RETROVIRUS DETECTION

Information

  • Patent Application
  • 20130266931
  • Publication Number
    20130266931
  • Date Filed
    July 16, 2011
    12 years ago
  • Date Published
    October 10, 2013
    10 years ago
Abstract
Provided are methods and compositions useful for detecting viral infection or contamination in a biological sample.
Description
TECHNICAL FIELD

The invention relates to methods and compositions useful for the detection of retroviruses in a subject or sample.


BACKGROUND

Xenotropic murine leukemia virus-related virus (XMRV) is a recently discovered human gammaretrovirus that resembles a xenotropic MLV, but that is distinguishable from xenotropic MLV in the sequence in its envelope (Urisman et al., PLOS pathogens 2(3):e25, 2006; and Dong et al. PNAS 104:1655, 2007). All isolates so far examined are highly homologous to each other (>98% sequence identity) and allow the distinction from xenotropic MLV. The reason for this sequence conservation is not currently understood. The original infectious clone is called XMRV VP62 (GenBank accession no. EF185282).


XMRV was originally described in association with prostate cancer and further connections have been suggested (R. Schlaberg et al. PNAS 2009, doi10.1073_pnas.0906922106), with 6-23% of prostate cancer patients testing positive. In addition, V. C. Lombardi et al. (Science 2009 doi10.1126/science.1179052) showed a possible association with chronic fatigue syndrome, with 67% of patients testing positive, compared to 3.7% of normals. Overall estimates of the prevalence in the general population from investigators in the USA range from 2-4%. However several recent studies in Europe have failed to detect XMRV in similar frequencies or similar associations (Fischer et al. Journal of Clinical Virology 43: 277-283 2008; Hohn et al. Retrovirology 6:92 2009; F J M van Kuppeveld et al., BMJ 340:c1018, 2010). Fischer et al. found 1 of 105 prostate cancer patients and 1 of 70 control subjects to be XMRV positive in a German study. Hohn et al. screened 589 prostate cancer patients in Germany without detecting a single positive. Van Kuppeveld et al. also failed to detect any DNA or RNA positives in 32 chronic fatigue patients or in 42 matched controls in Holland. Recently another paper from Fischer et al. (Emerg Infect Dis. 2010) showed about 10% positivity in RNA derived from sputum of 162 immunosuppressed patients and 2-3% positivity in sputum RNA from 168 normal patients in a German study. The assays did not appear to be different and no explanation was offered for the discrepancies.


The inconsistency of results calls into question the reliability of the current testing methods, in particular in DNA amplification. Following the lead of Lombardi et al. all investigators so far have used nested PCR using XMRV sequence based primers, followed by running the sample on a gel and looking for a visible band. This method is known to be variable in sensitivity and depend on the quality of nucleic acid samples. Detection of XMRV RNA has also been described mainly using the method of Dong et al. PNAS 2007, based on that of Urisman et al. 2006. In this assay RNA is prepared from tissue and/or blood, reverse transcribed to cDNA and the cDNA examined by QPCR with XMRV specific primers. As noted this led to inconsistent results (Enserink et al., Science 329:18-19, 2010). Claims of various sensitivities have been made for such tests, but it is not possible to verify any of these and the assays appear to be incompletely characterized.


A PCR based diagnostic screening assay for XMRV in human blood has been recently developed (www[.]vipdx.com), using nested PCR and gel detection of the amplification product (Lombardi et al.), with an estimated sensitivity for the nested DNA PCR around 600 proviral copies/test. In addition the report of Lombardi et al. do not show complete concordance of gag and env detection, with positives in gag and negatives for env observed in some subjects. This was attributed to variability in the assay. In all of the assays developed so far great care has been taken to use primers that will differentiate MLV from XMRV, so that only XMRV is detected. Therefore there is a great need for a reliable and validated assay for XMRV DNA and RNA in accessible samples from volunteers or patients in order to determine the real frequencies of positivity and whether there is linkage to disease. In addition a reliable blood screening assay is not available. Recent data suggest that detection of XMRV in many cases is caused by artifacts (Paprotka T., Science, 333, 97-101, 2011) or contamination with mouse DNA (Robinson M J. et al., Retrovirology, 7:108 doi:10.1186/1742-4690-7-108, 2010).


Furthermore, gene therapy vectors based upon MLV are being used including replication competent MLV-based vectors. For example, a replicating retrovirus based on amphotropic MLV and carrying an extra cytosine deaminase gene as a therapeutic agent for cancer including primary brain cancer leading to glioblastoma multiforme (GBM) (Tai et al., Mol. Ther., 12:842-851 2005; http:(//)oba.od.nih.gov/oba/RAC/meetings/Jun2009/976_Aghi.pdf; WO2010036986) having been used. An exemplary vector is being developed by Tocagen Inc. (San Diego, Calif.) and is referred to as Toca 511 (clinical trials.gov trial# NCT01156584). Subsequent to Toca 511 administration, patients are dosed with 5-fluorocytosine that is converted in situ to 5-fluorouracil, a potent anticancer compound. As the virus is generally only able to replicate in the tumor, this results in a very specific anti-cancer effect. In order to determine whether there is replication outside the tumor, for safety and/or for correlation with efficacy assays for detection of proviral DNA in the blood and MLV RNA in the plasma are needed. FDA currently requires follow-up on patients undergoing such investigational therapies with an integrating viral vector for 15 years post-treatment (Guidance for Industry—Supplemental Guidance on Testing for Replication Competent Retrovirus in Retroviral Vector Based Gene Therapy Products and During Follow-up of Patients in Clinical Trials Using Retroviral Vectors: FDA Center for Biologics Evaluation and Research November 2006; http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/CellularandGeneTherapy/ucm072961.htm). Assays are needed to accomplish this and a generally accepted marker for risk of disease and disease progression in viral diseases in general and retroviral diseases in particular is the levels over time of virus in the blood or in blood cells (Gurunathan S, Habib R E, et al. Vaccine. 2009; 27:1997-2015; Low A., Okeoma C M. et al. Virology 2009; 385: 455-463). On the other hand, replication of the virus in the tumor may leak into the periphery and blood stream and so assays that monitor the appearance and levels of viral sequence in the blood as DNA or RNA can be used to determine whether there is an effective treatment and whether there is a need to modify the treatment protocol, for example to read minister the viral vector or to use adjuvants (such as steroids) that will facilitate the viral replication in the tumor.


SUMMARY

The disclosure provides oliogonucleotide primers and probes for amplification and detection of MLV-related polynucleotides in a sample, tissue or subject. In one embodiment, the disclosure provides primers that can amplify multiple strains of MLV and XMRV and probe that can detect either or both of MLV or XMRV. In another embodiment, the disclosure provides primers and probes for monitoring subject undergoing treatment with a replication competent retrovirus expressing a heterologous gene such as cytosine deaminase. In this embodiment, the “companion” diagnostic is used to insure efficacy, expression, spread and long term infection of a vector used in such treatment.


The disclosure thus provides an isolated oligonucleotide consisting of a sequence selected from the group consisting of: SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 or any sequence set forth in Table 1 or 2 and oligonucleotides that are at least 95% identical to any of the foregoing and can hybridize to an MLV-related polynucleotide. In some embodiment, the primers and probes may differ from the foregoing or listed sequences in table 1 and 2 by 1-10 nucleotides at either the 5′ and/or 3′ end. In another embodiment, a primer pair consisting of SEQ ID NO:1 and 2 and sequence that are at least 95% identical to SEQ ID NO:1 and 2 and hybridize to an MLV-related polynucleotide. In yet another embodiment, a primer pair consisting of SEQ ID NO:4 and 5 and sequence that are at least 95% identical to SEQ ID NO:4 and 5 and hybridize to an MLV-related polynucleotide. In yet another embodiment, a primer pair consisting of SEQ ID NO:7 and 8 and sequence that are at least 95% identical to SEQ ID NO:7 and 8 and hybridize to an MLV-related polynucleotide. In yet another embodiment, a primer pair consisting of SEQ ID NO:10 and 11 and sequence that are at least 95% identical to SEQ ID NO:10 and 11 and hybridize to an MLV-related polynucleotide. In yet another embodiment, a primer pair consisting of SEQ ID NO:13 and 14 and sequence that are at least 95% identical to SEQ ID NO:13 and 14 and hybridize to an MLV-related polynucleotide. In yet another embodiment, a primer pair consisting of SEQ ID NO:16 and 17 and sequence that are at least 95% identical to SEQ ID NO:16 and 17 and hybridize to an MLV-related polynucleotide. In yet another embodiment, a primer pair consisting of SEQ ID NO:19 and 20 and sequence that are at least 95% identical to SEQ ID NO:19 and 20 and hybridize to an MLV-related polynucleotide. In yet another embodiment, the oligonucleotide comprises a primer chose from regions of homology between XMRV and MLV.


The disclosure also provides a method of determining viral content in a subject about to undergo or undergoing a retroviral gene delivery therapy using an MLV-related virus, comprising:obtaining a sample from the subject; contacting the sample with one or more primer pairs as set forth above under conditions suitable for nucleic acid amplification to obtain amplified products; contacting the sample with a one or more probes that hydridizes to the amplified product; detecting a hybridized product; indicating that the subject has viral content comprising an MLV-related virus. In one embodiment, the MLV-related virus is a recombinant retroviral vector used in gene delivery. In another embodiment, the MLV-related virus is an XMRV virus. In yet another embodiment, the method is carried out prior to delivery of a MLV-related retroviral vector for gene delivery. In yet another embodiment, the method is carried out following delivery of a MLV-related retroviral vector for gene delivery. In another embodiment,


the MLV-related virus comprises a 5′ LTR, gag, pol, env genes, a regulatory domain 3′ of the env gene linked to a heterologous polynucleotide to be delivered and a 3′ LTR and a promoter for expression in mammalian cells in the 5′LTR. In another embodiment, the regulatory domain is an internal ribosome entry site (IRES). In yet another embodiment, the heterologous polynucleotide encodes a polypeptide having cytosine deaminase activity. In embodiments and described above, the method monitors the spread of the MLV-related retroviral vector. In another embodiment, the method is carried out routinely over the course years.


The disclosure also provides a method for detecting the presence of a viral agent in a sample comprising: measuring the amount of a polynucleotide in a sample using a quantitative polymerase chain reaction or other amplification process comprising oligonucleotide primer/probe combinations selected from the group consisting of: (i) SEQ ID NO: 1, 2 and 3; (ii) SEQ ID NO: 4, 5 and 6; (iii) SEQ ID NO: 7, 8 and 9; (iv) SEQ ID NO: 10, 11 and 12; and (v) primer pairs according to claim 9 and corresponding probes that have at least 95% identity to both XMRV and MLV. In one embodiment, the polynucleotide is DNA or RNA.


In various embodiments above, the quantitating and amplification are performed by quantitative polymerase chain reaction, e.g., RT-qPCR. In any of the foregoing methods the measuring detects a single copy of a viral agent related nucleic acid. In any of the foregoing embodiments, the sample can be a mammalian tissue (e.g., blood). In any of the foregoing embodiments a viral agent to be detected can be a gene therapy vector. In one embodiment, the gene therapy vector is a replication-competent vector. In another embodiment, the method is performed prior to a therapeutic regimen comprising a gene therapy vector treatment. In yet another embodiment, the method is performed subsequent to a therapeutic regimen comprising gene therapy vector on a subject. The method can be performed to monitor the dosage of a therapeutic regimen comprising a gene therapy vector in a subject. In yet another embodiment, the gene therapy vector comprises a replication competent MLV vector. In yet another embodiment, the method is performed prior to a therapeutic regimen comprising a gene therapy vector. In one embodiment, the method is performed subsequent to a therapeutic regimen comprising a gene therapy vector. In yet another embodiment, the method is performed to monitor the dosage of a therapeutic regimen comprising a gene therapy vector.


The disclosure also provides kits for carrying out any of the foregoing methods and comprising any of the oligonucleotides compositions of the disclosure (e.g., SEQ ID NO:1-21, Table 1 and 2).


The disclosure also provides a method for detecting <100 copies of MLV related DNA in a sample extracted from fixed histopathological sections. The disclosure also provides a method for detecting <100 copies of MLV related RNA in a sample extracted from fixed histopathological sections.


The disclosure also provides a method that detects both MLV and XMRV and variants thereof. In other embodiment, the method detects only MLV related virus and does not detect XMRV. In certain embodiment, the method detects XMRV gag and MLV gag. In yet other embodiment, the method detects XMRV pol and MLV pol. The disclosure provides methods that detects XMRV Env and MLV Env. The disclosure also provides methods for detecting either XMRV or MLV related virus in plasma or serum from a mammalian host.


The disclosure provides a method of selectively detecting MLV related viruses in humans and which does not detect XMRV comprising primers selected from the group consisting of: SEQ ID NO:10 and 11; SEQ ID NO:13 and 14; SEQ ID NO:16 and 17; SEQ ID NO:19 and 20; sequences at least 95% identical to the foregoing; and combination thereof, using the methods described herein.


The disclosure also provides a method of determining whether a human subject is at risk of having prostate cancer or chronic fatigue syndrome comprising utilizing primer pairs and probes as set forth in SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 or primer/probes as set forth in Table 1 or 2, to amplify polynucleotides in a sample from the subject, wherein the presence of an amplified product is indicative of a risk of prostate cancer or chronic fatigue syndrome.


The disclosure also provides a method of screening a blood supply or tissue bank for infection by an MLV, MLV-variant or XMRV comprising performing an amplification reaction on the blood supply or tissue bank utilizing primers as set forth in SEQ ID NO:4, 5, 7, 8, 10, 11, 13, 14, or any of the primers in Table 1 or 2, and detecting an amplified product.


The disclosure is directed to the detection of xenotropic murine leukemia virus related virus (XMRV) or other retroviruses related to murine leukemia viruses that can be present in human tissue blood or serum. In particular, the disclosure relates to sensitive reliable quantitative PCR assays for the detection of XMRV provirus in DNA from blood of human and animal subjects and for the sensitive and reliable detection of XMRV RNA (potentially from viral particles) from plasma or serum of human and animal subject by reverse transcription (RT) and polymerase chain reaction. In one embodiment, the quantitative assay is a TaqMan® assay using the primers and probes constructed based on the genome of the XMRV virus. In contrast to other techniques using XMRV specific primer/probe sets and avoiding primer/probe sets with homology to MLV, the disclosure constructed PCR based assays that detect MLV related viruses that may or may not be XMRV in human samples, by using MLV specific qPCR primers and probes, that also detect XMRV. Such assays are useful in combination with assays for MLV sequences that are not homologous to XMRV to determine if recombination has occurred in patients treated with replication competent retroviruses, who may also be positive for XMRV. The disclosure further relates to a diagnostic kit that comprises nucleic acid molecules for the detection of the XMRV and MLV related viruses. In addition, for detection of MLV vectors when monitoring of patients treated with MLV related vectors, diagnostic kits that detect the transgene carried by the MLV vector are also disclosed.


The details of one or more embodiments of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 shows XMRV gag standard in pUC57-XMRV gag plasmid DNA. The insert corresponds to nucleotides 628 to 764 of the XMRV VP62 clone sequence (NC007815). The derived sequence is synthesized by BioBasic Inc and inserted into pUC57 backone at SmaI site between BamHI and ApaI sites.



FIG. 2 shows XMRV env standard sequence in pET28b-XMRV env plasmid DNA. The insert corresponds to nucleotides 6252 to 6391 of the XMRV VP62 clone sequence (NC007815). The derived sequence is synthesized by BioBasic Inc and inserted into pET28b+ backone at EcoRV site between BssHI and HpaI sites.



FIG. 3 shows the MLV pol1 and pol2 standard sequences in pAZ3-emd plasmid DNA which encodes an ecotropic Moloney MLV gag-pol, amphotropic env and IRES-GFPemd cassette downstream of the env (Logg et al. J. Virol. 75:6989-6998, 2001.



FIG. 4 shows a comparison of the sequences of Toca 511 (the proviral form) used to treat GBM patients and an XMRV provirus (VP 62, NCBI Reference Sequence NC007815.1), noting the overall homology of the LTR, gag, pol and envelope regions. Also shown are the regions of the pol1 and pol2 amplicons. The MLV pol1 and pol2 standard sequences in pAZ3-emd plasmid DNA.



FIG. 5 shows a BLAST nucleic acid sequence comparison of the sequence of XMRV (VP62, NCBI ref. NC007815.1, Sbjct) and MoMLV (NCBI ref. NC001501.1, Query), showing sequences of 20 or more nucleotides that are exactly homologous (underlined/highlighted).



FIG. 6 shows XMRV gag standard in pUC57-XMRV gag plasmid DNA amplification curves from 1E0 to 1E7.



FIG. 7 shows XMRV env standard in pET28b-XMRV env plasmid DNA amplification curves from 1E0 to 1E7.



FIG. 8A-C shows a) 1-Stage qPCR Protocol: pUC57-XMRV gag plasmid standard targeted with XMRV gag primer/probe set. pUC57-XMRV gag plasmid DNA in TE was targeted with XMRV gag primers and a 1-stage qPCR protocol was performed. The mean Ct and standard deviation was calculated; b) shows 1-Stage qPCR Protocol: Controls targeted with XMRV gag primer/probe set. 22Rv1 gDNA positive control, naïve human blood gDNA negative control and NTC were targeted with the XMRV gag primer/probe set and a 1-stage qPCR protocol was performed. The mean Ct, standard deviation and copies/reaction were calculated. ‘ND’ means ‘non-detected’; c) shows 1-Stage qPCR Protocol: Spiked human blood gDNA targeted with XMRV gag primer/probe set. Neat human blood gDNA was spiked with 8 log concentrations of pUC57-XMRV gag plasmid DNA (1E0 to 1E8 copies/reaction). The samples were targeted with the XMRV gag primer/probe set and a 1-stage qPCR protocol was performed. The mean Ct, standard deviation, copies/reaction and % recovery of the input copies/reaction were determined (the % recovery was determined by using the following equation: detected copies/reaction divided by the input copies/reaction times 100).



FIG. 9A-C shows a) 1-Stage qPCR Protocol: pET28b-XMRV env plasmid standard targeted with XMRV env primer/probe set. pET28b-XMRV env plasmid DNA in TE was targeted with XMRV env primers and a 1-stage qPCR protocol was performed. The mean Ct and standard deviation was calculated; b) shows 1-Stage qPCR Protocol: Controls targeted with XMRV env primer/probe set. 22Rv1 gDNA positive control, naïve human blood gDNA negative control and NTC were targeted with the XMRV env primer/probe set and a 1-stage qPCR protocol was performed. The mean Ct, standard deviation and copies/reaction were calculated. ‘ND’ means ‘non-detected’; c) shows 1-Stage qPCR Protocol: Spiked human blood gDNA targeted with XMRV env primer/probe set. Neat human blood gDNA was spiked with 8 log concentrations of pET28b-XMRV env plasmid DNA (1E0 to 1E8 copies/reaction). The samples were targeted with the XMRV env primer/probe set and a 1-stage qPCR protocol was performed. The mean Ct, standard deviation, copies/reaction and % recovery of the input copies/reaction were determined (the % recovery was determined by using the following equation: detected copies/reaction divided by the input copies/reaction times 100).



