The present invention is generally related to a tap changer (e.g., as may be used in a voltage regulator) having a plurality of tap positions selectable to adjust the performance of a transformer based upon the electrical load thereon. More particularly, the present invention relates to retrofit kit, circuitry and method that allow reconfiguring a tap changer to avoid electrical arcing.
A tap changer may be connected to a transformer to produce an output voltage that is self-regulated (i.e., substantially constant at a predetermined target level) despite fluctuations that may occur in the input voltage and/or load. An AC voltage regulator for industrial use may typically comprise a tap changer having a number of spaced-apart output terminals and performs its regulatory function by adjusting the tap position (i.e., tapping the output terminals at a selectable position) so that, for a given input voltage, the output is taken from whichever tap yields an output voltage closest to the target level.
In known tap changer circuitry, movable contacts may operate at relatively high voltages (e.g., thousands of volts) and thus such contacts may be subject to electrical arcing during tap changes. Although the movable contacts are rated to withstand electrical arcing, in practice the repeated exposure to electrical arcing may lead to eventual wear and tear (e.g., burning and/or electrical erosion) of the movable contacts of the tap changer, which may require relatively frequent maintenance to address such wear and tear. Additionally, the electrical arcing may lead to other operational drawbacks, such as the formation of combustible gases and/or debris in an insulating transformer oil. In view of the foregoing considerations, it is desirable to provide an improved tap changer circuitry that reliably and in a cost-effective manner avoids or reduces the drawbacks discussed above
The invention is explained in the following description in view of the drawings that show:
Referring to
In one example embodiment, tap changer 18 can move contacts 15 from the neutral position 0 through a one-raise to a sixteen-raise (with the reversing switch RS on terminal A) or from a one-lower to a sixteen-lower (with the reversing switch on terminal B). If, for example, the dynamic range D is plus or minus 10% with respect to a nominal input voltage, each step of the tap changer provides an adjustment of the output voltage equal to ⅝% ( 10/16) % of D/2. It will be readily appreciated that a finer adjustment may be obtained by providing a larger number of taps 14, for example.
A motor MM may be part of a drive 24 arranged to cause controlled movement of movable contacts 15. Motor MM may be responsive to a controller 50 arranged to determine tap change direction (raise or lower) when a tap change is detected. For example, if a raise signal (J) is active, an up/down counter (not shown) is incremented. Similarly, if a lower signal (K) is active, the up/down counter is decremented. The up/down counter stops incrementing/decrementing at a predefined maximum positive or maximum negative value (e.g. +10 and −10). Thereafter, when a tap change is detected via an OCS signal, as may be activated by an Operations Counter Switch, controller 50 determines the direction of the tap change based on the value of the up/down counter. Drive 24 may be mechanically coupled through a gear box 26 to a tap position dial 33, which provides a visual indication of the tap position.
Controller 50 may be electrically powered by a voltage regulator control panel 52 that receives unregulated power from a power winding 92 through connectors U2 and E. Initialization (synchronization) of the up/down counter may be performed when control panel 52 senses that the tap is on the neutral tap position 0. This may be performed when control panel 52 senses a signal NPS triggered by a Neutral Position Switch when contacts 15 are on the neutral tap 0. Control panel 52 may be coupled to monitor load voltage by way of a voltage sensor 110 through a signal conditioner 112, which supplies a conditioned signal via a line 114. As will be appreciated by one skilled in the art, the structural and/or operational relationships described thus far encompass relationships that generically apply to standard tap changer operation.
The inventors of the present invention have developed innovative retrofit circuitry and methodology that through the use of a vacuum switch assembly 100 allow reconfiguring the tap changer to avoid the formation of electrical arcing, which otherwise could detrimentally affect movable contacts 15. In one example embodiment, vacuum switch assembly 100 comprises a pair of vacuum interrupters 202 and 204 respectively connected in series circuit with movable contacts 15, as shown in
It will be appreciated that the control aspects of controller 50 in connection with vacuum switch assembly 100 can take the form of a hardware embodiment, a software embodiment or an embodiment containing both hardware and software elements, which may include firmware, resident software, microcode, etc. Furthermore, aspects of the controller may take the form of a computer program product accessible from a computer-usable or computer-readable medium providing program code for use by or in connection with a computer or any instruction execution system. Examples of a computer-readable medium include a semiconductor or solid-state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk and an optical disk. Current examples of optical disks include compact disk—read only memory (CD-ROM), compact disk—read/write (CD-R/W) and DVD.
