feb 2011 A1
20110126861 Dorigo et al. Jun 2011 A1
20120193985 Kim et al. Aug 2012 A1
Foreign Referenced Citations (5)
Number Date Country
19643270 Apr 1998 DE
0517753 Jan 1996 EP
0787849 Aug 1997 EP
2289385 Mar 2011 EP
2005048806 Jun 2005 WO
Related Publications (1)
Number Date Country
20230220604 A1 Jul 2023 US
Continuations (4)
Number Date Country
Parent 17216764 Mar 2021 US
Child 18121234 US
Parent 16565415 Sep 2019 US
Child 17216764 US
Parent 16359227 Mar 2019 US
Child 16565415 US
Parent 15363310 Nov 2016 US
Child 16359227 US