FIG. 10A-C shows a) 1-Stage qPCR Protocol: pAZ3-emd pol2 plasmid standard targeted with XMRV pol2 primer/probe set. pAZ3-emd pol2 plasmid DNA in TE was targeted with XMRV pol2 primers and a 1-stage qPCR protocol was performed. The mean Ct and standard deviation was calculated; b) shows 1-Stage qPCR Protocol: Controls targeted with XMRV pol2 primer/probe set. 22Rv1 gDNA positive control, and naïve human blood gDNA negative control were targeted with the XMRV pol2 primer/probe set and a 1-stage qPCR protocol was performed. The mean Ct, standard deviation and copies/reaction were calculated. ‘ND’ means ‘non-detected’; c) shows 1-Stage qPCR Protocol: Spiked human blood gDNA targeted with XMRV pol2 primer/probe set. Neat human blood gDNA was spiked with 8 log concentrations of pAZ3-emd pol2 plasmid DNA (1E0 to 1E8 copies/reaction). The samples were targeted with the XMRV pol2 primer/probe set and a 1-stage qPCR protocol was performed. The mean Ct, standard deviation, copies/reaction and % recovery of the input copies/reaction were determined (the % recovery was determined by using the following equation: detected copies/reaction divided by the input copies/reaction times 100).



FIG. 11A-B shows a) 0-Stage vs. 1-Stage qPCR Protocols: pUC57 XMRV gag Standards. A 0-stage and a 1-stage qPCR protocol were performed targeting the pUC57 XMRV gag plasmid using XMRV gag primers. ‘pUC57 XMRV gag’ means the number of pUC57 XMRV gag copies spiked into a single qPCR reaction; b) shows 0-Stage vs. 1-Stage qPCR Protocols: pUC57 XMRV gag spike-ins into CA Human Blood gDNA. A 0-Stage and a 1-stage qPCR protocol were performed targeting pUC57 XMRV gag spike-ins into CA human blood gDNA and using XMRV gag primers. ‘pUC57 XMRV gag/001 gDNA’ means the number of pUC57 XMRV gag copies spiked into donor 001 gDNA in a single qPCR reaction; ‘001’ means ‘donor #001’; ‘ND’ means ‘non-detected’.



FIG. 12A-B shows a) 0-Stage vs. 1-Stage qPCR Protocols: pET28b XMRV env Standards. A 0-stage and a 1-stage qPCR protocol were performed targeting the pET28b XMRV env plasmid using XMRV env primers. ‘pET28b XMRV env’ means the number of pET28b XMRV env copies spiked into a single qPCR reaction; b) shows 0-Stage vs. 1-Stage qPCR Protocols: pET28b XMRV env spike-ins into 001 Human Blood gDNA. A 0-stage and a 1-stage qPCR protocol were performed targeting pET28b XMRV env spike-ins into 001 human blood gDNA and using XMRV env primers. ‘pET28b XMRV env /001 gDNA’ means the number of pET28b XMRV env copies spiked into donor 001 gDNA in a single qPCR reaction; ‘001’ means ‘donor #001’; ‘ND’ means ‘non-detected’.



FIG. 13A-B shows a) 0-Stage vs. 1-Stage qPCR Protocols: pAZ3-emd pol2 standards. A 0-Stage and a 1-stage qPCR protocol were performed targeting the pAZ3-emd pol2 plasmid using XMRV pol2 primers. ‘pAZ3-emd pol2’ means the number pAZ3-emd pol2 copies spiked into a single qPCR reaction; ‘ND’ means ‘non-detected’; b) Shows 0-Stage vs. 1-Stage qPCR Protocols: pAZ3-emd pol2 spike-ins into 001 Human Blood gDNA. A 0-Stage and a 1-stage qPCR protocol were performed targeting pAZ3-emd pol2 spike-ins into 001 human blood gDNA and using XMRV pol2 primers. ‘pAZ3-emd pol2/001 gDNA’ means the number of pAZ3-emd pol2 copies spiked into donor 001 gDNA in a single qPCR reaction; ‘001’ means ‘donor #001’; ‘ND’ means ‘non-detected’



FIG. 14 shows detection of MLV using MLV and ENV2 primer sets from formalin fixed paraffin embedded tissue (FFPE) infected with MLV. Paz3-emd spike in was added to either 100 ng fresh tumor sample that was frozen or added to 100 ng of a FFPE DNA tumor sample. qPCR was performed with the MLV and ENV2 primer sets.



FIG. 15 shows detection of XMRV in whole blood by RTPCR using XMRV specific primer sets XMRV gag, XMRV pol2, XMRV env.



FIG. 16A-B shows the results of monitoring patients over time with assays described herein for provirus DNA (MLVLTR primers and probes) in whole blood DNA, for viral RNA (by env RT-PCR) in the plasma, and for antiviral antibody responses in the plasma. These subjects (recurrent Glioblastoma multiforme (GBM) patients) were treated by intracranial injection of 2.6×103 TU/g brain of T5.0002 amphotropic MLV retrovirus encoding a modified yeast cytosine deaminase (WO2010036986, WO2010045002) followed by 5-fluorocytosine treatment courses at approximately 130 mg/kg/day. (A) patient 101; (B) patient 102.





DETAILED DESCRIPTION

Also, the use of “or” means “and/or” unless stated otherwise. Similarly, “comprise,” “comprises,” “comprising” “include,” “includes,” and “including” are interchangeable and not intended to be limiting.


It is to be further understood that where descriptions of various embodiments use the term “comprising,” those skilled in the art would understand that in some specific instances, an embodiment can be alternatively described using language “consisting essentially of” or “consisting of.”


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs. Although any methods and reagents similar or equivalent to those described herein can be used in the practice of the disclosed methods and compositions, the exemplary methods and materials are now described.


As used herein and in the appended claims, the singular forms “a,” “and,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “an oligonucleotide” includes a plurality of such oligonucleotides and reference to “the polynucleotide” includes reference to one or more polynucleotides known to those skilled in the art, and so forth.


The detection of XMRV or MLV related retroviruses by nucleic acid amplification techniques in human or animal tissues, blood or plasma/serum is of use for determining prostate cancer and risk thereof, chronic fatigue system and risk thereof, contamination of blood supply and tissue donation material and in following the status of subjects undergoing therapy with an MLV derived therapeutic virus comprising a heterologous genetic sequence such as, for example, an engineered retroviral replicatog virus based on amphotropic MLV (e.g., Toca 511). For example, the methods and compositions of the disclosure can be used to monitor therapy with an retroviral vector comprising sequences with substantial identity to MLV, in determining if recombination takes place between the therapeutic vector and XMRV or other MLV related natural infections, and for determining if a subject carries XMRV or another MLV related naturally occurring virus. Such assays are also useful for screening the blood supply to exclude subjects that are positive for XMRV or other MLV related retroviruses. Such assays also can be used to determine levels of MLV related virus over time, and provide information when it would be useful to start administering antiretroviral therapies that are also active against MLV such as, for example, AZT (Sakuma et al., Virology, 2009; Powell et al., J. Virol., 73:8813-8816, 1999; G. B. Beck-Engeser, PNAS, 2009). Such assays when used with histopathology samples can be used to determine the presence or absence of XMRV or other MLV related retroviruses in a patients stored sample or to determine the epidemiology of the XMRV or MLV related virus. Such assays can also be used to monitor patients to whom therapeutic vectors based on replicating MLV vectors have been administered. These measurements can be used to track the safety of the therapy over time (e.g., to 15 years and beyond) as high persistent levels (greater than 30,000, 100,000 or 300,000 copies/microgram) of MLV in genomic DNA or greater than 30,000 100,000 or 300,000 RNA copies/ml plasma) or increasing levels of these over time, can be used as a signal to more closely monitor for diseases that could be secondary to a therapy using an gene therapy vector comprising MLV or MLV-related sequences, such as leukemia or to start antiretroviral therapy. However, these measurements can also be used to judge the extent of replication of the MLV or MLV-related vector in a target tissue (i.e., efficacy or susceptibility to successful treatment) because of the possibility of “spill” into the circulatory system. Other uses of these assays for clinical monitoring will be apparent to those skilled in the art.


Engineered retroviral vectors that can be monitored include those set forth below:










RCR Vector - pAC-yCD2



tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg





cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt





gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca





atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc





aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta





catgacctta tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac





catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg





atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg





ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg gtaggcgtgt





acggtgggag gtctatataa gcagagctgg tttagtgaac cggcgccagt cctccgattg





actgagtcgc ccgggtaccc gtgtatccaa taaaccctct tgcagttgca tccgacttgt





ggtctcgctg ttccttggga gggtctcctc tgagtgattg actacccgtc agcgggggtc





tttcatttgg gggctcgtcc gggatcggga gacccctgcc cagggaccac cgacccacca





ccgggaggta agctggccag caacttatct gtgtctgtcc gattgtctag tgtctatgac





tgattttatg cgcctgcgtc ggtactagtt agctaactag ctctgtatct ggcggacccg





tggtggaact gacgagttcg gaacacccgg ccgcaaccct gggagacgtc ccagggactt





cgggggccgt ttttgtggcc cgacctgagt ccaaaaatcc cgatcgtttt ggactctttg





gtgcaccccc cttagaggag ggatatgtgg ttctggtagg agacgagaac ctaaaacagt





tcccgcctcc gtctgaattt ttgctttcgg tttgggaccg aagccgcgcc gcgcgtcttg





tctgctgcag catcgttctg tgttgtctct gtctgactgt gtttctgtat ttgtctgaga





atatgggcca gactgttacc actcccttaa gtttgacctt aggtcactgg aaagatgtcg





agcggatcgc tcacaaccag tcggtagatg tcaagaagag acgttgggtt accttctgct





ctgcagaatg gccaaccttt aacgtcggat ggccgcgaga cggcaccttt aaccgagacc





tcatcaccca ggttaagatc aaggtctttt cacctggccc gcatggacac ccagaccagg





tcccctacat cgtgacctgg gaagccttgg cttttgaccc ccctccctgg gtcaagccct





ttgtacaccc taagcctccg cctcctcttc ctccatccgc cccgtctctc ccccttgaac





ctcctcgttc gaccccgcct cgatcctccc tttatccagc cctcactcct tctctaggcg





ccaaacctaa acctcaagtt ctttctgaca gtggggggcc gctcatcgac ctacttacag





aagacccccc gccttatagg gacccaagac cacccccttc cgacagggac ggaaatggtg





gagaagcgac ccctgcggga gaggcaccgg acccctcccc aatggcatct cgcctacgtg





ggagacggga gccccctgtg gccgactcca ctacctcgca ggcattcccc ctccgcgcag





gaggaaacgg acagcttcaa tactggccgt tctcctcttc tgacctttac aactggaaaa





ataataaccc ttctttttct gaagatccag gtaaactgac agctctgatc gagtctgttc





tcatcaccca tcagcccacc tgggacgact gtcagcagct gttggggact ctgctgaccg





gagaagaaaa acaacgggtg ctcttagagg ctagaaaggc ggtgcggggc gatgatgggc





gccccactca actgcccaat gaagtcgatg ccgcttttcc cctcgagcgc ccagactggg





attacaccac ccaggcaggt aggaaccacc tagtccacta tcgccagttg ctcctagcgg





gtctccaaaa cgcgggcaga agccccacca atttggccaa ggtaaaagga ataacacaag





ggcccaatga gtctccctcg gccttcctag agagacttaa ggaagcctat cgcaggtaca





ctccttatga ccctgaggac ccagggcaag aaactaatgt gtctatgtct ttcatttggc





agtctgcccc agacattggg agaaagttag agaggttaga agatttaaaa aacaagacgc





ttggagattt ggttagagag gcagaaaaga tctttaataa acgagaaacc ccggaagaaa





gagaggaacg tatcaggaga gaaacagagg aaaaagaaga acgccgtagg acagaggatg





agcagaaaga gaaagaaaga gatcgtagga gacatagaga gatgagcaag ctattggcca





ctgtcgttag tggacagaaa caggatagac agggaggaga acgaaggagg tcccaactcg





atcgcgacca gtgtgcctac tgcaaagaaa aggggcactg ggctaaagat tgtcccaaga





aaccacgagg acctcgggga ccaagacccc agacctccct cctgacccta gatgactagg





gaggtcaggg tcaggagccc ccccctgaac ccaggataac cctcaaagtc ggggggcaac





ccgtcacctt cctggtagat actggggccc aacactccgt gctgacccaa aatcctggac





ccctaagtga taagtctgcc tgggtccaag gggctactgg aggaaagcgg tatcgctgga





ccacggatcg caaagtacat ctagctaccg gtaaggtcac ccactctttc ctccatgtac





cagactgtcc ctatcctctg ttaggaagag atttgctgac taaactaaaa gcccaaatcc





actttgaggg atcaggagcc caggttatgg gaccaatggg gcagcccctg caagtgttga





ccctaaatat agaagatgag catcggctac atgagacctc aaaagagcca gatgtttctc





tagggtccac atggctgtct gattttcctc aggcctgggc ggaaaccggg ggcatgggac





tggcagttcg ccaagctcct ctgatcatac ctctgaaagc aacctctacc cccgtgtcca





taaaacaata ccccatgtca caagaagcca gactggggat caagccccac atacagagac





tgttggacca gggaatactg gtaccctgcc agtccccctg gaacacgccc ctgctacccg





ttaagaaacc agggactaat gattataggc ctgtccagga tctgagagaa gtcaacaagc





gggtggaaga catccacccc accgtgccca acccttacaa cctcttgagc gggctcccac





cgtcccacca gtggtacact gtgcttgatt taaaggatgc ctttttctgc ctgagactcc





accccaccag tcagcctctc ttcgcctttg agtggagaga tccagagatg ggaatctcag





gacaattgac ctggaccaga ctcccacagg gtttcaaaaa cagtcccacc ctgtttgatg





aggcactgca cagagaccta gcagacttcc ggatccagca cccagacttg atcctgctac





agtacgtgga tgacttactg ctggccgcca cttctgagct agactgccaa caaggtactc





gggccctgtt acaaacccta gggaacctcg ggtatcgggc ctcggccaag aaagcccaaa





tttgccagaa acaggtcaag tatctggggt atcttctaaa agagggtcag agatggctga





ctgaggccag aaaagagact gtgatggggc agcctactcc gaagacccct cgacaactaa





gggagttcct agggacggca ggcttctgtc gcctctggat ccctgggttt gcagaaatgg





cagccccctt gtaccctctc accaaaacgg ggactctgtt taattggggc ccagaccaac





aaaaggccta tcaagaaatc aagcaagctc ttctaactgc cccagccctg gggttgccag





atttgactaa gccctttgaa ctctttgtcg acgagaagca gggctacgcc aaaggtgtcc





taacgcaaaa actgggacct tggcgtcggc cggtggccta cctgtccaaa aagctagacc





cagtagcagc tgggtggccc ccttgcctac ggatggtagc agccattgcc gtactgacaa





aggatgcagg caagctaacc atgggacagc cactagtcat tctggccccc catgcagtag





aggcactagt caaacaaccc cccgaccgct ggctttccaa cgcccggatg actcactatc





aggccttgct tttggacacg gaccgggtcc agttcggacc ggtggtagcc ctgaacccgg





ctacgctgct cccactgcct gaggaagggc tgcaacacaa ctgccttgat atcctggccg





aagcccacgg aacccgaccc gacctaacgg accagccgct cccagacgcc gaccacacct





ggtacacgga tggaagcagt ctcttacaag agggacagcg taaggcggga gctgcggtga





ccaccgagac cgaggtaatc tgggctaaag ccctgccagc cgggacatcc gctcagcggg





ctgaactgat agcactcacc caggccctaa agatggcaga aggtaagaag ctaaatgttt





atactgatag ccgttatgct tttgctactg cccatatcca tggagaaata tacagaaggc





gtgggttgct cacatcagaa ggcaaagaga tcaaaaataa agacgagatc ttggccctac





taaaagccct ctttctgccc aaaagactta gcataatcca ttgtccagga catcaaaagg





gacacagcgc cgaggctaga ggcaaccgga tggctgacca agcggcccga aaggcagcca





tcacagagac tccagacacc tctaccctcc tcatagaaaa ttcatcaccc tacacctcag





aacattttca ttacacagtg actgatataa aggacctaac caagttgggg gccatttatg





ataaaacaaa gaagtattgg gtctaccaag gaaaacctgt gatgcctgac cagtttactt





ttgaattatt agactttctt catcagctga ctcacctcag cttctcaaaa atgaaggctc





tcctagagag aagccacagt ccctactaca tgctgaaccg ggatcgaaca ctcaaaaata





tcactgagac ctgcaaagct tgtgcacaag tcaacgccag caagtctgcc gttaaacagg





gaactagggt ccgcgggcat cggcccggca ctcattggga gatcgatttc accgagataa





agcccggatt gtatggctat aaatatcttc tagtttttat agataccttt tctggctgga





tagaagcctt cccaaccaag aaagaaaccg ccaaggtcgt aaccaagaag ctactagagg





agatcttccc caggttcggc atgcctcagg tattgggaac tgacaatggg cctgccttcg





tctccaaggt gagtcagaca gtggccgatc tgttggggat tgattggaaa ttacattgtg





catacagacc ccaaagctca ggccaggtag aaagaatgaa tagaaccatc aaggagactt





taactaaatt aacgcttgca actggctcta gagactgggt gctcctactc cccttagccc





tgtaccgagc ccgcaacacg ccgggccccc atggcctcac cccatatgag atcttatatg





gggcaccccc gccccttgta aacttccctg accctgacat gacaagagtt actaacagcc





cctctctcca agctcactta caggctctct acttagtcca gcacgaagtc tggagacctc





tggcggcagc ctaccaagaa caactggacc gaccggtggt acctcaccct taccgagtcg





gcgacacagt gtgggtccgc cgacaccaga ctaagaacct agaacctcgc tggaaaggac





cttacacagt cctgctgacc acccccaccg ccctcaaagt agacggcatc gcagcttgga





tacacgccgc ccacgtgaag gctgccgacc ccgggggtgg accatcctct agactgacat





ggcgcgttca acgctctcaa aaccccctca agataagatt aacccgtgga agcccttaat





agtcatggga gtcctgttag gagtagggat ggcagagagc ccccatcagg tctttaatgt





aacctggaga gtcaccaacc tgatgactgg gcgtaccgcc aatgccacct ccctcctggg





aactgtacaa gatgccttcc caaaattata ttttgatcta tgtgatctgg tcggagagga





gtgggaccct tcagaccagg aaccgtatgt cgggtatggc tgcaagtacc ccgcagggag





acagcggacc cggacttttg acttttacgt gtgccctggg cataccgtaa agtcggggtg





tgggggacca ggagagggct actgtggtaa atgggggtgt gaaaccaccg gacaggctta





ctggaagccc acatcatcgt gggacctaat ctcccttaag cgcggtaaca ccccctggga





cacgggatgc tctaaagttg cctgtggccc ctgctacgac ctctccaaag tatccaattc





cttccaaggg gctactcgag ggggcagatg caaccctcta gtcctagaat tcactgatgc





aggaaaaaag gctaactggg acgggcccaa atcgtgggga ctgagactgt accggacagg





aacagatcct attaccatgt tctccctgac ccggcaggtc cttaatgtgg gaccccgagt





ccccataggg cccaacccag tattacccga ccaaagactc ccttcctcac caatagagat





tgtaccggct ccacagccac ctagccccct caataccagt tacccccctt ccactaccag





tacaccctca acctccccta caagtccaag tgtcccacag ccacccccag gaactggaga





tagactacta gctctagtca aaggagccta tcaggcgctt aacctcacca atcccgacaa





gacccaagaa tgttggctgt gcttagtgtc gggacctcct tattacgaag gagtagcggt





cgtgggcact tataccaatc attccaccgc tccggccaac tgtacggcca cttcccaaca





taagcttacc ctatctgaag tgacaggaca gggcctatgc atgggggcag tacctaaaac





tcaccaggcc ttatgtaaca ccacccaaag cgccggctca ggatcctact accttgcagc





acccgccgga acaatgtggg cttgcagcac tggattgact ccctgcttgt ccaccacggt





gctcaatcta accacagatt attgtgtatt agttgaactc tggcccagag taatttacca





ctcccccgat tatatgtatg gtcagcttga acagcgtacc aaatataaaa gagagccagt





atcattgacc ctggcccttc tactaggagg attaaccatg ggagggattg cagctggaat





agggacgggg accactgcct taattaaaac ccagcagttt gagcagcttc atgccgctat





ccagacagac ctcaacgaag tcgaaaagtc aattaccaac ctagaaaagt cactgacctc





gttgtctgaa gtagtcctac agaaccgcag aggcctagat ttgctattcc taaaggaggg





aggtctctgc gcagccctaa aagaagaatg ttgtttttat gcagaccaca cggggctagt





gagagacagc atggccaaat taagagaaag gcttaatcag agacaaaaac tatttgagac





aggccaagga tggttcgaag ggctgtttaa tagatccccc tggtttacca ccttaatctc





caccatcatg ggacctctaa tagtactctt actgatctta ctctttggac cttgcattct





caatcgattg gtccaatttg ttaaagacag gatctcagtg gtccaggctc tggttttgac





tcagcaatat caccagctaa aacccataga gtacgagcca tgaacgcgtt actggccgaa





gccgcttgga ataaggccgg tgtgcgtttg tctatatgtt attttccacc atattgccgt





cttttggcaa tgtgagggcc cggaaacctg gccctgtctt cttgacgagc attcctaggg





gtctttcccc tctcgccaaa ggaatgcaag gtctgttgaa tgtcgtgaag gaagcagttc





ctctggaagc ttcttgaaga caaacaacgt ctgtagcgac cctttgcagg cagcggaacc





ccccacctgg cgacaggtgc ctctgcggcc aaaagccacg tgtataagat acacctgcaa





aggcggcaca accccagtgc cacgttgtga gttggatagt tgtggaaaga gtcaaatggc





tctcctcaag cgtattcaac aaggggctga aggatgccca gaaggtaccc cattgtatgg





gatctgatct ggggcctcgg tgcacatgct ttacatgtgt ttagtcgagg ttaaaaaaac





gtctaggccc cccgaaccac ggggacgtgg ttttcctttg aaaaacacga ttataaatgg





tgaccggcgg catggcctcc aagtgggatc aaaagggcat ggatatcgct tacgaggagg





ccctgctggg ctacaaggag ggcggcgtgc ctatcggcgg ctgtctgatc aacaacaagg





acggcagtgt gctgggcagg ggccacaaca tgaggttcca gaagggctcc gccaccctgc





acggcgagat ctccaccctg gagaactgtg gcaggctgga gggcaaggtg tacaaggaca





ccaccctgta caccaccctg tccccttgtg acatgtgtac cggcgctatc atcatgtacg





gcatccctag gtgtgtgatc ggcgagaacg tgaacttcaa gtccaagggc gagaagtacc





tgcaaaccag gggccacgag gtggtggttg ttgacgatga gaggtgtaag aagctgatga





agcagttcat cgacgagagg cctcaggact ggttcgagga tatcggcgag taagcggccg





cagataaaat aaaagatttt atttagtctc cagaaaaagg ggggaatgaa agaccccacc





tgtaggtttg gcaagctagc ttaagtaacg ccattttgca aggcatggaa aaatacataa





ctgagaatag agaagttcag atcaaggtca ggaacagatg gaacagctga atatgggcca





aacaggatat ctgtggtaag cagttcctgc cccggctcag ggccaagaac agatggaaca





gctgaatatg ggccaaacag gatatctgtg gtaagcagtt cctgccccgg ctcagggcca





agaacagatg gtccccagat gcggtccagc cctcagcagt ttctagagaa ccatcagatg





tttccagggt gccccaagga cctgaaatga ccctgtgcct tatttgaact aaccaatcag





ttcgcttctc gcttctgttc gcgcgcttct gctccccgag ctcaataaaa gagcccacaa





cccctcactc ggggcgccag tcctccgatt gactgagtcg cccgggtacc cgtgtatcca





ataaaccctc ttgcagttgc atccgacttg tggtctcgct gttccttggg agggtctcct





ctgagtgatt gactacccgt cagcgggggt ctttcattac atgtgagcaa aaggccagca





aaaggccagg aaccgtaaaa aggccgcgtt gctggcgttt ttccataggc tccgcccccc





tgacgagcat cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga caggactata





aagataccag gcgtttcccc ctggaagctc cctcgtgcgc tctcctgttc cgaccctgcc





gcttaccgga tacctgtccg cctttctccc ttcgggaagc gtggcgcttt ctcaatgctc





acgctgtagg tatctcagtt cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga





accccccgtt cagcccgacc gctgcgcctt atccggtaac tatcgtcttg agtccaaccc





ggtaagacac gacttatcgc cactggcagc agccactggt aacaggatta gcagagcgag





gtatgtaggc ggtgctacag agttcttgaa gtggtggcct aactacggct acactagaag





gacagtattt ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag





ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt gcaagcagca





gattacgcgc agaaaaaaag gatctcaaga agatcctttg atcttttcta cggggtctga





cgctcagtgg aacgaaaact cacgttaagg gattttggtc atgagattat caaaaaggat





cttcacctag atccttttaa attaaaaatg aagttttaaa tcaatctaaa gtatatatga





gtaaacttgg tctgacagtt accaatgctt aatcagtgag gcacctatct cagcgatctg





tctatttcgt tcatccatag ttgcctgact ccccgtcgtg tagataacta cgatacggga





gggcttacca tctggcccca gtgctgcaat gataccgcga gacccacgct caccggctcc





agatttatca gcaataaacc agccagccgg aagggccgag cgcagaagtg gtcctgcaac





tttatccgcc tccatccagt ctattaattg ttgccgggaa gctagagtaa gtagttcgcc





agttaatagt ttgcgcaacg ttgttgccat tgctgcaggc atcgtggtgt cacgctcgtc





gtttggtatg gcttcattca gctccggttc ccaacgatca aggcgagtta catgatcccc





catgttgtgc aaaaaagcgg ttagctcctt cggtcctccg atcgttgtca gaagtaagtt





ggccgcagtg ttatcactca tggttatggc agcactgcat aattctctta ctgtcatgcc





atccgtaaga tgcttttctg tgactggtga gtactcaacc aagtcattct gagaatagtg





tatgcggcga ccgagttgct cttgcccggc gtcaacacgg gataataccg cgccacatag





cagaacttta aaagtgctca tcattggaaa acgttcttcg gggcgaaaac tctcaaggat





cttaccgctg ttgagatcca gttcgatgta acccactcgt gcacccaact gatcttcagc





atcttttact ttcaccagcg tttctgggtg agcaaaaaca ggaaggcaaa atgccgcaaa





aaagggaata agggcgacac ggaaatgttg aatactcata ctcttccttt ttcaatatta





ttgaagcatt tatcagggtt attgtctcat gagcggatac atatttgaat gtatttagaa





aaataaacaa ataggggttc cgcgcacatt tccccgaaaa gtgccacctg acgtctaaga





aaccattatt atcatgacat taacctataa aaataggcgt atcacgaggc cctttcgtct





tcaagaattc at





RCR Vector - pAC-yCD


tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg





cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt





gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca





atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc





aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta





catgacctta tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac





catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg





atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg





ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg gtaggcgtgt





acggtgggag gtctatataa gcagagctgg tttagtgaac cggcgccagt cctccgattg





actgagtcgc ccgggtaccc gtgtatccaa taaaccctct tgcagttgca tccgacttgt





ggtctcgctg ttccttggga gggtctcctc tgagtgattg actacccgtc agcgggggtc





tttcatttgg gggctcgtcc gggatcggga gacccctgcc cagggaccac cgacccacca





ccgggaggta agctggccag caacttatct gtgtctgtcc gattgtctag tgtctatgac





tgattttatg cgcctgcgtc ggtactagtt agctaactag ctctgtatct ggcggacccg





tggtggaact gacgagttcg gaacacccgg ccgcaaccct gggagacgtc ccagggactt





cgggggccgt ttttgtggcc cgacctgagt ccaaaaatcc cgatcgtttt ggactctttg





gtgcaccccc cttagaggag ggatatgtgg ttctggtagg agacgagaac ctaaaacagt





tcccgcctcc gtctgaattt ttgctttcgg tttgggaccg aagccgcgcc gcgcgtcttg





tctgctgcag catcgttctg tgttgtctct gtctgactgt gtttctgtat ttgtctgaga





atatgggcca gactgttacc actcccttaa gtttgacctt aggtcactgg aaagatgtcg





agcggatcgc tcacaaccag tcggtagatg tcaagaagag acgttgggtt accttctgct





ctgcagaatg gccaaccttt aacgtcggat ggccgcgaga cggcaccttt aaccgagacc





tcatcaccca ggttaagatc aaggtctttt cacctggccc gcatggacac ccagaccagg





tcccctacat cgtgacctgg gaagccttgg cttttgaccc ccctccctgg gtcaagccct





ttgtacaccc taagcctccg cctcctcttc ctccatccgc cccgtctctc ccccttgaac





ctcctcgttc gaccccgcct cgatcctccc tttatccagc cctcactcct tctctaggcg





ccaaacctaa acctcaagtt ctttctgaca gtggggggcc gctcatcgac ctacttacag





aagacccccc gccttatagg gacccaagac cacccccttc cgacagggac ggaaatggtg





gagaagcgac ccctgcggga gaggcaccgg acccctcccc aatggcatct cgcctacgtg





ggagacggga gccccctgtg gccgactcca ctacctcgca ggcattcccc ctccgcgcag





gaggaaacgg acagcttcaa tactggccgt tctcctcttc tgacctttac aactggaaaa





ataataaccc ttctttttct gaagatccag gtaaactgac agctctgatc gagtctgttc





tcatcaccca tcagcccacc tgggacgact gtcagcagct gttggggact ctgctgaccg





gagaagaaaa acaacgggtg ctcttagagg ctagaaaggc ggtgcggggc gatgatgggc





gccccactca actgcccaat gaagtcgatg ccgcttttcc cctcgagcgc ccagactggg





attacaccac ccaggcaggt aggaaccacc tagtccacta tcgccagttg ctcctagcgg





gtctccaaaa cgcgggcaga agccccacca atttggccaa ggtaaaagga ataacacaag





ggcccaatga gtctccctcg gccttcctag agagacttaa ggaagcctat cgcaggtaca





ctccttatga ccctgaggac ccagggcaag aaactaatgt gtctatgtct ttcatttggc





agtctgcccc agacattggg agaaagttag agaggttaga agatttaaaa aacaagacgc





ttggagattt ggttagagag gcagaaaaga tctttaataa acgagaaacc ccggaagaaa





gagaggaacg tatcaggaga gaaacagagg aaaaagaaga acgccgtagg acagaggatg





agcagaaaga gaaagaaaga gatcgtagga gacatagaga gatgagcaag ctattggcca





ctgtcgttag tggacagaaa caggatagac agggaggaga acgaaggagg tcccaactcg





atcgcgacca gtgtgcctac tgcaaagaaa aggggcactg ggctaaagat tgtcccaaga





aaccacgagg acctcgggga ccaagacccc agacctccct cctgacccta gatgactagg





gaggtcaggg tcaggagccc ccccctgaac ccaggataac cctcaaagtc ggggggcaac





ccgtcacctt cctggtagat actggggccc aacactccgt gctgacccaa aatcctggac





ccctaagtga taagtctgcc tgggtccaag gggctactgg aggaaagcgg tatcgctgga





ccacggatcg caaagtacat ctagctaccg gtaaggtcac ccactctttc ctccatgtac