A signal processing system suitable for storing and/or executing program code may include at least one processor coupled directly or indirectly to memory elements through a system bus. The memory elements may include local memory employed during actual execution of the program code, bulk storage, and cache memories which provide temporary storage of at least some program code in order to reduce the number of times code must be retrieved from bulk storage during execution. Input/output or I/O devices (including but not limited to keyboards, displays, pointing devices, etc.) can be coupled to the system either directly or through intervening I/O controllers.
In one advantageous aspect of the present invention, vacuum switch assembly 100 and a suitably configured controller 50 may be provided in the form of a kit suitable to retrofit field-deployed tap changers. This allows a cost-effective implementation that substantially reduces maintenance of the tap changer in connection with wear and tear of the movable contacts. In an alternative embodiment, movable contacts 15, which in accordance with aspects of the present invention are no longer subject to electrical arcing, may be replaced by contacts not rated to withstand electrical arcing, thereby providing incremental savings in the manufacturing and/or maintenance costs of the tap changer.
Subsequent to start step 60, a decision block 62 allows monitoring appropriate signals to determine a raise or a lower action. In the event a raise action is determined, raise signal (J), as may be supplied from control panel 52 (
In the event decision block 68 determines contacts 15 are not in a bridging condition, then, as shown in decision block 72, a determination is made as to whether or not vacuum interrupter (VI) 204 is in an open switching condition. As shown in block 74, if VI 204 is in an open switching condition, then VI 204 is set to a closed switching condition. Conversely, if VI 204 is in a closed switching condition, then, as shown in block 76, VI 202 is set to an open switching condition and then a present tap position is raised by one step, as shown in block 78. VI 202 may then be closed, as shown in block 80.
In the event contacts 15 are in a bridging condition, then a determination is made in block 82 as to whether or not vacuum interrupter (VI) 202 is in an open switching condition. If VI 202 is in an open switching condition, then at block 84, VI 202 is set to a closed switching condition. Conversely, if VI 202 is in a closed switching condition, then at block 86 VI 204 is set to an open switching condition and then a present tap position is raised by one step, as shown in block 88. VI 204 may then be closed, as shown in block 90.
In the event decision block 70 determines contacts 15 are not in a bridging condition, then, as shown in decision block 92 a determination is made as to whether or not vacuum interrupter (VI) 202 is in an open switching condition. As shown in block 94, if VI 202 is in an open switching condition, then VI 202 is set to a closed switching condition. Conversely, if VI 202 is in a closed switching condition, then, as shown in block 96, VI 204 is set to an open switching condition and then a present tap position is lowered by one step, as shown in block 98. VI 204 may then be closed, as shown in block 100.
In the event block 70 determines contacts 15 are in a bridging condition, then a determination is made in decision block 112 as to whether or not vacuum interrupter (VI) 204 is in an open switching condition. If VI 204 is in an open switching condition, then at block 114, then VI 204 is set to a closed switching condition. Conversely, if VI 202 is in a closed switching condition, then at block 116, VI 202 is set to an open switching condition and then a present tap position is lowered by one step, as shown in block 118. VI 202 may then be closed, as shown in block 120.
It will be appreciated that the installation of a retrofit kit embodying aspects of the present invention is advantageously accomplished without having to modify in any manner regulating transformer 19 connected to taps 14. That is, vacuum assembly 100 is a retrofit kit that can be installed without affecting the transformer side of tap changer 18. This is a particularly attractive feature of a retrofit kit embodying aspects of the present invention. For example, designs that use a traditional reactor type tap-changer as part of the voltage regulator would have to replace or rewind the coil of the voltage regulator and replace the reactor core/coil assembly in order to make use of vacuum-based technology. It will be further appreciated that vacuum assembly 100 operates without bypass switches, which generally add to the complexity of known vacuum-based designs.
In operation, a retro-fit kit embodying aspects of the present invention allows conversion of a voltage regulator manufactured based on arcing-technology to a voltage regulator that provides the advantages of vacuum-based technology without having to replace the entire voltage regulator, or without making changes to the transformer portion of the voltage regulator. A retro-fit kit embodying aspects of the present invention allows eliminating or substantially reducing the frequency of routine maintenance required by the voltage regulator, and effectively making the converted voltage regulator into an essentially maintenance-free piece of equipment. Also environmental impact of a voltage regulator embodying aspects of the present invention will be positive since there will be no longer be a need to replace the transformer fluid. In most cases, such a fluid is refined from naphthenic crude oil.
While various embodiments of the present invention have been shown and described herein, it will be apparent that such embodiments are provided by way of example only. Numerous variations, changes and substitutions may be made without departing from the invention herein. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.