cagactgtcc ctatcctctg ttaggaagag atttgctgac taaactaaaa gcccaaatcc





actttgaggg atcaggagcc caggttatgg gaccaatggg gcagcccctg caagtgttga





ccctaaatat agaagatgag catcggctac atgagacctc aaaagagcca gatgtttctc





tagggtccac atggctgtct gattttcctc aggcctgggc ggaaaccggg ggcatgggac





tggcagttcg ccaagctcct ctgatcatac ctctgaaagc aacctctacc cccgtgtcca





taaaacaata ccccatgtca caagaagcca gactggggat caagccccac atacagagac





tgttggacca gggaatactg gtaccctgcc agtccccctg gaacacgccc ctgctacccg





ttaagaaacc agggactaat gattataggc ctgtccagga tctgagagaa gtcaacaagc





gggtggaaga catccacccc accgtgccca acccttacaa cctcttgagc gggctcccac





cgtcccacca gtggtacact gtgcttgatt taaaggatgc ctttttctgc ctgagactcc





accccaccag tcagcctctc ttcgcctttg agtggagaga tccagagatg ggaatctcag





gacaattgac ctggaccaga ctcccacagg gtttcaaaaa cagtcccacc ctgtttgatg





aggcactgca cagagaccta gcagacttcc ggatccagca cccagacttg atcctgctac





agtacgtgga tgacttactg ctggccgcca cttctgagct agactgccaa caaggtactc





gggccctgtt acaaacccta gggaacctcg ggtatcgggc ctcggccaag aaagcccaaa





tttgccagaa acaggtcaag tatctggggt atcttctaaa agagggtcag agatggctga





ctgaggccag aaaagagact gtgatggggc agcctactcc gaagacccct cgacaactaa





gggagttcct agggacggca ggcttctgtc gcctctggat ccctgggttt gcagaaatgg





cagccccctt gtaccctctc accaaaacgg ggactctgtt taattggggc ccagaccaac





aaaaggccta tcaagaaatc aagcaagctc ttctaactgc cccagccctg gggttgccag





atttgactaa gccctttgaa ctctttgtcg acgagaagca gggctacgcc aaaggtgtcc





taacgcaaaa actgggacct tggcgtcggc cggtggccta cctgtccaaa aagctagacc





cagtagcagc tgggtggccc ccttgcctac ggatggtagc agccattgcc gtactgacaa





aggatgcagg caagctaacc atgggacagc cactagtcat tctggccccc catgcagtag





aggcactagt caaacaaccc cccgaccgct ggctttccaa cgcccggatg actcactatc





aggccttgct tttggacacg gaccgggtcc agttcggacc ggtggtagcc ctgaacccgg





ctacgctgct cccactgcct gaggaagggc tgcaacacaa ctgccttgat atcctggccg





aagcccacgg aacccgaccc gacctaacgg accagccgct cccagacgcc gaccacacct





ggtacacgga tggaagcagt ctcttacaag agggacagcg taaggcggga gctgcggtga





ccaccgagac cgaggtaatc tgggctaaag ccctgccagc cgggacatcc gctcagcggg





ctgaactgat agcactcacc caggccctaa agatggcaga aggtaagaag ctaaatgttt





atactgatag ccgttatgct tttgctactg cccatatcca tggagaaata tacagaaggc





gtgggttgct cacatcagaa ggcaaagaga tcaaaaataa agacgagatc ttggccctac





taaaagccct ctttctgccc aaaagactta gcataatcca ttgtccagga catcaaaagg





gacacagcgc cgaggctaga ggcaaccgga tggctgacca agcggcccga aaggcagcca





tcacagagac tccagacacc tctaccctcc tcatagaaaa ttcatcaccc tacacctcag





aacattttca ttacacagtg actgatataa aggacctaac caagttgggg gccatttatg





ataaaacaaa gaagtattgg gtctaccaag gaaaacctgt gatgcctgac cagtttactt





ttgaattatt agactttctt catcagctga ctcacctcag cttctcaaaa atgaaggctc





tcctagagag aagccacagt ccctactaca tgctgaaccg ggatcgaaca ctcaaaaata





tcactgagac ctgcaaagct tgtgcacaag tcaacgccag caagtctgcc gttaaacagg





gaactagggt ccgcgggcat cggcccggca ctcattggga gatcgatttc accgagataa





agcccggatt gtatggctat aaatatcttc tagtttttat agataccttt tctggctgga





tagaagcctt cccaaccaag aaagaaaccg ccaaggtcgt aaccaagaag ctactagagg





agatcttccc caggttcggc atgcctcagg tattgggaac tgacaatggg cctgccttcg





tctccaaggt gagtcagaca gtggccgatc tgttggggat tgattggaaa ttacattgtg





catacagacc ccaaagctca ggccaggtag aaagaatgaa tagaaccatc aaggagactt





taactaaatt aacgcttgca actggctcta gagactgggt gctcctactc cccttagccc





tgtaccgagc ccgcaacacg ccgggccccc atggcctcac cccatatgag atcttatatg





gggcaccccc gccccttgta aacttccctg accctgacat gacaagagtt actaacagcc





cctctctcca agctcactta caggctctct acttagtcca gcacgaagtc tggagacctc





tggcggcagc ctaccaagaa caactggacc gaccggtggt acctcaccct taccgagtcg





gcgacacagt gtgggtccgc cgacaccaga ctaagaacct agaacctcgc tggaaaggac





cttacacagt cctgctgacc acccccaccg ccctcaaagt agacggcatc gcagcttgga





tacacgccgc ccacgtgaag gctgccgacc ccgggggtgg accatcctct agactgacat





ggcgcgttca acgctctcaa aaccccctca agataagatt aacccgtgga agcccttaat





agtcatggga gtcctgttag gagtagggat ggcagagagc ccccatcagg tctttaatgt





aacctggaga gtcaccaacc tgatgactgg gcgtaccgcc aatgccacct ccctcctggg





aactgtacaa gatgccttcc caaaattata ttttgatcta tgtgatctgg tcggagagga





gtgggaccct tcagaccagg aaccgtatgt cgggtatggc tgcaagtacc ccgcagggag





acagcggacc cggacttttg acttttacgt gtgccctggg cataccgtaa agtcggggtg





tgggggacca ggagagggct actgtggtaa atgggggtgt gaaaccaccg gacaggctta





ctggaagccc acatcatcgt gggacctaat ctcccttaag cgcggtaaca ccccctggga





cacgggatgc tctaaagttg cctgtggccc ctgctacgac ctctccaaag tatccaattc





cttccaaggg gctactcgag ggggcagatg caaccctcta gtcctagaat tcactgatgc





aggaaaaaag gctaactggg acgggcccaa atcgtgggga ctgagactgt accggacagg





aacagatcct attaccatgt tctccctgac ccggcaggtc cttaatgtgg gaccccgagt





ccccataggg cccaacccag tattacccga ccaaagactc ccttcctcac caatagagat





tgtaccggct ccacagccac ctagccccct caataccagt tacccccctt ccactaccag





tacaccctca acctccccta caagtccaag tgtcccacag ccacccccag gaactggaga





tagactacta gctctagtca aaggagccta tcaggcgctt aacctcacca atcccgacaa





gacccaagaa tgttggctgt gcttagtgtc gggacctcct tattacgaag gagtagcggt





cgtgggcact tataccaatc attccaccgc tccggccaac tgtacggcca cttcccaaca





taagcttacc ctatctgaag tgacaggaca gggcctatgc atgggggcag tacctaaaac





tcaccaggcc ttatgtaaca ccacccaaag cgccggctca ggatcctact accttgcagc





acccgccgga acaatgtggg cttgcagcac tggattgact ccctgcttgt ccaccacggt





gctcaatcta accacagatt attgtgtatt agttgaactc tggcccagag taatttacca





ctcccccgat tatatgtatg gtcagcttga acagcgtacc aaatataaaa gagagccagt





atcattgacc ctggcccttc tactaggagg attaaccatg ggagggattg cagctggaat





agggacgggg accactgcct taattaaaac ccagcagttt gagcagcttc atgccgctat





ccagacagac ctcaacgaag tcgaaaagtc aattaccaac ctagaaaagt cactgacctc





gttgtctgaa gtagtcctac agaaccgcag aggcctagat ttgctattcc taaaggaggg





aggtctctgc gcagccctaa aagaagaatg ttgtttttat gcagaccaca cggggctagt





gagagacagc atggccaaat taagagaaag gcttaatcag agacaaaaac tatttgagac





aggccaagga tggttcgaag ggctgtttaa tagatccccc tggtttacca ccttaatctc





caccatcatg ggacctctaa tagtactctt actgatctta ctctttggac cttgcattct





caatcgattg gtccaatttg ttaaagacag gatctcagtg gtccaggctc tggttttgac





tcagcaatat caccagctaa aacccataga gtacgagcca tgaacgcgtt actggccgaa





gccgcttgga ataaggccgg tgtgcgtttg tctatatgtt attttccacc atattgccgt





cttttggcaa tgtgagggcc cggaaacctg gccctgtctt cttgacgagc attcctaggg





gtctttcccc tctcgccaaa ggaatgcaag gtctgttgaa tgtcgtgaag gaagcagttc





ctctggaagc ttcttgaaga caaacaacgt ctgtagcgac cctttgcagg cagcggaacc





ccccacctgg cgacaggtgc ctctgcggcc aaaagccacg tgtataagat acacctgcaa





aggcggcaca accccagtgc cacgttgtga gttggatagt tgtggaaaga gtcaaatggc





tctcctcaag cgtattcaac aaggggctga aggatgccca gaaggtaccc cattgtatgg





gatctgatct ggggcctcgg tgcacatgct ttacatgtgt ttagtcgagg ttaaaaaaac





gtctaggccc cccgaaccac ggggacgtgg ttttcctttg aaaaacacga ttataaatgg





tgacaggggg aatggcaagc aagtgggatc agaagggtat ggacattgcc tatgaggagg





cggccttagg ttacaaagag ggtggtgttc ctattggcgg atgtcttatc aataacaaag





acggaagtgt tctcggtcgt ggtcacaaca tgagatttca aaagggatcc gccacactac





atggtgagat ctccactttg gaaaactgtg ggagattaga gggcaaagtg tacaaagata





ccactttgta tacgacgctg tctccatgcg acatgtgtac aggtgccatc atcatgtatg





gtattccacg ctgtgttgtc ggtgagaacg ttaatttcaa aagtaagggc gagaaatatt





tacaaactag aggtcacgag gttgttgttg ttgacgatga gaggtgtaaa aagatcatga





aacaatttat cgatgaaaga cctcaggatt ggtttgaaga tattggtgag taggcggccg





cagataaaat aaaagatttt atttagtctc cagaaaaagg ggggaatgaa agaccccacc





tgtaggtttg gcaagctagc ttaagtaacg ccattttgca aggcatggaa aaatacataa





ctgagaatag agaagttcag atcaaggtca ggaacagatg gaacagctga atatgggcca





aacaggatat ctgtggtaag cagttcctgc cccggctcag ggccaagaac agatggaaca





gctgaatatg ggccaaacag gatatctgtg gtaagcagtt cctgccccgg ctcagggcca





agaacagatg gtccccagat gcggtccagc cctcagcagt ttctagagaa ccatcagatg





tttccagggt gccccaagga cctgaaatga ccctgtgcct tatttgaact aaccaatcag





ttcgcttctc gcttctgttc gcgcgcttct gctccccgag ctcaataaaa gagcccacaa





cccctcactc ggggcgccag tcctccgatt gactgagtcg cccgggtacc cgtgtatcca





ataaaccctc ttgcagttgc atccgacttg tggtctcgct gttccttggg agggtctcct





ctgagtgatt gactacccgt cagcgggggt ctttcattac atgtgagcaa aaggccagca





aaaggccagg aaccgtaaaa aggccgcgtt gctggcgttt ttccataggc tccgcccccc





tgacgagcat cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga caggactata





aagataccag gcgtttcccc ctggaagctc cctcgtgcgc tctcctgttc cgaccctgcc





gcttaccgga tacctgtccg cctttctccc ttcgggaagc gtggcgcttt ctcaatgctc





acgctgtagg tatctcagtt cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga





accccccgtt cagcccgacc gctgcgcctt atccggtaac tatcgtcttg agtccaaccc





ggtaagacac gacttatcgc cactggcagc agccactggt aacaggatta gcagagcgag





gtatgtaggc ggtgctacag agttcttgaa gtggtggcct aactacggct acactagaag





gacagtattt ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag





ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt gcaagcagca





gattacgcgc agaaaaaaag gatctcaaga agatcctttg atcttttcta cggggtctga





cgctcagtgg aacgaaaact cacgttaagg gattttggtc atgagattat caaaaaggat





cttcacctag atccttttaa attaaaaatg aagttttaaa tcaatctaaa gtatatatga





gtaaacttgg tctgacagtt accaatgctt aatcagtgag gcacctatct cagcgatctg





tctatttcgt tcatccatag ttgcctgact ccccgtcgtg tagataacta cgatacggga





gggcttacca tctggcccca gtgctgcaat gataccgcga gacccacgct caccggctcc





agatttatca gcaataaacc agccagccgg aagggccgag cgcagaagtg gtcctgcaac





tttatccgcc tccatccagt ctattaattg ttgccgggaa gctagagtaa gtagttcgcc





agttaatagt ttgcgcaacg ttgttgccat tgctgcaggc atcgtggtgt cacgctcgtc





gtttggtatg gcttcattca gctccggttc ccaacgatca aggcgagtta catgatcccc





catgttgtgc aaaaaagcgg ttagctcctt cggtcctccg atcgttgtca gaagtaagtt





ggccgcagtg ttatcactca tggttatggc agcactgcat aattctctta ctgtcatgcc





atccgtaaga tgcttttctg tgactggtga gtactcaacc aagtcattct gagaatagtg





tatgcggcga ccgagttgct cttgcccggc gtcaacacgg gataataccg cgccacatag





cagaacttta aaagtgctca tcattggaaa acgttcttcg gggcgaaaac tctcaaggat





cttaccgctg ttgagatcca gttcgatgta acccactcgt gcacccaact gatcttcagc





atcttttact ttcaccagcg tttctgggtg agcaaaaaca ggaaggcaaa atgccgcaaa





aaagggaata agggcgacac ggaaatgttg aatactcata ctcttccttt ttcaatatta





ttgaagcatt tatcagggtt attgtctcat gagcggatac atatttgaat gtatttagaa





aaataaacaa ataggggttc cgcgcacatt tccccgaaaa gtgccacctg acgtctaaga





aaccattatt atcatgacat taacctataa aaataggcgt atcacgaggc cctttcgtct





tcaagaattc at





RCR Vector - pACE-CD


tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg





cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt





gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca





atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc





aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta





catgacctta tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac





catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg





atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg





ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg gtaggcgtgt





acggtgggag gtctatataa gcagagctgg tttagtgaac cggcgccagt cctccgattg





actgagtcgc ccgggtaccc gtgtatccaa taaaccctct tgcagttgca tccgacttgt





ggtctcgctg ttccttggga gggtctcctc tgagtgattg actacccgtc agcgggggtc





tttcatttgg gggctcgtcc gggatcggga gacccctgcc cagggaccac cgacccacca





ccgggaggta agctggccag caacttatct gtgtctgtcc gattgtctag tgtctatgac





tgattttatg cgcctgcgtc ggtactagtt agctaactag ctctgtatct ggcggacccg





tggtggaact gacgagttcg gaacacccgg ccgcaaccct gggagacgtc ccagggactt





cgggggccgt ttttgtggcc cgacctgagt ccaaaaatcc cgatcgtttt ggactctttg





gtgcaccccc cttagaggag ggatatgtgg ttctggtagg agacgagaac ctaaaacagt





tcccgcctcc gtctgaattt ttgctttcgg tttgggaccg aagccgcgcc gcgcgtcttg





tctgctgcag catcgttctg tgttgtctct gtctgactgt gtttctgtat ttgtctgaga





atatgggcca gactgttacc actcccttaa gtttgacctt aggtcactgg aaagatgtcg





agcggatcgc tcacaaccag tcggtagatg tcaagaagag acgttgggtt accttctgct





ctgcagaatg gccaaccttt aacgtcggat ggccgcgaga cggcaccttt aaccgagacc





tcatcaccca ggttaagatc aaggtctttt cacctggccc gcatggacac ccagaccagg





tcccctacat cgtgacctgg gaagccttgg cttttgaccc ccctccctgg gtcaagccct





ttgtacaccc taagcctccg cctcctcttc ctccatccgc cccgtctctc ccccttgaac





ctcctcgttc gaccccgcct cgatcctccc tttatccagc cctcactcct tctctaggcg





ccaaacctaa acctcaagtt ctttctgaca gtggggggcc gctcatcgac ctacttacag





aagacccccc gccttatagg gacccaagac cacccccttc cgacagggac ggaaatggtg





gagaagcgac ccctgcggga gaggcaccgg acccctcccc aatggcatct cgcctacgtg





ggagacggga gccccctgtg gccgactcca ctacctcgca ggcattcccc ctccgcgcag





gaggaaacgg acagcttcaa tactggccgt tctcctcttc tgacctttac aactggaaaa





ataataaccc ttctttttct gaagatccag gtaaactgac agctctgatc gagtctgttc





tcatcaccca tcagcccacc tgggacgact gtcagcagct gttggggact ctgctgaccg





gagaagaaaa acaacgggtg ctcttagagg ctagaaaggc ggtgcggggc gatgatgggc





gccccactca actgcccaat gaagtcgatg ccgcttttcc cctcgagcgc ccagactggg





attacaccac ccaggcaggt aggaaccacc tagtccacta tcgccagttg ctcctagcgg





gtctccaaaa cgcgggcaga agccccacca atttggccaa ggtaaaagga ataacacaag





ggcccaatga gtctccctcg gccttcctag agagacttaa ggaagcctat cgcaggtaca





ctccttatga ccctgaggac ccagggcaag aaactaatgt gtctatgtct ttcatttggc





agtctgcccc agacattggg agaaagttag agaggttaga agatttaaaa aacaagacgc





ttggagattt ggttagagag gcagaaaaga tctttaataa acgagaaacc ccggaagaaa





gagaggaacg tatcaggaga gaaacagagg aaaaagaaga acgccgtagg acagaggatg





agcagaaaga gaaagaaaga gatcgtagga gacatagaga gatgagcaag ctattggcca





ctgtcgttag tggacagaaa caggatagac agggaggaga acgaaggagg tcccaactcg





atcgcgacca gtgtgcctac tgcaaagaaa aggggcactg ggctaaagat tgtcccaaga





aaccacgagg acctcgggga ccaagacccc agacctccct cctgacccta gatgactagg





gaggtcaggg tcaggagccc ccccctgaac ccaggataac cctcaaagtc ggggggcaac





ccgtcacctt cctggtagat actggggccc aacactccgt gctgacccaa aatcctggac





ccctaagtga taagtctgcc tgggtccaag gggctactgg aggaaagcgg tatcgctgga





ccacggatcg caaagtacat ctagctaccg gtaaggtcac ccactctttc ctccatgtac





cagactgtcc ctatcctctg ttaggaagag atttgctgac taaactaaaa gcccaaatcc





actttgaggg atcaggagcc caggttatgg gaccaatggg gcagcccctg caagtgttga





ccctaaatat agaagatgag catcggctac atgagacctc aaaagagcca gatgtttctc





tagggtccac atggctgtct gattttcctc aggcctgggc ggaaaccggg ggcatgggac





tggcagttcg ccaagctcct ctgatcatac ctctgaaagc aacctctacc cccgtgtcca





taaaacaata ccccatgtca caagaagcca gactggggat caagccccac atacagagac





tgttggacca gggaatactg gtaccctgcc agtccccctg gaacacgccc ctgctacccg





ttaagaaacc agggactaat gattataggc ctgtccagga tctgagagaa gtcaacaagc





gggtggaaga catccacccc accgtgccca acccttacaa cctcttgagc gggctcccac





cgtcccacca gtggtacact gtgcttgatt taaaggatgc ctttttctgc ctgagactcc





accccaccag tcagcctctc ttcgcctttg agtggagaga tccagagatg ggaatctcag





gacaattgac ctggaccaga ctcccacagg gtttcaaaaa cagtcccacc ctgtttgatg





aggcactgca cagagaccta gcagacttcc ggatccagca cccagacttg atcctgctac





agtacgtgga tgacttactg ctggccgcca cttctgagct agactgccaa caaggtactc





gggccctgtt acaaacccta gggaacctcg ggtatcgggc ctcggccaag aaagcccaaa





tttgccagaa acaggtcaag tatctggggt atcttctaaa agagggtcag agatggctga





ctgaggccag aaaagagact gtgatggggc agcctactcc gaagacccct cgacaactaa





gggagttcct agggacggca ggcttctgtc gcctctggat ccctgggttt gcagaaatgg





cagccccctt gtaccctctc accaaaacgg ggactctgtt taattggggc ccagaccaac





aaaaggccta tcaagaaatc aagcaagctc ttctaactgc cccagccctg gggttgccag





atttgactaa gccctttgaa ctctttgtcg acgagaagca gggctacgcc aaaggtgtcc





taacgcaaaa actgggacct tggcgtcggc cggtggccta cctgtccaaa aagctagacc





cagtagcagc tgggtggccc ccttgcctac ggatggtagc agccattgcc gtactgacaa





aggatgcagg caagctaacc atgggacagc cactagtcat tctggccccc catgcagtag





aggcactagt caaacaaccc cccgaccgct ggctttccaa cgcccggatg actcactatc





aggccttgct tttggacacg gaccgggtcc agttcggacc ggtggtagcc ctgaacccgg





ctacgctgct cccactgcct gaggaagggc tgcaacacaa ctgccttgat atcctggccg





aagcccacgg aacccgaccc gacctaacgg accagccgct cccagacgcc gaccacacct





ggtacacgga tggaagcagt ctcttacaag agggacagcg taaggcggga gctgcggtga





ccaccgagac cgaggtaatc tgggctaaag ccctgccagc cgggacatcc gctcagcggg





ctgaactgat agcactcacc caggccctaa agatggcaga aggtaagaag ctaaatgttt





atactgatag ccgttatgct tttgctactg cccatatcca tggagaaata tacagaaggc





gtgggttgct cacatcagaa ggcaaagaga tcaaaaataa agacgagatc ttggccctac





taaaagccct ctttctgccc aaaagactta gcataatcca ttgtccagga catcaaaagg





gacacagcgc cgaggctaga ggcaaccgga tggctgacca agcggcccga aaggcagcca





tcacagagac tccagacacc tctaccctcc tcatagaaaa ttcatcaccc tacacctcag





aacattttca ttacacagtg actgatataa aggacctaac caagttgggg gccatttatg





ataaaacaaa gaagtattgg gtctaccaag gaaaacctgt gatgcctgac cagtttactt





ttgaattatt agactttctt catcagctga ctcacctcag cttctcaaaa atgaaggctc





tcctagagag aagccacagt ccctactaca tgctgaaccg ggatcgaaca ctcaaaaata





tcactgagac ctgcaaagct tgtgcacaag tcaacgccag caagtctgcc gttaaacagg





gaactagggt ccgcgggcat cggcccggca ctcattggga gatcgatttc accgagataa





agcccggatt gtatggctat aaatatcttc tagtttttat agataccttt tctggctgga





tagaagcctt cccaaccaag aaagaaaccg ccaaggtcgt aaccaagaag ctactagagg





agatcttccc caggttcggc atgcctcagg tattgggaac tgacaatggg cctgccttcg





tctccaaggt gagtcagaca gtggccgatc tgttggggat tgattggaaa ttacattgtg





catacagacc ccaaagctca ggccaggtag aaagaatgaa tagaaccatc aaggagactt





taactaaatt aacgcttgca actggctcta gagactgggt gctcctactc cccttagccc





tgtaccgagc ccgcaacacg ccgggccccc atggcctcac cccatatgag atcttatatg





gggcaccccc gccccttgta aacttccctg accctgacat gacaagagtt actaacagcc





cctctctcca agctcactta caggctctct acttagtcca gcacgaagtc tggagacctc





tggcggcagc ctaccaagaa caactggacc gaccggtggt acctcaccct taccgagtcg





gcgacacagt gtgggtccgc cgacaccaga ctaagaacct agaacctcgc tggaaaggac





cttacacagt cctgctgacc acccccaccg ccctcaaagt agacggcatc gcagcttgga





tacacgccgc ccacgtgaag gctgccgacc ccgggggtgg accatcctct agactgacat





ggcgcgttca acgctctcaa aaccccctca agataagatt aacccgtgga agcccttaat





agtcatggga gtcctgttag gagtagggat ggcagagagc ccccatcagg tctttaatgt





aacctggaga gtcaccaacc tgatgactgg gcgtaccgcc aatgccacct ccctcctggg





aactgtacaa gatgccttcc caaaattata ttttgatcta tgtgatctgg tcggagagga





gtgggaccct tcagaccagg aaccgtatgt cgggtatggc tgcaagtacc ccgcagggag





acagcggacc cggacttttg acttttacgt gtgccctggg cataccgtaa agtcggggtg





tgggggacca ggagagggct actgtggtaa atgggggtgt gaaaccaccg gacaggctta





ctggaagccc acatcatcgt gggacctaat ctcccttaag cgcggtaaca ccccctggga





cacgggatgc tctaaagttg cctgtggccc ctgctacgac ctctccaaag tatccaattc





cttccaaggg gctactcgag ggggcagatg caaccctcta gtcctagaat tcactgatgc





aggaaaaaag gctaactggg acgggcccaa atcgtgggga ctgagactgt accggacagg





aacagatcct attaccatgt tctccctgac ccggcaggtc cttaatgtgg gaccccgagt





ccccataggg cccaacccag tattacccga ccaaagactc ccttcctcac caatagagat





tgtaccggct ccacagccac ctagccccct caataccagt tacccccctt ccactaccag





tacaccctca acctccccta caagtccaag tgtcccacag ccacccccag gaactggaga





tagactacta gctctagtca aaggagccta tcaggcgctt aacctcacca atcccgacaa





gacccaagaa tgttggctgt gcttagtgtc gggacctcct tattacgaag gagtagcggt





cgtgggcact tataccaatc attccaccgc tccggccaac tgtacggcca cttcccaaca





taagcttacc ctatctgaag tgacaggaca gggcctatgc atgggggcag tacctaaaac





tcaccaggcc ttatgtaaca ccacccaaag cgccggctca ggatcctact accttgcagc





acccgccgga acaatgtggg cttgcagcac tggattgact ccctgcttgt ccaccacggt





gctcaatcta accacagatt attgtgtatt agttgaactc tggcccagag taatttacca





ctcccccgat tatatgtatg gtcagcttga acagcgtacc aaatataaaa gagagccagt





atcattgacc ctggcccttc tactaggagg attaaccatg ggagggattg cagctggaat





agggacgggg accactgcct taattaaaac ccagcagttt gagcagcttc atgccgctat





ccagacagac ctcaacgaag tcgaaaagtc aattaccaac ctagaaaagt cactgacctc





gttgtctgaa gtagtcctac agaaccgcag aggcctagat ttgctattcc taaaggaggg





aggtctctgc gcagccctaa aagaagaatg ttgtttttat gcagaccaca cggggctagt





gagagacagc atggccaaat taagagaaag gcttaatcag agacaaaaac tatttgagac





aggccaagga tggttcgaag ggctgtttaa tagatccccc tggtttacca ccttaatctc





caccatcatg ggacctctaa tagtactctt actgatctta ctctttggac cttgcattct





caatcgatta gtccaatttg ttaaagacag gatatcagtg gtccaggctc tagttttgac





tcaacaatat caccagctga agcctataga gtacgagcca tgacgtacgt tactggccga





agccgcttgg aataaggccg gtgtgcgttt gtctatatgt tattttccac catattgccg





tcttttggca atgtgagggc ccggaaacct ggccctgtct tcttgacgag cattcctagg





ggtctttccc ctctcgccaa aggaatgcaa ggtctgttga atgtcgtgaa ggaagcagtt





cctctggaag cttcttgaag acaaacaacg tctgtagcga ccctttgcag gcagcggaac





cccccacctg gcgacaggtg cctctgcggc caaaagccac gtgtataaga tacacctgca





aaggcggcac aaccccagtg ccacgttgtg agttggatag ttgtggaaag agtcaaatgg





ctctcctcaa gcgtattcaa caaggggctg aaggatgccc agaaggtacc ccattgtatg





ggatctgatc tggggcctcg gtgcacatgc tttacatgtg tttagtcgag gttaaaaaaa





cgtctaggcc ccccgaacca cggggacgtg gttttccttt gaaaaacacg ataataccat





ggtgacaggg ggaatggcaa gcaagtggga tcagaagggt atggacattg cctatgagga





ggcggcctta ggttacaaag agggtggtgt tcctattggc ggatgtctta tcaataacaa





agacggaagt gttctcggtc gtggtcacaa catgagattt caaaagggat ccgccacact





acatggtgag atctccactt tggaaaactg tgggagatta gagggcaaag tgtacaaaga





taccactttg tatacgacgc tgtctccatg cgacatgtgt acaggtgcca tcatcatgta





tggtattcca cgctgtgttg tcggtgagaa cgttaatttc aaaagtaagg gcgagaaata





tttacaaact agaggtcacg aggttgttgt tgttgacgat gagaggtgta aaaagatcat





gaaacaattt atcgatgaaa gacctcagga ttggtttgaa gatattggtg agtaggcggc





cgcgccatag ataaaataaa agattttatt tagtctccag aaaaaggggg gaatgaaaga





ccccacctgt aggtttggca agctagctta agtaacgcca ttttgcaagg catggaaaaa





tacataactg agaatagaga agttcagatc aaggtcagga acagatggaa cagctgaata





tgggccaaac aggatatctg tggtaagcag ttcctgcccc ggctcagggc caagaacaga





tggaacagct gaatatgggc caaacaggat atctgtggta agcagttcct gccccggctc





agggccaaga acagatggtc cccagatgcg gtccagccct cagcagtttc tagagaacca





tcagatgttt ccagggtgcc ccaaggacct gaaatgaccc tgtgccttgt ttaaactaac





caatcagttc gcttctcgct tctgttcgcg cgcttctgct ccccgagctc aataaaagag





cccacaaccc ctcactcggg gcgccagtcc tccgattgac tgagtcgccc gggtacccgt





gtatccaata aaccctcttg cagttgcatc cgacttgtgg tctcgctgtt ccttgggagg





gtctcctctg agtgattgac tacccgtcag cgggggtctt tcatttgggg gctcgtccgg





gatcgggaga cccctgccca gggaccaccg acccaccacc gggaggtaag ctggctgcct





cgcgcgtttc ggtgatgacg gtgaaaacct ctgacatgtg agcaaaaggc cagcaaaagg





ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca taggctccgc ccccctgacg





agcatcacaa aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga ctataaagat





accaggcgtt tccccctgga agctccctcg tgcgctctcc tgttccgacc ctgccgctta





ccggatacct gtccgccttt ctcccttcgg gaagcgtggc gctttctcaa tgctcacgct





gtaggtatct cagttcggtg taggtcgttc gctccaagct gggctgtgtg cacgaacccc





ccgttcagcc cgaccgctgc gccttatccg gtaactatcg tcttgagtcc aacccggtaa





gacacgactt atcgccactg gcagcagcca ctggtaacag gattagcaga gcgaggtatg





taggcggtgc tacagagttc ttgaagtggt ggcctaacta cggctacact agaaggacag





tatttggtat ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt





gatccggcaa acaaaccacc gctggtagcg gtggtttttt tgtttgcaag cagcagatta





cgcgcagaaa aaaaggatct caagaagatc ctttgatctt ttctacgggg tctgacgctc





agtggaacga aaactcacgt taagggattt tggtcatgag attatcaaaa aggatcttca





cctagatcct tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa





cttggtctga cagttaccaa tgcttaatca gtgaggcacc tatctcagcg atctgtctat





ttcgttcatc catagttgcc tgactccccg tcgtgtagat aactacgata cgggagggct





taccatctgg ccccagtgct gcaatgatac cgcgagaccc acgctcaccg gctccagatt





tatcagcaat aaaccagcca gccggaaggg ccgagcgcag aagtggtcct gcaactttat





ccgcctccat ccagtctatt aattgttgcc gggaagctag agtaagtagt tcgccagtta





atagtttgcg caacgttgtt gccattgctg caggcatcgt ggtgtcacgc tcgtcgtttg





gtatggcttc attcagctcc ggttcccaac gatcaaggcg agttacatga tcccccatgt





tgtgcaaaaa agcggttagc tccttcggtc ctccgatcgt tgtcagaagt aagttggccg





cagtgttatc actcatggtt atggcagcac tgcataattc tcttactgtc atgccatccg





taagatgctt ttctgtgact ggtgagtact caaccaagtc attctgagaa tagtgtatgc





ggcgaccgag ttgctcttgc ccggcgtcaa cacgggataa taccgcgcca catagcagaa





ctttaaaagt gctcatcatt ggaaaacgtt cttcggggcg aaaactctca aggatcttac





cgctgttgag atccagttcg atgtaaccca ctcgtgcacc caactgatct tcagcatctt





ttactttcac cagcgtttct gggtgagcaa aaacaggaag gcaaaatgcc gcaaaaaagg





gaataagggc gacacggaaa tgttgaatac tcatactctt cctttttcaa tattattgaa





gcatttatca gggttattgt ctcatgagcg gatacatatt tgaatgtatt tagaaaaata





aacaaatagg ggttccgcgc acatttcccc gaaaagtgcc acctgacgtc taagaaacca





ttattatcat gacattaacc tataaaaata ggcgtatcac gaggcccttt cgtcttcaag





aattcat





RCR Vector - pAC-yCD


tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg





cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt





gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca





atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc





aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta





catgacctta tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac





catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg





atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg





ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg gtaggcgtgt





acggtgggag gtctatataa gcagagctgg tttagtgaac cggcgccagt cctccgattg





actgagtcgc ccgggtaccc gtgtatccaa taaaccctct tgcagttgca tccgacttgt





ggtctcgctg ttccttggga gggtctcctc tgagtgattg actacccgtc agcgggggtc





tttcatttgg gggctcgtcc gggatcggga gacccctgcc cagggaccac cgacccacca





ccgggaggta agctggccag caacttatct gtgtctgtcc gattgtctag tgtctatgac





tgattttatg cgcctgcgtc ggtactagtt agctaactag ctctgtatct ggcggacccg





tggtggaact gacgagttcg gaacacccgg ccgcaaccct gggagacgtc ccagggactt





cgggggccgt ttttgtggcc cgacctgagt ccaaaaatcc cgatcgtttt ggactctttg





gtgcaccccc cttagaggag ggatatgtgg ttctggtagg agacgagaac ctaaaacagt





tcccgcctcc gtctgaattt ttgctttcgg tttgggaccg aagccgcgcc gcgcgtcttg





tctgctgcag catcgttctg tgttgtctct gtctgactgt gtttctgtat ttgtctgaaa





atatgggcca gactgttacc actcccttaa gtttgacctt aggtcactgg aaagatgtcg





agcggatcgc tcacaaccag tcggtagatg tcaagaagag acgttgggtt accttctgct





ctgcagaatg gccaaccttt aacgtcggat ggccgcgaga cggcaccttt aaccgagacc





tcatcaccca ggttaagatc aaggtctttt cacctggccc gcatggacac ccagaccagg





tcccctacat cgtgacctgg gaagccttgg cttttgaccc ccctccctgg gtcaagccct





ttgtacaccc taagcctccg cctcctcttc ctccatccgc cccgtctctc ccccttgaac





ctcctcgttc gaccccgcct cgatcctccc tttatccagc cctcactcct tctctaggcg





ccaaacctaa acctcaagtt ctttctgaca gtggggggcc gctcatcgac ctacttacag





aagacccccc gccttatagg gacccaagac cacccccttc cgacagggac ggaaatggtg





gagaagcgac ccctgcggga gaggcaccgg acccctcccc aatggcatct cgcctacgtg





ggagacggga gccccctgtg gccgactcca ctacctcgca ggcattcccc ctccgcgcag





gaggaaacgg acagcttcaa tactggccgt tctcctcttc tgacctttac aactggaaaa





ataataaccc ttctttttct gaagatccag gtaaactgac agctctgatc gagtctgtcc





tcatcaccca tcagcccacc tgggacgact gtcagcagct gttggggact ctgctgaccg





gagaagaaaa acaacgggtg ctcttagagg ctagaaaggc ggtgcggggc gatgatgggc





gccccactca actgcccaat gaagtcgatg ccgcttttcc cctcgagcgc ccagactggg





attacaccac ccaggcaggt aggaaccacc tagtccacta tcgccagttg ctcctagcgg





gtctccaaaa cgcgggcaga agccccacca atttggccaa ggtaaaagga ataacacaag





ggcccaatga gtctccctcg gccttcctag agagacttaa ggaagcctat cgcaggtaca





ctccttatga ccctgaggac ccagggcaag aaactaatgt gtctatgtct ttcatttggc





agtctgcccc agacattggg agaaagttag agaggttaga agatttaaaa aacaagacgc





ttggagattt ggttagagag gcagaaaaga tctttaataa acgagaaacc ccggaagaaa





gagaggaacg tatcaggaga gaaacagagg aaaaagaaga acgccgtagg acagaggatg





agcagaaaga gaaagaaaga gatcgtagga gacatagaga gatgagcaag ctattggcca





ctgtcgttag tggacagaaa caggatagac agggaggaga acgaaggagg tcccaactcg





atcgcgacca gtgtgcctac tgcaaagaaa aggggcactg ggctaaagat tgtcccaaga





aaccacgagg acctcgggga ccaagacccc agacctccct cctgacccta gatgactagg





gaggtcaggg tcaggagccc ccccctgaac ccaggataac cctcaaagtc ggggggcaac





ccgtcacctt cctggtagat actggggccc aacactccgt gctgacccaa aatcctggac





ccctaagtga taagtctgcc tgggtccaag gggctactgg aggaaagcgg tatcgctgga





ccacggatcg caaagtacat ctagctaccg gtaaggtcac ccactctttc ctccatgtac





cagactgtcc ctatcctctg ttaggaagag atttgctgac taaactaaaa gcccaaatcc





actttgaggg atcaggagcc caggttatgg gaccaatggg gcagcccctg caagtgttga





ccctaaatat agaagatgag tatcggctac atgagacctc aaaagagcca gatgtttctc





tagggtccac atggctgtct gattttcctc aggcctgggc ggaaaccggg ggcatgggac





tggcagttcg ccaagctcct ctgatcatac ctctgaaagc aacctctacc cccgtgtcca





taaaacaata ccccatgtca caagaagcca gactggggat caagccccac atacagagac





tgttggacca gggaatactg gtaccctgcc agtccccctg gaacacgccc ctgctacccg





ttaagaaacc agggactaat gattataggc ctgtccagga tctgagagaa gtcaacaagc





gggtggaaga catccacccc accgtgccca acccttacaa cctcttgagc gggctcccac





cgtcccacca gtggtacact gtgcttgatt taaaggatgc ctttttctgc ctgagactcc





accccaccag tcagcctctc ttcgcctttg agtggagaga tccagagatg ggaatctcag





gacaattgac ctggaccaga ctcccacagg gtttcaaaaa cagtcccacc ctgtttgatg





aggcactgca cagagaccta gcagacttcc ggatccagca cccagacttg atcctgctac





agtacgtgga tgacttactg ctggccgcca cttctgagct agactgccaa caaggtactc





gggccctgtt acaaacccta gggaacctcg ggtatcgggc ctcggccaag aaagcccaaa





tttgccagaa acaggtcaag tatctggggt atcttctaaa agagggtcag agatggctga





ctgaggccag aaaagagact gtgatggggc agcctactcc gaagacccct cgacaactaa





gggagttcct agggacggca ggcttctgtc gcctctggat ccctgggttt gcagaaatgg





cagccccctt gtaccctctc accaaaacgg ggactctgtt taattggggc ccagaccaac





aaaaggccta tcaagaaatc aagcaagctc ttctaactgc cccagccctg gggttgccag





atttgactaa gccctttgaa ctctttgtcg acgagaagca gggctacgcc aaaggtgtcc





taacgcaaaa actgggacct tggcgtcggc cggtggccta cctgtccaaa aagctagacc





cagtagcagc tgggtggccc ccttgcctac ggatggtagc agccattgcc gtactgacaa





aggatgcagg caagctaacc atgggacagc cactagtcat tctggccccc catgcagtag





aggcactagt caaacaaccc cccgaccgct ggctttccaa cgcccggatg actcactatc





aggccttgct tttggacacg gaccgggtcc agttcggacc ggtggtagcc ctgaacccgg





ctacgctgct cccactgcct gaggaagggc tgcaacacaa ctgccttgat atcctggccg





aagcccacgg aacccgaccc gacctaacgg accagccgct cccagacgcc gaccacacct





ggtacacgga tggaagcagt ctcttacaag agggacagcg taaggcggga gctgcggtga





ccaccgagac cgaggtaatc tgggctaaag ccctgccagc cgggacatcc gctcagcggg





ctgaactgat agcactcacc caggccctaa agatggcaga aggtaagaag ctaaatgttt





atactgatag ccgttatgct tttgctactg cccatatcca tggagaaata tacagaaggc





gtgggttgct cacatcagaa ggcaaagaga tcaaaaataa agacgagatc ttggccctac





taaaagccct ctttctgccc aaaagactta gcataatcca ttgtccagga catcaaaagg





gacacagcgc cgaggctaga ggcaaccgga tggctgacca agcggcccga aaggcagcca





tcacagagac tccagacacc tctaccctcc tcatagaaaa ttcatcaccc tacacctcag





aacattttca ttacacagtg actgatataa aggacctaac caagttgggg gccatttatg





ataaaacaaa gaagtattgg gtctaccaag gaaaacctgt gatgcctgac cagtttactt





ttgaattatt agactttctt catcagctga ctcacctcag cttctcaaaa atgaaggctc





tcctagagag aagccacagt ccctactaca tgctgaaccg ggatcgaaca ctcaaaaata





tcactgagac ctgcaaagct tgtgcacaag tcaacgccag caagtctgcc gttaaacagg





gaactagggt ccgcgggcat cggcccggca ctcattggga gatcgatttc accgagataa





agcccggatt gtatggctat aaatatcttc tagtttttat agataccttt tctggctgga





tagaagcctt cccaaccaag aaagaaaccg ccaaggtcgt aaccaagaag ctactagagg





agatcttccc caggttcggc atgcctcagg tattgggaac tgacaatggg cctgccttcg





tctccaaggt gagtcagaca gtggccgatc tgttggggat tgattggaaa ttacattgtg





catacagacc ccaaagctca ggccaggtag aaagaatgaa tagaaccatc aaggagactt





taactaaatt aacgcttgca actggctcta gagactgggt gctcctactc cccttagccc





tgtaccgagc ccgcaacacg ccgggccccc atggcctcac cccatatgag atcttatatg





gggcaccccc gccccttgta aacttccctg accctgacat gacaagagtt actaacagcc





cctctctcca agctcactta caggctctct acttagtcca gcacgaagtc tggagacctc





tggcggcagc ctaccaagaa caactggacc gaccggtggt acctcaccct taccgagtcg





gcgacacagt gtgggtccgc cgacaccaga ctaagaacct agaacctcgc tggaaaggac





cttacacagt cctgctgacc acccccaccg ccctcaaagt agacggcatc gcagcttgga





tacacgccgc ccacgtgaag gctgccgacc ccgggggtgg accatcctct agactgacat





ggcgcgttca acgctctcaa aaccccctca agataagatt aacccgtgga agcccttaat





agtcatggga gtcctgttag gagtagggat ggcagagagc ccccatcagg tctttaatgt





aacctggaga gtcaccaacc tgatgactgg gcgtaccgcc aatgccacct ccctcctggg





aactgtacaa gatgccttcc caaaattata ttttgatcta tgtgatctgg tcggagagga





gtgggaccct tcagaccagg aaccgtatgt cgggtatggc tgcaagtacc ccgcagggag





acagcggacc cggacttttg acttttacgt gtgccctggg cataccgtaa agtcggggtg





tgggggacca ggagagggct actgtggtaa atgggggtgt gaaaccaccg gacaggctta





ctggaagccc acatcatcgt gggacctaat ctcccttaag cgcggtaaca ccccctggga





cacgggatgc tctaaagttg cctgtggccc ctgctacgac ctctccaaag tatccaattc





cttccaaggg gctactcgag ggggcagatg caaccctcta gtcctagaat tcactgatgc





aggaaaaaag gctaactggg acgggcccaa atcgtgggga ctgagactgt accggacagg





aacagatcct attaccatgt tctccctgac ccggcaggtc cttaatgtgg gaccccgagt





ccccataggg cccaacccag tattacccga ccaaagactc ccttcctcac caatagagat





tgtaccggct ccacagccac ctagccccct caataccagt tacccccctt ccactaccag





tacaccctca acctccccta caagtccaag tgtcccacag ccacccccag gaactggaga





tagactacta gctctagtca aaggagccta tcaggcgctt aacctcacca atcccgacaa





gacccaagaa tgttggctgt gcttagtgtc gggacctcct tattacgaag gagtagcggt





cgtgggcact tataccaatc attccaccgc tccggccaac tgtacggcca cttcccaaca





taagcttacc ctatctgaag tgacaggaca gggcctatgc atgggggcag tacctaaaac





tcaccaggcc ttatgtaaca ccacccaaag cgccggctca ggatcctact accttgcagc





acccgccgga acaatgtggg cttgcagcac tggattgact ccctgcttgt ccaccacggt





gctcaatcta accacagatt attgtgtatt agttgaactc tggcccagag taatttacca





ctcccccgat tatatgtatg gtcagcttga acagcgtacc aaatataaaa gagagccagt





atcattgacc ctggcccttc tactaggagg attaaccatg ggagggattg cagctggaat





agggacgggg accactgcct taattaaaac ccagcagttt gagcagcttc atgccgctat





ccagacagac ctcaacgaag tcgaaaagtc aattaccaac ctagaaaagt cactgacctc





gttgtctgaa gtagtcctac agaaccgcag aggcctagat ttgctattcc taaaggaggg





aggtctctgc gcagccctaa aagaagaatg ttgtttttat gcagaccaca cggggctagt





gagagacagc atggccaaat taagagaaag gcttaatcag agacaaaaac tatttgagac





aggccaagga tggttcgaag ggctgtttaa tagatccccc tggtttacca ccttaatctc





caccatcatg ggacctctaa tagtactctt actgatctta ctctttggac cttgcattct





caatcgattg gtccaatttg ttaaagacag gatctcagtg gtccaggctc tggttttgac





tcagcaatat caccagctaa aacccataga gtacgagcca tgaacgcgtt actggccgaa





gccgcttgga ataaggccgg tgtgcgtttg tctatatgtt attttccacc atattgccgt





cttttggcaa tgtgagggcc cggaaacctg gccctgtctt cttgacgagc attcctaggg





gtctttcccc tctcgccaaa ggaatgcaag gtctgttgaa tgtcgtgaag gaagcagttc





ctctggaagc ttcttgaaga caaacaacgt ctgtagcgac cctttgcagg cagcggaacc





ccccacctgg cgacaggtgc ctctgcggcc aaaagccacg tgtataagat acacctgcaa





aggcggcaca accccagtgc cacgttgtga gttggatagt tgtggaaaga gtcaaatggc





tctcctcaag cgtattcaac aaggggctga aggatgccca gaaggtaccc cattgtatgg





gatctgatct ggggcctcgg tgcacatgct ttacatgtgt ttagtcgagg ttaaaaaaac





gtctaggccc cccgaaccac ggggacgtgg ttttcctttg aaaaacacga ttataaatgg





tgaccggcgg catggcctcc aagtgggatc aaaagggcat ggatatcgct tacgaggagg





ccctgctggg ctacaaggag ggcggcgtgc ctatcggcgg ctgtctgatc aacaacaagg





acggcagtgt gctgggcagg ggccacaaca tgaggttcca gaagggctcc gccaccctgc





acggcgagat ctccaccctg gagaactgtg gcaggctgga gggcaaggtg tacaaggaca





ccaccctgta caccaccctg tccccttgtg acatgtgtac cggcgctatc atcatgtacg





gcatccctag gtgtgtgatc ggcgagaacg tgaacttcaa gtccaagggc gagaagtacc





tgcaaaccag gggccacgag gtggtggttg ttgacgatga gaggtgtaag aagctgatga





agcagttcat cgacgagagg cctcaggact ggttcgagga tatcggcgag taagcggccg





cagataaaat aaaagatttt atttagtctc cagaaaaagg ggggaatgaa agaccccacc





tgtaggtttg gcaagctagc ttaagtaacg ccattttgca aggcatggaa aaatacataa





ctgagaatag agaagttcag atcaaggtca ggaacagatg gaacagctga atatgggcca





aacaggatat ctgtggtaag cagttcctgc cccggctcag ggccaagaac agatggaaca





gctgaatatg ggccaaacag gatatctgtg gtaagcagtt cctgccccgg ctcagggcca





agaacagatg gtccccagat gcggtccagc cctcagcagt ttctagagaa ccatcagatg





tttccagggt gccccaagga cctgaaatga ccctgtgcct tatttgaact aaccaatcag





ttcgcttctc gcttctgttc gcgcgcttct gctccccgag ctcaataaaa gagcccacaa





cccctcactc ggggcgccag tcctccgatt gactgagtcg cccgggtacc cgtgtatcca





ataaaccctc ttgcagttgc atccgacttg tggtctcgct gttccttggg agggtctcct





ctgagtgatt gactacccgt cagcgggggt ctttcattac atgtgagcaa aaggccagca





aaaggccagg aaccgtaaaa aggccgcgtt gctggcgttt ttccataggc tccgcccccc





tgacgagcat cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga caggactata





aagataccag gcgtttcccc ctggaagctc cctcgtgcgc tctcctgttc cgaccctgcc





gcttaccgga tacctgtccg cctttctccc ttcgggaagc gtggcgcttt ctcatagctc





acgctgtagg tatctcagtt cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga





accccccgtt cagcccgacc gctgcgcctt atccggtaac tatcgtcttg agtccaaccc





ggtaagacac gacttatcgc cactggcagc agccactggt aacaggatta gcagagcgag





gtatgtaggc ggtgctacag agttcttgaa gtggtggcct aactacggct acactagaag





gacagtattt ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag





ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt gcaagcagca





gattacgcgc agaaaaaaag gatctcaaga agatcctttg atcttttcta cggggtctga





cgctcagtgg aacgaaaact cacgttaagg gattttggtc atgagattat caaaaaggat





cttcacctag atccttttaa attaaaaatg aagttttaaa tcaatctaaa gtatatatga





gtaaacttgg tctgacagtt accaatgctt aatcagtgag gcacctatct cagcgatctg





tctatttcgt tcatccatag ttgcctgact ccccgtcgtg tagataacta cgatacggga





gggcttacca tctggcccca gtgctgcaat gataccgcga gacccacgct caccggctcc





agatttatca gcaataaacc agccagccgg aagggccgag cgcagaagtg gtcctgcaac





tttatccgcc tccatccagt ctattaattg ttgccgggaa gctagagtaa gtagttcgcc





agttaatagt ttgcgcaacg ttgttgccat tgctgcaggc atcgtggtgt cacgctcgtc





gtttggtatg gcttcattca gctccggttc ccaacgatca aggcgagtta catgatcccc





catgttgtgc aaaaaagcgg ttagctcctt cggtcctccg atcgttgtca gaagtaagtt





ggccgcagtg ttatcactca tggttatggc agcactgcat aattctctta ctgtcatgcc





atccgtaaga tgcttttctg tgactggtga gtactcaacc aagtcattct gagaatagtg





tatgcggcga ccgagttgct cttgcccggc gtcaacacgg gataataccg cgccacatag





cagaacttta aaagtgctca tcattggaaa acgttcttcg gggcgaaaac tctcaaggat





cttaccgctg ttgagatcca gttcgatgta acccactcgt gcacccaact gatcttcagc





atcttttact ttcaccagcg tttctgggtg agcaaaaaca ggaaggcaaa atgccgcaaa





aaagggaata agggcgacac ggaaatgttg aatactcata ctcttccttt ttcaatatta





ttgaagcatt tatcagggtt attgtctcat gagcggatac atatttgaat gtatttagaa





aaataaacaa ataggggttc cgcgcacatt tccccgaaaa gtgccacctg acgtctaaga





aaccattatt atcatgacat taacctataa aaataggcgt atcacgaggc cctttcgtct





tcaagaattc cat






Disclosed herein are assays for detection of target molecules, such as target nucleic acids comprising viral RNA or DNA, using a plurality of nucleic acid amplification techniques including, for example: NAAT (J. D. Fox, J. Clin. Virol. 40 Suppl. 1 S15-S23, 2007), PCR, RT-PCR, qPCR and RT-qPCR with “touchdown” modifications to improve sensitivity to single copy/assay; RNA transcription based assays (e.g. analogous to the HIV-1 Aptiva assay, see http:(//)www.fda.gov/BiologicsBloodVaccines/BloodBloodProducts/ApprovedProducts/LicensedProductsBLAs/BloodDonor Screening/InfectiousDisease/ucm1 49922.htm); the “branched DNA” system (see, e.g., Anastassopoulou et al., Journal of Virological Methods, 91:67-74, 2001); and further variations in NAAT known to those of skill in the art. Also disclosed are methods using NAAT on nucleic acid samples extracted from histologically fixed samples.


The assays provided by the disclosure may be used in many embodiments to detect sequence-specific nucleic acids. Disclosed herein are different embodiments of assays using amplification (e.g., PCR) and enzymatic degradation of RNA/DNA heteroduplexes.


Generally, the disclosure provides a method of identifying MLV-related viral polynucleotides in a subject or sample. The disclosure utilizes a combination of primers and probes having identity to conserved regions of MLV-related viruses. The primers are used to amplify target polynucleotides in the sample and probes are then used to visualize or detect the amplified products. Typically the probe is detectably labeled for detection (e.g., fluorescently labeled, luminescently labeled, enzyme conjugated, radionucleotide labeled and the like). One advantage of the disclosure is that the primer pairs can be used to amplify MLV-related polynucleotides in a sample such as MLV, XMRV or MLV and XMRV polynucleotides. This is advantageous for the detection of XMRV and naturally occurring variants thereof as well as for detecting MLV and naturally occurring variants thereof (including recombinantly engineered MLV vectors).


For example, a combination of primers and probes identified herein can be used to identify or detect XMRV in a sample, tissue or subject by using primer pairs having homology to MLV (e.g., primer pairs that share at least 95% sequence identity between and XMRV viral sequence and an MLV viral sequence) and a probe sequence that is specific for XMRV (e.g., the probe only hybridizes to an amplified product under highly stringent conditions). Primers that share such homology between XMRV and MLV are identified in FIG. 5 and Table 2.


One utility of this general method is to screen blood and tissue supplies for infection. XMRV has been suggested to be associated with prostate cancer and chronic fatigue syndrome. In another utility, a subject may be screened prior to undergoing treatment with a recombinant retroviral vector. By identifying subject that may have circulating viral polynucleotides in the tissue a risk of recombination between the inherent viral polynucleotide and the therapeutic viral polynucleotide may be managed.


In another general example, a combination of primers and probes identified herein can be used to identify or detect MLV or MLV-related polynucleotides in a sample, tissue or subject by using primer pairs having homology to MLV (e.g., primer pairs that share at least 95% sequence identity between and XMRV viral sequence and an MLV viral sequence) and a probe sequence that is specific for MLV (e.g., the probe only hybridizes to an amplified product under highly stringent conditions).


In another embodiment of the general methods described herein, the methods provide useful diagnostics for monitoring patients after delivery of a replication competent MLV-related viral vector. The method can be used to monitor a subject following delivery of the vector on a routine basis (e.g., weekly, monthly, yearly) for as long as a treating physician deems necessary.


As used herein “MLV-related virus” refers to a retrovirus comprising the general structure of an MLV virus (e.g., LTR-gag-pol-env-LTR) and having at least 60% identity to any of the following sequences set forth in the identified accession numbers (which are incorporated herein by reference in their entirety):


Xenotropic murine leukemia virus isolate LAPC4, complete genome (8,657 bp linear DNA, JF908816.1 GI:336462519); Xenotropic murine leukemia virus isolate VCaP, complete genome (8,657 bp linear DNA, JF908815.1 GI:336462515); Murine leukemia virus N417, complete genome (8,189 bp linear RNA, HQ246218.1 GI:313762331); Moloney murine leukemia virus neuropathogenic variant ts1-92b, complete genome (8,332 bp linear DNA, AF462057.1 GI:18448741); DG-75 Murine leukemia virus, complete genome (8,207 bp linear RNA, AF221065.1 GI:11078528); Rauscher murine leukemia virus, complete genome (8,282 bp linear DNA, NC001819.1 GI:9629514); Murine leukemia virus SL3-3, complete genome (8,377 bp linear RNA, AF169256.1 GI:5881088); Murine leukemia virus strain SRS 19-6 complete genome (8,256 bp linear DNA, AF019230.1 GI:4071074); Mus dunni endogenous virus complete genome (8,655 bp linear DNA, AF053745.1 GI:3309122); Moloney murine leukemia virus, complete genome (8,332 bp linear RNA, AF033811.1 GI:2801468); Murine type C retrovirus, complete genome (8,135 bp linear DNA, NC001702.1 GI:9628654); Rauscher murine leukemia virus, complete genome (8,282 bp linear DNA, U94692.1 GI:2228757); Murine leukemia virus isolate NeRV, complete genome (8,273 bp linear RNA, DQ366149.1 GI:86651892); Murine leukemia virus serotype HEMV provirus, complete genome (8,546 bp linear DNA, AY818896.1 GI:55979252); Murine leukemia virus strain BMSeco, complete genome (8,281 bp linear DNA, AY252102.1 GI:30908470); Murine leukemia virus MCF1233, complete genome (8,196 bp linear DNA, U13766.1 GI:535516); MuLV (strain RadLV/VL3(T+L+)) RNA, complete genome (8,394 bp linear RNA, K03363.1 GI:332032); Mink cell focus-forming 247 MuLV env gene, 3′ end and LTR (1,164 bp linear RNA, J02249.1 GI:332023); Friend murine leukemia virus, complete genome (8,282 bp linear RNA, M93134.1 GI:331898); Friend murine leukemia virus, complete genome (8,323 bp linear RNA, NC001362.1 GI:9626096); Friend murine leukemia virus (F-MuLV) complete RNA genome (8,359 bp linear RNA, X02794.1 GI:61544); Gallus gallus MLV-related endogenous retrovirus, complete genome (9,133 bp linear DNA, DQ280312.2 GI:169805278); Friend murine leukemia virus genomic RNA, complete genome, clone:A8 (8,358 bp linear RNA, D88386.1 GI:2351211); PreXMRV-1 provirus, complete genome (8,197 bp linear DNA; NC007815.2 GI:339276104); Xenotropic MuLV-related virus RKO, complete genome (8,172 bp linear DNA, JF274252.1 GI:338191621); XMRV complete proviral genome, isolate S-162 (8,562 bp linear DNA, FR872816.1 GI:336087897); PreXMRV-2 complete proviral genome (8,193 bp linear DNA, FR871850.1 GI:334849718); Xenotropic MuLV-related virus 22Rv1/CWR-R1 complete proviral genome (8,185 bp linear DNA, FN692043.2 GI:334717372); Xenotropic MuLV-related virus isolate xm1v15, complete genome (8,176 bp linear RNA, HQ154630.1 GI:320091412); PreXMRV-1 complete proviral genome (8,197 bp linear DNA, FR871849.1 GI:334849715); Xenotropic MuLV-related virus VP62, complete genome (8,185 bp linear RNA, DQ399707.1 GI:88765817); Xenotropic MuLV-related virus VP42, complete genome (8,185 bp linear RNA, DQ241302.1 GI:82582299); Xenotropic MuLV-related virus VP35, complete genome (8,185 bp linear RNA, DQ241301.1 GI:82582295); Xenotropic MuLV-related virus VP62, complete genome (8,165 bp linear RNA, EF185282.1 GI:121104176); Plasmid pAMS with hybrid amphotropic/Moloney murine leukemia virus, complete sequence (11,328 bp circular DNA, AF010170.1 GI:2281586); Amphotropic murine leukemia virus strain 1313, complete genome (8,217 bp linear DNA, AF411814.1 GI:28892668); Toca511, recombinant replication competent MLV comprising a polynucleotide encoding cytosine deaminase (see, e.g., SEQ ID NO:19, 20 and 22 of PCT/US2009/058512, incorporated herein by reference).


Any number of different alignment programs can be used to identified regions of identity between any combination of the foregoing MLV-related genomes. Other genomes will be readily identified by using a BLAST algorithm or other similar algorithm to identify sequences having homology/identity to the foregoing sequences.


In some embodiments the disclosure relates to a method of detecting MLV-related viruses including XMRV in a sample comprising contacting the sample with a nucleic acid sequence that hybridizes to all or a portion of XMRV nucleic acid sequence under conditions in which a hybridization complex can occur between the detecting nucleic acid sequence and the XMRV nucleic acid sequence. In a related embodiment, the XMRV specific primers are 95% or more identical to SEQ ID Nos:1 and 2, and the probe is 95% or more identical to SEQ ID NO:3 (XMRV gag). In a further related embodiment the XMRV specific primers are 95% or more identical to SEQ ID NOs:4 and 5 and the probe is 95% or more identical to SEQ ID NO:6 (XMRV env). In yet a further embodiment, the method uses a combination of primers and probes (e.g., SEQ ID NO:1, 2, 4 and 5 and probes comprising SEQ ID NO:3 and 6).


In another embodiment, the disclosure relates to a method of detecting XMRV or other MLV related nucleic acids in a sample by using primers and probes that are not specific to XMRV but rather are shared between XMRV and other related strains of MLV. In a related embodiment the MLV/XMRV specific primers are SEQ ID NOs:7 and 8 and the probe is SEQ ID NO:9 (Pol 2 primers and probe; other primers and probes are set forth in Table 1, 2, 3, and 4 below). In a further related embodiment, the MLV/XMRV specific primers are SEQ ID NOs:10 and 11 and the probe is SEQ ID NO:12 (pol1 primer and probe). In a further related embodiment, other sequences can be identified that are common to XMRV and MLV (see the BLAST sequence comparison of two genomes of XMRV and MLV, FIG. 5, where perfect sequence homologies of 20 or more bases are underlined/highlighted). Such homologous sequences (or shorter runs of homology down to 15 bases) can be used to select primers and probes. Alternatively, primers and probes can be chosen using programs that compare sequences and suggest common primers and probes. Such programs are usually designed to look for related genes in different species, and can be used to design QPCR reagents for molecules such as MLV and XMRV with significant but incomplete homology. An example of such a program is Primaclade http:(//)www.umsl.edu/services/kellogg/primaclade/FAQ.html.


An oligonucleotide probe or a primer refers to a nucleic acid molecule of between 8 and 2000 nucleotides in length, or is specified to be about 6 and 1000 nucleotides in length. More particularly, the length of these oligonucleotides can range from about 8, 10, 15, 20, or 30 to 100 nucleotides, but will typically be about 10 to 50 (e.g., 15 to 30 nucleotides). The appropriate length for oligonucleotides in assays of the disclosure under a particular set of conditions may be empirically determined by one of skill in the art. As used herein a primer or probe consisting of at least 95% identity to a reference sequence means that the sequence comprises a sequence that is the same number of oligonucleotides in length, but may differ in nucleotides by 5% from the reference sequence. In addition, a primer or probe consisting of at least 95% identity to a reference sequence and having from 1-10 additional or deleted nucleotides at the 5′ and/or 3′ end of the oligonucleotide means that the sequence differs by 1 to up to 20 nucleotides in length from the reference sequence and which also differs 5% or less in identity. Accordingly, any primer probe disclosed herein by consist of a reference sequence (e.g., SEQ ID NO:1-21 or sequences set forth in Table 1 and 2); can consist of a sequence that is 95% of greater in identity to a reference sequence (e.g., SEQ ID NO:1-21 or sequences set forth in Table 1 and 2); or can consist of a sequence that is at least 95% identical and has an additional 1-20 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 nucleotides at the 5′ and/or 3′ end of the reference sequence (e.g., SEQ ID NO:1-21 or sequence set forth in Table 1 and 2).


Oligonucleotide primers and probes can be prepared by any suitable method, including direct chemical synthesis and a number of probe systems with derivatized oligonucleotides are available to hybridize to and to detect amplified product, normally by fluorescence change on binding to the probe target. The oligonucleotide primers and probes can contain conventional nucleotides, as well as any of a variety of analogs. For example, the term “nucleotide”, as used herein, refers to a compound comprising a nucleotide base linked to the C-1′ carbon of a sugar, such as ribose, arabinose, xylose, and pyranose, and sugar analogs thereof. The term nucleotide also encompasses nucleotide analogs. The sugar may be substituted or unsubstituted. Substituted ribose sugars include, but are not limited to, those riboses in which one or more of the carbon atoms, for example the 2′-carbon atom, is substituted with one or more of the same or different Cl, F, —R, —OR, —NR2 or halogen groups, where each R is independently H, C1-C6 alkyl or C5-C14 aryl. Exemplary riboses include, but are not limited to, 2′-(C1-C6)alkoxyribose, 2′-(C5-C14)aryloxyribose, 2′,3′-didehydroribose, 2′-deoxy-3′-haloribose, 2′-deoxy-3′-fluororibose, 2′-deoxy-3′-chlororibose, 2′-deoxy-3′-aminoribose, 2′-deoxy-3′-(C1-C6)alkylribose, 2′-deoxy-3′-(C1-C6)alkoxyribose and 2′-deoxy-3′-(C5-C14)aryloxyribose, ribose, 2′-deoxyribose, 2′,3′-dideoxyribose, 2′-haloribose, 2′-fluororibose, 2′-chlororibose, and 2′-alkylribose, e.g., 2′-O-methyl, 4′-α-anomeric nucleotides, 1′-α-anomeric nucleotides, 2′-4′- and 3′-4′-linked and other “locked” or “LNA”, bicyclic sugar modifications (see, e.g., PCT published application nos. WO 98/22489, WO 98/39352; and WO 99/14226).


Modifications at the 2′- or 3′-position of ribose include, but are not limited to, hydrogen, hydroxy, methoxy, ethoxy, allyloxy, isopropoxy, butoxy, isobutoxy, methoxyethyl, alkoxy, phenoxy, azido, amino, alkylamino, fluoro, chloro and bromo. Nucleotides include, but are not limited to, the natural D optical isomer, as well as the L optical isomer forms (see, e.g., Garbesi (1993) Nucl. Acids Res. 21:4159-65; Fujimori (1990) J. Amer. Chem. Soc. 112:7435; Urata, (1993) Nucleic Acids Symposium Ser. No. 29:69-70). When the nucleotide base is purine, e.g. A or G, the ribose sugar is attached to the N9-position of the nucleotide base. When the nucleotide base is pyrimidine, e.g. C, T or U, the pentose sugar is attached to the N1-position of the nucleotide base, except for pseudouridines, in which the pentose sugar is attached to the C5 position of the uracil nucleotide base (see, e.g., Kornberg and Baker, (1992) DNA Replication, 2nd Ed., Freeman, San Francisco, Calif.). The 3′ end of the probe can be functionalized with a capture or detectable label to assist in detection of a target polynucleotide or of a polymorphism.


Any of the oligonucleotides or nucleic acids of the disclosure can be labeled by incorporating a detectable label measurable by spectroscopic, photochemical, biochemical, immunochemical, or chemical means. For example, such labels can comprise radioactive substances (e.g., 32P, 35S, 3H, 125I) fluorescent dyes (e.g., 5-bromodesoxyuridin, fluorescein, acetylaminofluorene, digoxigenin), molecular quenchers (e.g. blackhole, molecular beacons), biotin, nanoparticles, and others know to those skilled in the art. Such oligonucleotides are typically labeled at their 3′ and/or 5′ ends.


A probe refers to a molecule which can detectably distinguish changes in gene expression or can distinguish between target molecules differing in structure. Detection can be accomplished in a variety of different ways depending on the type of probe used and the type of target molecule. Thus, for example, detection may be based on discrimination of activity levels of the target molecule, but typically is based on detection of specific binding. Examples of such specific binding include nucleic acid probe hybridization. Thus, for example, probes can include nucleic acid hybridization probes (including primers useful for polynucleotide amplification and/or detection). Thus, in one embodiment, the detection of the presence or absence of the at least one target polynucleotide involves contacting a biological sample with a probe or primer pair. Typically an oligonucleotide probe or primer pair, where the probe/primers hybridizes with a form of a target polynucleotide in the biological sample containing a complementary sequence, undergoes hybridization using hybridization selective conditions. Such an oligonucleotide probe can include one or more nucleic acid analogs, labels or other substituents or moieties so long as the base-pairing function is retained.


The disclosure provides methods and systems for identifying and quantifying the amount of a given nucleic acid sequence in a given sample, usually down to a single copy per sample. Furthermore, the methods and systems of the disclosure provide sequence specific detection useful for differentiating/identifying related genomic sequences and provide a detectable signal when the correct target sequence is present. The disclosure provides various embodiments of the invention.


Methods known in the art can be used to quantitatively measure the amount of a nucleic acid present in a sample. Examples of such methods include quantitative polymerase chain reaction (qPCR), and other NAAT technologies as described above.


In one embodiment, a method for detecting a specific viral polynucleotide is provided by the disclosure. Such a method can include the use of primers, probes, enzymes, and other reagents for the preparation, detection, and quantitation of a viral polynucleotide (e.g., by PCR, by Northern blot and the like). The primers listed in SEQ ID NOs: 1-12 are particularly suited for use in profiling using RT-PCR based on a viral polynucleotide. Other primers (sense and antisense) and probes are provided in Table 2. One of skill in the art can readily identity in Table 2, the combinations of primer/probes useful for detection of an MLV, MLV-related or XMRV viral sequence. Although the disclosure provides particular primers and probes, those of skill in the art will readily recognize that additional probes and primers can be generated based upon the polynucleotide sequences provided by the disclosure (see, also, for example, FIG. 5). Referring to the primers and probes exemplified herein, a series of primers were designed to amplify portions of a murine retroviral (MLV) genome. The primer/probe sets listed in SEQ ID NOs: 1-12 were designed, selected, and tested accordingly (see Examples). Though a number of detection schemes for detecting amplicons are contemplated, as will be discussed in more detail below, one method for detection of polynucleotide amplicons is fluorescence spectroscopy, and therefore labels suited to fluorescence spectroscopy are desirable for detecting polynucleotide. In a related form of detection the amplicon polynucleotide is detected without a hybridization probe but directly with a fluorophore that binds DNA and fluoresces at a wavelength different from that of the free reagent. An example of such a fluorescent label is SYBR Green, though numerous related fluorescent molecules are known including, without limitation, DAPI, Cy3, Cy3.5, Cy5, CyS.5, Cy7, umbelliferone, fluorescein, fluorescein isothiocyanate (FITC), rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin.


In one embodiment of the disclosure, an oligonucleotide primer pair is used to amplify a polynucleotide corresponding to the pol gene of a murine retrovirus. Primers comprising SEQ ID NOs:7 and 8 (forward and reverse primers, respectively) are used to amplify the region of the pol gene. The amplified region can then be detected using a probe (SEQ ID NO:9), which specifically hybridizes to the amplified polynucleotide. The probe can be labeled with any number of detectable labels as described herein.


The foregoing primers (SEQ ID NOs:7, 8 and 10, 11) with the appropriate probes (SEQ ID NOs:9 and 12, respectively) can be used to detect the presence of, for example, Murine Leukemia Virus (MLV) and Xenotropic Murine Retrovirus (XMRV). As described elsewhere herein identifying the presence of MLV and/or XMRV is useful for the determination of a therapeutic gene delivery and cancer treatment regimen.


In another embodiment of the disclosure, an oligonucleotide primer pair is used to amplify a polynucleotide corresponding to the gag gene of a XMRV. Primers comprising SEQ ID NOs:1 and 2 (forward and reverse primers, respectively) are used to amplify the region of the gag gene of XMRV. The amplified region can then be detected using a probe (SEQ ID NO:3) which specifically hybridizes to the amplified polynucleotide. The probe can be labeled with any number of detectable labels as described herein. This combination of primers and probes is useful for specifically identifying the presence of an XMRV infection or contamination.


In another embodiment of the disclosure, an oligonucleotide primer pair is used to amplify a polynucleotide corresponding to the LTR of an MLV vector. Primers comprising SEQ ID NOs:16 and 17 (forward and reverse primers, respectively) are used to amplify the region of the LTR of an MLV vector (e.g., Toca511). The amplified region can then be detected using a probe (SEQ ID NO:18) which specifically hybridizes to the amplified polynucleotide. The probe can be labeled with any number of detectable labels as described herein. This combination of primers and probes is useful for specifically identifying the presence of a retroviral vector during gene delivery monitoring.


In another embodiment of the disclosure, an oligonucleotide primer pair is used to amplify a polynucleotide corresponding to a polynucleotide encoding a cytosine deaminase. Primers comprising SEQ ID NOs:19 and 20 (forward and reverse primers, respectively) are used to amplify the region of the a cytosine deaminase delivered using an MLV vector (e.g., Toca511). The amplified region can then be detected using a probe (SEQ ID NO:21) which specifically hybridizes to the amplified polynucleotide. The probe can be labeled with any number of detectable labels as described herein. This combination of primers and probes is useful for specifically identifying the presence of a retroviral vector during gene delivery monitoring.


The primers (SEQ ID NOs: 1 and 2) and probe (SEQ ID NO:3) can be used to detect the presence of XMRV. As described elsewhere herein identifying the presence of XMRV is useful for the determination of a therapeutic gene delivery, cancer treatment regimen and blood supply screening.


In another embodiment of the disclosure, an oligonucleotide primer pair is used to amplify a polynucleotide corresponding to the env gene of a XMRV. Primers comprising SEQ ID NOs:4 and 5 (forward and reverse primers, respectively) are used to amplify the region of the env gene of XMRV. The amplified region can then be detected using a probe (SEQ ID NO:6) which specifically hybridizes to the amplified polynucleotide. The probe can be labeled with any number of detectable labels as described herein. This combination of primers and probes is useful for specifically identifying the presence of an XMRV infection or contamination.


The foregoing primers (SEQ ID NOs:4 and 5) and probe (SEQ ID NO:6) can be used to detect the presence of XMRV. As described elsewhere herein identifying the presence of XMRV is useful for the determination of a therapeutic gene delivery, cancer treatment regimen and screening the blood supply.


Any of the oligonucleotide primers and probes of the disclosure can be immobilized on a solid support. Solid supports are known to those skilled in the art and include the walls of wells of a reaction tray, test tubes, polystyrene beads, magnetic beads, nitrocellulose strips, membranes, microparticles such as latex particles, glass and the like. The solid support is not critical and can be selected by one skilled in the art. Thus, latex particles, microparticles, magnetic or non-magnetic beads, membranes, plastic tubes, walls of microtiter wells, glass or silicon chips and the like are all suitable examples. Suitable methods for immobilizing oligonucleotides on a solid phase include ionic, hydrophobic, covalent interactions and the like. The solid support can be chosen for its intrinsic ability to attract and immobilize the capture reagent. The oligonucleotide probes or primers of the disclosure can be attached to or immobilized on a solid support individually or in groups of about 2-10,000 distinct oligonucleotides of the disclosure to a single solid support.


A substrate comprising a plurality of oligonucleotide primers or probes of the disclosure may be used either for detecting or amplifying targeted sequences. The oligonucleotide probes and primers of the disclosure can be attached in contiguous regions or at random locations on the solid support. Alternatively the oligonucleotides of the disclosure may be attached in an ordered array wherein each oligonucleotide is attached to a distinct region of the solid support which does not overlap with the attachment site of any other oligonucleotide. Typically, such oligonucleotide arrays are “addressable” such that distinct locations are recorded and can be accessed as part of an assay procedure. The knowledge of the location of oligonucleotides on an array make “addressable” arrays useful in hybridization assays. For example, the oligonucleotide probes can be used in an oligonucleotide chip such as those marketed by Affymetrix and described in U.S. Pat. No. 5,143,854; PCT publications WO 90/15070 and 92/10092, the disclosures of which are incorporated herein by reference. These arrays can be produced using mechanical synthesis methods or light directed synthesis methods which incorporate a combination of photolithographic methods and solid phase oligonucleotide synthesis.


The immobilization of arrays of oligonucleotides on solid supports has been rendered possible by the development of a technology generally referred to as “Very Large Scale Immobilized Polymer Synthesis” in which probes are immobilized in a high density array on a solid surface of a chip (see, e.g., U.S. Pat. Nos. 5,143,854; and 5,412,087 and in PCT Publications WO 90/15070, WO 92/10092 and WO 95/11995, each of which are incorporated herein by reference), which describe methods for forming oligonucleotide arrays through techniques such as light-directed synthesis techniques.


In another embodiment, an array of oligonucleotides complementary to subsequences of the target gene (for example yeast cytosine deaminase (CD) or a version of CD optimized for expression in human cells) is used to determine the identity of the target, measure its amount and the like.


Hybridization techniques can also be used to identify the viral polynucleotides in a subject or sample and thereby determine or predict cross reactivity, chances of recombination or a treatment regimen using a gene delivery vector comprising a recombinant MLV vector. The hybridization reactions may be carried out in a solid support (e.g., membrane or chip) format, in which, for example, a probe (e.g., SEQ ID NO:3, 6 and/or 9) are immobilized on nitrocellulose or nylon membranes and probed with amplified preparations of nucleic acids obtained, for example, from PCR using primers comprising SEQ ID NO:1, 2, 4, 5, 7, 8, 10, 11, 13 and/or 14 of the disclosure. Any of the known hybridization formats may be used, including Southern blots, slot blots, “reverse” dot blots, solution hybridization, solid support based sandwich hybridization, bead-based, silicon chip-based and microtiter well-based hybridization formats.


Hybridization of an oligonucleotide probe to a target polynucleotide may be performed with both entities in solution, or such hybridization may be performed when either the oligonucleotide or the target polynucleotide is covalently or noncovalently affixed to a solid support. Attachment to a solid support may be mediated, for example, by antibody-antigen interactions, poly-L-Lysine, streptavidin or avidin-biotin, salt bridges, hydrophobic interactions, chemical linkages, UV cross-linking baking, etc. Oligonucleotides may be synthesized directly on the solid support or attached to the solid support subsequent to synthesis. The solid support may be treated, coated or derivatized to facilitate the immobilization of the specific oligonucleotide.


Hybridization assays based on oligonucleotide arrays rely on the differences in hybridization stability of short oligonucleotides to perfectly matched and mismatched target variants. Each DNA chip can contain thousands to millions of individual synthetic DNA probes arranged in a grid-like pattern and miniaturized to the size of a dime or smaller. Such a chip may comprise oligonucleotides representative of both a wild-type and variant sequences.


Oligonucleotides of the disclosure can be designed to specifically hybridize to a target region of a polynucleotide. As used herein, specific hybridization means the oligonucleotide forms an anti-parallel double-stranded structure with the target region under certain hybridizing conditions, while failing to form such a structure when incubated with a different target polynucleotide or another region in the polynucleotide or with a polynucleotide lacking the desired locus under the same hybridizing conditions. Typically, the oligonucleotide specifically hybridizes to the target region under conventional high stringency conditions.


A nucleic acid molecule such as an oligonucleotide or polynucleotide is said to be a “perfect” or “complete” complement of another nucleic acid molecule if every nucleotide of one of the molecules is complementary to the nucleotide at the corresponding position of the other molecule. A nucleic acid molecule is “substantially complementary” to another molecule if it hybridizes to that molecule with sufficient stability to remain in a duplex form under conventional low-stringency conditions. Conventional hybridization conditions are described, for example, in Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd ed., Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1989), and in Haymes et al., Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, D.C. (1985). While perfectly complementary oligonucleotides are used in most assays for detecting target polynucleotides or polymorphisms, departures from complete complementarity are contemplated where such departures do not prevent the molecule from specifically hybridizing to the target region. For example, an oligonucleotide primer may have a non-complementary fragment at its 5′ or 3′ end, with the remainder of the primer being complementary to the target region. Those of skill in the art are familiar with parameters that affect hybridization; such as temperature, probe or primer length and composition, buffer composition and salt concentration and can readily adjust these parameters to achieve specific hybridization of a nucleic acid to a target sequence.


A variety of hybridization conditions may be used in the disclosure, including high, moderate and low stringency conditions; see for example Maniatis et al., Molecular Cloning: A Laboratory Manual, 2d Edition, 1989, and Short Protocols in Molecular Biology, ed. Ausubel, et al., hereby incorporated by reference. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen, Techniques in Biochemistry and Molecular Biology—Hybridization with Nucleic Acid Probes, “Overview of principles of hybridization and the strategy of nucleic acid assays” (1993). Generally, stringent conditions are selected to be about 5-10° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at Tm, 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short probes (e.g., 10 to 50 nucleotides) and at least about 60° C. for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of helix destabilizing agents such as formamide. The hybridization conditions may also vary when a non-ionic backbone, i.e., PNA is used, as is known in the art. In addition, cross-linking agents may be added after target binding to cross-link, i.e., covalently attach, the two strands of the hybridization complex.


Methods and compositions of the disclosure are useful for diagnosing or determining the presence of contamination or infection in a sample or subject, respectively. Such tests can be performed using DNA or RNA samples collected from blood, cells, biopsies, tissue scrapings, tissue culture, or other cellular materials. As will be appreciated by those in the art, target polynucleotides can be obtained from samples including, but not limited to, bodily fluids (e.g., blood, urine, serum, lymph, saliva, anal and vaginal secretions, perspiration and semen) of virtually any organism, with mammalian samples common to the methods of the disclosure and human samples being typical. The sample may comprise individual cells, including primary cells (including bacteria) and cell lines including, but not limited to, tumor cells of all types (particularly melanoma, myeloid leukemia, carcinomas of the lung, breast, ovaries, colon, kidney, prostate, pancreas and testes); cardiomyocytes; endothelial cells; epithelial cells; lymphocytes (T-cell and B cell); mast cells; eosinophils; vascular intimal cells; hepatocytes; leukocytes including mononuclear leukocytes; stem cells such as haemopoetic, neural, skin, lung, kidney, liver and myocyte stem cells; osteoclasts; chondrocytes and other connective tissue cells; keratinocytes; melanocytes; liver cells; kidney cells; and adipocytes. Suitable cells also include known research cells, including, but not limited to, Jurkat T cells, NIH3T3 cells, CHO, Cos, 923, HeLa, SiHa, WI-38, Weri-1, MG-63, and the like (see the ATCC cell line catalog, hereby expressly incorporated by reference).


Other methods to amplify and identify viral infection or contamination by MLV or XMRV will be recognized in the art and can be utilized in combination with the primers and probes identified herein. For example, one of skill in the art will recognize that Branched DNA, Hybrid Capture Assays, PCR (including RT, nested, multiplex, Real Time), Nucleic acid sequence-based amplification, transcription mediated amplification, strand displacement amplification, Ligase Chain Reaction, Cleavase-invader technology and cycling probe technology can be used with the oligonucleotides of the disclosure.


A target polynucleotide (e.g., a virus polynucleotide or gene) may be amplified using any oligonucleotide-directed amplification method including, but not limited to, polymerase chain reaction (PCR) (U.S. Pat. No. 4,965,188), ligase chain reaction (LCR) (Barany et al., Proc. Natl. Acad. Sci. USA 88:189-93 (1991); WO 90/01069), and oligonucleotide ligation assay (OLA) (Landegren et al., Science 241:1077-80 (1988)). Other known nucleic acid amplification procedures may be used to amplify the target region (s) including transcription-based amplification systems (U.S. Pat. No. 5,130,238; European Patent No. EP 329,822; U.S. Pat. No. 5,169,766; WO 89/06700) and isothermal methods (Walker et al., Proc. Natl. Acad. Sci. USA 89:392-6 (1992)).


Ligase Chain Reaction (LCR) techniques can be used and are particularly useful for detection of single or multiple (e.g., 1, 2, 3, 4, or 5) nucleotide differences between similar polynucleotides. LCR occurs only when the oligonucleotides are correctly base-paired. The Ligase Chain Reaction (LCR), which utilizes the thermostable Taq ligase for ligation amplification, is useful for interrogating loci of a gene. LCR differs from PCR because it amplifies the probe molecule rather than producing amplicon through polymerization of nucleotides. Two probes are used per each DNA strand and are ligated together to form a single probe. LCR uses both a DNA polymerase enzyme and a DNA ligase enzyme to drive the reaction. Like PCR, LCR requires a thermal cycler to drive the reaction and each cycle results in a doubling of the target nucleic acid molecule. LCR can have greater specificity than PCR. The elevated reaction temperatures permit the ligation reaction to be conducted with high stringency. Where a mismatch occurs, ligation cannot be accomplished. For example, a probe based upon a target polynucleotide is synthesized in two fragments and annealed to the template with possible difference at the boundary of the two primer fragments. A ligase ligates the two primers if they match exactly to the template sequence.


In one embodiment, the two hybridization probes are designed each with a target specific portion. The first hybridization probe is designed to be substantially complementary to a first target domain of a target polynucleotide (e.g., a polynucleotide fragment) and the second hybridization probe is substantially complementary to a second target domain of a target polynucleotide (e.g., a polynucleotide fragment). In general, each target specific sequence of a hybridization probe is at least about 5 nucleotides long, with sequences of about 15 to 30 being typical and 20 being especially common. In one embodiment, the first and second target domains are directly adjacent, e.g., they have no intervening nucleotides. In this embodiment, at least a first hybridization probe is hybridized to the first target domain and a second hybridization probe is hybridized to the second target domain. If perfect complementarity exists at the junction, a ligation structure is formed such that the two probes can be ligated together to form a ligated probe. If this complementarity does not exist (due to mismatch), no ligation structure is formed and the probes are not ligated together to an appreciable degree. This may be done using heat cycling, to allow the ligated probe to be denatured off the target polynucleotide such that it may serve as a template for further reactions. The method may also be done using three hybridization probes or hybridization probes that are separated by one or more nucleotides, if dNTPs and a polymerase are added (this is sometimes referred to as “Genetic Bit” analysis).


Quantitative PCR and digital PCR can be used to measure the level of a polynucleotide in a sample. Digital Polymerase Chain Reaction (digital PCR, dPCR or dePCR) can be used to directly quantify and clonally amplify nucleic acids including DNA, cDNA or RNA. Digital PCR amplifies nucleic acids by temperature cycling of a nucleic acid molecule with a DNA polymerase. The reaction is typically carried out in the dispersed phase of an emulsion capturing each individual nucleic acid molecule present in a sample within many separate chambers or regions prior to PCR amplification. A count of chambers containing detectable levels of PCR end-product is a direct measure of the absolute nucleic acids quantity.


Quantitative polymerase chain reaction (qPCR) is a modification of the polymerase chain reaction and real-time quantitative PCR are useful for measuring the amount of DNA after each cycle of PCR by use of fluorescent markers or other detectable labels. Quantitative PCR methods use the addition of a competitor RNA (for reverse-transcriptase PCR) or DNA in serial dilutions or co-amplification of an internal control to ensure that the amplification is stopped while in the exponential growth phase.


Modifications of PCR and PCR techniques are routine in the art and there are commercially available kits useful for PCR amplification.


A probe or primer of the disclosure can be associated with a detectable label. A signaling component can include any label that can be detected optically, electronically, radioactively and the like. A nucleic acid analog may serve as the signaling component. By “label” or “detectable label” is meant a moiety that allows detection. In one embodiment, the detection label is a primary label. A primary label is one that can be directly detected, such as a fluorophore. In general, labels fall into three classes: a) isotopic labels, which may be radioactive or heavy isotopes; b) magnetic, electrical, thermal labels; and c) colored or luminescent dyes. Common labels include chromophores or phosphors but are typically fluorescent dyes. Suitable dyes for use in the disclosure include, but are not limited to; fluorescent lanthamide complexes, including those of Europium and Terbium, fluorescein, rhodamine, tetramethylrhodamine, eosin, erythrosin, coumarin, methyl-coumarins, quantum dots (also referred to as “nanocrystals”), pyrene, Malacite green, stilbene, Lucifer Yellow, Cascade Blue™, Texas Red, Cy dyes (Cy3, Cy5, and the like), Alexa dyes, phycoerythin, bodipy, and others described in the 6th Edition of the Molecular Probes Handbook by Richard P. Haugland, hereby expressly incorporated by reference.


Such a detectable label may be a radioactive label or may be a luminescent, fluorescent of enzyme label. Indirect detection processes typically comprise probes covalently labeled with a hapten or ligand such as digoxigenin (DIG) or biotin. In one embodiment, following the hybridization step, the target-probe duplex is detected by an antibody- or streptavidin-enzyme complex. Enzymes commonly used in DNA diagnostics are horseradish peroxidase and alkaline phosphatase. Direct detection methods include the use of fluorophor-labeled oligonucleotides, lanthanide chelate-labeled oligonucleotides or oligonucleotide-enzyme conjugates. Examples of fluorophor labels are fluorescein, rhodamine and phthalocyanine dyes.


It will be understood that embodiments of the invention include probes having fluorescent dye molecules, fluorescent compounds, or other fluorescent moieties. A dye molecule may fluoresce, or be induced to fluoresce upon excitation by application of suitable excitation energy (e.g., electromagnetic energy of suitable wavelength), and may also absorb electromagnetic energy (“quench”) emitted by another dye molecule or fluorescent moiety. Any suitable fluorescent dye molecule, compound or moiety may be used in the practice of the invention. For example, suitable fluorescent dyes, compounds, and other fluorescent moieties include fluorescein, 6-carboxyfluorescein (6-FAM), 2′,4′,1,4,-tetrachlorofluorescein (TET), 2′,4′,5′,7′,1,4-hexachlorofluorescein (HEX), 2′,7′-dimethoxy-4′,5′-dichloro-6-carboxyrhodamine (JOE), 2′-chloro-5′-fluoro-7′,8′-fused phenyl-1,4-dichloro-6-carboxyfluorescein (NED) and 2′-chloro-7′-phenyl-1,4-dichloro-6-carboxyfluorescein (VIC), cyanine dyes (e.g., Cy.sup.3, Cy.sup.5, Cy.sup.9, nitrothiazole blue (NTB)), Cys3, FAM™, tetramethyl-6-carboxyrhodamine (TAMRA), tetrapropano-6-carboxyrhodamine (ROX), dipyrromethene boron fluoride (Bodipy), dichloro-fluorescein, dichloro-rhodamine, fluorescein thiosemicarbazide (FTC), sulforhodamine 101 acid chloride (Texas Red), phycoerythrin, rhodamine, carboxytetramethylrhodamine, 4,6-diamidino-2-phenylindole (DAPI), an indopyras dye, pyrenyloxytrisulfonic acid (Cascade Blue), 514 carboxylic acid (Oregon Green), eosin, erythrosin, pyridyloxazole, benzoxadiazole, aminonapthalene, pyrene, maleimide, a coumarin, 4-fluoro-7-nitrobenofurazan (NBD), 4-amino-N-[3-(vinylsulfonyl)-phenyl]naphthalimide-3,6-disulfonate) (Lucifer Yellow), DABCYL, DABSYL, anthraquinone, malachite green, nitrothiazole, and nitroimidazole compounds, propidium iodide, porphyrins, lanthamide cryptates, lanthamide chelates, derivatives and analogs thereof (e.g., 5-carboxy isomers of fluorescein dyes), and other fluorescent dyes and fluorescent molecules and compounds.


An oligonucleotide according to the methods of the invention may be labeled at the 5′ end or the 3′ end of at least one subunit of the probe. In embodiments, oligonucleotides may be labeled at both the 5′ end and the 3′ end. Alternatively, at least one subunit of the probe may be labeled internally, having at least one, and, in embodiments, more than one, internal label. In embodiments, an oligonucleotide may be labeled at an end and may be labeled internally. The oligonucleotides themselves are synthesized using techniques that are also well known in the art. Methods for preparing oligonucleotides of specific sequence are known in the art, and include, for example, cloning and restriction digest analysis of appropriate sequences and direct chemical synthesis, including, for example, the phosphotriester method described by Narang et al., 1979, Methods in Enzymology, 68:190, the phosphodiester method disclosed by Brown et al., 1979, Methods in Enzymology, 68:109, the diethylphosphoramidate method disclosed in Beaucage et al., 1981, Tetrahedron Letters, 22:1859, and the solid support method disclosed in U.S. Pat. No. 4,458,066, or by other chemical methods using a commercial automated oligonucleotide synthesizer. Modified linkages also may be included, for example phosphorothioates.


Examples of detection modes contemplated for the disclosed methods include, but are not limited to, spectroscopic techniques, such as fluorescence and UV-Vis spectroscopy, scintillation counting, and mass spectroscopy. Complementary to these modes of detection, examples of labels for the purpose of detection and quantitation used in these methods include, but are not limited to, chromophoric labels, scintillation labels, and mass labels. The expression levels of polynucleotides and polypeptides measured using these methods may be normalized to a control established for the purpose of the targeted determination.


Label detection will be based upon the type of label used in the particular assay. Such detection methods are known in the art. For example, radioisotope detection can be performed by autoradiography, scintillation counting or phosphor imaging. For hapten or biotin labels, detection is with an antibody or streptavidin bound to a reporter enzyme such as horseradish peroxidase or alkaline phosphatase, which is then detected by enzymatic means. For fluorophor or lanthanide-chelate labels, fluorescent signals may be measured with spectrofluorimeters with or without time-resolved mode or using automated microtitre plate readers. With enzyme labels, detection is by color or dye deposition (p-nitropheny phosphate or 5-bromo-4-chloro-3-indolyl phosphate/nitroblue tetrazolium for alkaline phosphatase and 3,3′-diaminobenzidine-NiCl2 for horseradish peroxidase), fluorescence (e.g., 4-methyl umbelliferyl phosphate for alkaline phosphatase) or chemiluminescence (the alkaline phosphatase dioxetane substrates LumiPhos 530 from Lumigen Inc., Detroit Mich., or AMPPD and CSPD from Tropix, Inc.). Chemiluminescent detection may be carried out with X-ray or polaroid film or by using single photon counting luminometers.


The methods, compositions, systems and devices disclosed herein find use in the identification and quantization of a target DNA or RNA polynucleotide in a sample, such as in a pool of sequences including one or more target sequences, which may be unrelated polynucleotides. Quantization of specific nucleic acid samples may be achieved by comparing the total signal (fluorescent or otherwise) obtained during the assay with a standard curve of known polynucleotide target concentrations. Specific examples of applications include the detection of pathogenic viruses through the detection of their biomolecules such as DNA or RNA which are indicative of the presence of said targets. Assays having features of the invention may be used to detect and identify the presence of specific DNA sequences and may be used in assays for diagnosis of many types of infection and disease.


These assays are suitable for use on cell lysates, and contaminated samples as well. Since many clinical samples are rich with contaminants, it is advantageous that the described assays herein work under these conditions. Although many methods are currently available for DNA extraction and purification from tissues, assays such as those disclosed herein (QIAGEN kits, etc.), which are proficient in analyzing and working with contaminated samples, are very valuable and increases the robustness of the assay. For clinical sample use with the disclosed assays, sample preparation kits may be used. For example, samples suspected of containing pathogenic DNA may be used. Exemplary kits and protocols that can be used include the QJAamp MinElute Virus Spin Kit provided by Qiagen. This kit allows DNA isolation from clinical samples in roughly 1 hour. Other methods for sample preparation are available from suppliers such as Promega.


Polynucleotides may be prepared from samples using known techniques. For example, the sample may be treated to lyse a cell comprising the target polynucleotide, using known lysis buffers, sonication techniques, electroporation, and the like. Many methods for cell lysis are common knowledge for those trained in the art.


The following Examples are provided to illustrate and do not limit the invention.


EXAMPLES

The following abbreviations and definitions will assist in understanding aspect of the disclosure and the assays performed.


Ct (Cycle Threshold): Cycle number (in qPCR) at which the fluorescence generated within a reaction well exceeds the defined threshold. The threshold is arbitrarily defined by the qPCR instrument manufacturer to reflect the point during the reaction at which a sufficient number of amplicons have accumulated.


gDNA (genomic DNA): Deoxyribonucleic acid that has been purified from tissue and/or cultured cells.


Percentage Coefficient of Variation (% CV): The coefficient of variation (CV) is a normalized measure of dispersion of a probability distribution. It is defined as the ratio of the standard deviation σ to the mean μ:







c
v

=

σ
μ





Slope: The slope or gradient of a line describes its steepness, incline, or grade. An acceptable slope of the linear regression equation for the qPCR should be within the range of −3.00 to −3.7.


R-squared (R2) Value (also known as the Pearson Correlation Coefficient): The correlation of the line, R2, is a measure of how well the data fits the model and how well the data fits on a straight line. It is influenced by pipetting accuracy and by the range of the assay. An R2 of ≧0.94 is acceptable.


qPCR Percentage Efficiency (% Efficiency): Amplification efficiency, E, is the efficiency of amplification at varying template concentrations and is calculated from the slope of the standard curve using the following formula:






E=10̂(−1/slope)


The % efficiency is the percent of template that was amplified in each cycle and is calculated using the following formula:





% Efficiency=(E−1)×100%


The % efficiency should be between 85% and 115%.


LOD: Limit of detection


LLOQ: Lower limit of quantitation.


ND: Non-detected.


NA: Not applicable.


NTC (Non-template control): A series of reaction wells in a qPCR experiment that contains all the reagents necessary for amplification with elution buffer or water substituted for sample DNA.


qPCR: Real-time quantitative polymerase chain reaction.


Example 1
Design of Primer/Probe Sets

Two primer/probe sets were designed for XMRV specific qPCR:











1. XMRV gag



XMRV 628F







(SEQ ID NO: 1)









(5′-ACTACCCCTCTGAGTCTAACC-3′)







XMRV764R







(SEQ ID NO: 2)









(5′-GGCCATCCTACATTGAAAGTTG-3′)







XMRV gag probe







(SEQ ID NO: 3)









(5′-FAM-CGCATTGCATCCAACCAGTCTGTG-3′-BHQ)






Amplification curves are shown in FIG. 6.











2. XMRV env



XMRV 6252F







(SEQ ID NO: 4)









(5′-TTTGATTCCTCAGTGGGCTC-3′)







XMRV6391R







(SEQ ID NO: 5)









(5′-CGATACAGTCTTAGTCCCCATG-3′)







XMRV env probe







(SEQ ID NO: 6)









(5′-HEX-CCCTTTTACCCGCGTCAGTGAATTCT-3′-BHQ)






Two primer probe sets were designed for detection of all MLV related retroviruses. Amplification curves are shown in FIG. 7.











3. MLV Pol 1



pol-F







(SEQ ID NO: 7)









(5′-AACAAGCGGGTGGAAGACATC-3′)







pol-R







(SEQ ID NO: 8)









(5′-CAAAGGCGAAGAGAGGCTGAC-3′)







pol probe







(SEQ ID NO: 9)









(5′-HEX-CCCACCGTGCCCAACCCTTACAACC-3′-TAMRA)







4. MLV Pol 2



5′ Pol2 Primer







(SEQ ID NO: 10)









(CAAGGGGCTACTGGAGGAAAG)







3′ Pol2 Primer:







(SEQ ID NO: 11)









(CTTTCCTCCATGTACCAGACTG)







Pol2 Probe:







(SEQ ID NO: 12)









(5HEX/TATCGCTGGACCACGGATCGCAA/3BHQ_1)






Two primer probe sets wer designed for detection of amphotropic MLV virus:











5. MLV Env2



5′Env2 primer:







(SEQ ID NO: 13)









5′-ACCCTCAACCGCCCCTACAAGT-3′







3′Env2 primer:







(SEQ ID NO: 14)









5′-GTTAAGCGCCTGATAGGCTC-3′







Env2 probe:







(SEQ ID NO: 15)









5′-/FAM/CCCCAAATGAAAGACCCCCGCTGACG/BHQ/-3′







6. MLV LTR:



5′ Primer = MLV-U3-B:







(SEQ ID NO: 16)









AGC CCA CAA CCC CTC ACT C







3′ Primer = 3-MLV-Psi:







(SEQ ID NO: 17)









TCT CCC GAT CCC GGA CGA







FAM Probe = MLV-U5-Psi:







(SEQ ID NO: 18)









FAM-CCCCAAATGAAAGACCCCCGCTGACG 3BHQ_1






One primer probe set was designed for detection of a cytosine deaminase (CD) gene.









7. CD:


5′ yCD2 Primer:







(SEQ ID NO: 19)







(ATC ATC ATG TAC GGC ATC CCT AG)





3′ yCD2 Primer:







(SEQ ID NO: 20)







(TGA ACT GCT TCA TCA GCT TCT TAC)





yCD2 Probe:







(SEQ ID NO: 21)







(5FAM/TCA TCG TCA ACA ACC ACC ACC TCG T/3BHQ_1)






Oligonucleotides for primer probe sets were ordered from IDT (Integrated DNA Technologies, Inc., San Diego, Calif.).


Example 2
Preparation of Genomic DNA from Blood and Other Tissues from Mammals Including Human and Canines for PCR Testing

The XMRV (xenotropic murine leukemia virus-related virus) qPCR assay is performed to quantify DNA. Total DNA extraction from the specimens samples is generated by standard means such as the use of commercially available kits (QIAGEN DNA blood mini kit, QIAGEN DNA Tissue kit, Promega DNA Tissue Kit, Promega DNA Cell Kit). A quantitation curve is established with 8 non-zero samples comprising of serial dilutions of defined copy number of reference plasmid to generate a Ct value versus copy number correlation. Linear regression analysis generates an equation which is used to calculate the copy number in the sample. Quantitative curves generation are shown for XMRV gag (FIG. 8), XMRV env (FIG. 9), XMRV pol2 (FIG. 10).


Example 3
Preparation of Plasma from Humans and Dogs for RT-PCR Testing

Blood was collected in blood collection tubes, and serum or plasma prepared from the whole blood by conventional means. The XMRV (xenotropic murine leukemia virus-related virus) RT-PCR assay is performed to quantify RNA from biological samples, such as whole blood and plasma, without the need for RNA extraction. The assay employs a two-step amplification process with the initial step consisting of the distribution of 2 μL of experimental sample directly into a cDNA reaction mix. Following completion of the reverse transcriptase (RT) cDNA synthesis, a 2 μL aliquot is removed, transferred into a qPCR reaction mix and a qPCR protocol is performed. A quantitation curve is established with 6 non-zero samples comprising of serial dilutions of defined copy number of reference vector to generate a Ct value versus copy number correlation. Linear regression analysis generates an equation which is used to calculate the copy number in the sample. Quantitative curves generation are shown in FIG. 15.


Example 4
Standardization and Validation of QPCR DNA Assays

A series of experiments were performed as outlined below:

  • 1) To optimize the cycling parameters of the quantitative PCR (qPCR) protocol for XMRV detection including primer and probe concentrations and annealing temperature.
  • 2) To assess detection sensitivity in spiked human whole blood genomic DNA (gDNA) targeted with the XMRV env, XMRV gag and XMRV pol2 primer/probe sets using qPCR.
  • 3) To assess the use of an additional set of three pre-cycling steps (defined as a stage) in the qPCR protocol with respect to detection sensitivity.
  • 4) To assess for variance in XMRV detection sensitivity from independent sources of human whole blood.
  • 5) To assess for recovery of 22Rv1 XMRV positive control spiked into human whole blood gDNA.


Assay Design


a. Optimization of Cycling Parameters for the qPCR Protocol.


A matrix of primers and probe were made up in various concentration combinations and were used to target the appropriate XMRV plasmid (pUC57 XMRV gag, pET28b XMRV env or pAZ3-emd pol2) containing the gene of interest. The choice of optimal primer concentrations were made based on comparisons of Ct value, standard deviation and relative fluorescence units (RFU). SYBR Green was used for the primer concentration optimization qPCR assay and TaqMan was used for the probe concentration optimization assay. Annealing temperature optimization was carried out by performing a qPCR annealing temperature gradient ranging from 50° C. to 65° C. Plasmids specific for the gene of interest were targeted with the appropriate XMRV primer sets.


b. Detection Sensitivity in Human Whole Blood gDNA Spiked with Plasmid DNA and Targeted with XMRV Env, XMRV Gag or XMRV Pol2 Primer/Probe Sets Using qPCR.


Genomic DNA extracted from human whole blood was spiked with known copy numbers of plasmid DNA containing the gene of interest. Serial log dilutions of the spiked gDNA were made and qPCR was performed. The samples were targeted with XMRV env (FIG. 9), XMRV gag (FIG. 8) and XMRV pol2 (FIG. 10) primer/probe sets in single qPCR reactions.


c. Detection Sensitivity in Human Whole Blood gDNA Spiked with Plasmid DNA and Targeted with XMRV Env, XMRV Gag or XMRV Pol2 Primer/Probe Sets Using a One-Stage qPCR Protocol.


Human whole blood gDNA was spiked with known copy numbers of plasmid DNA containing the gene of interest. Serial log dilutions of the spiked gDNA were made and a modified version of the qPCR protocol was performed by adding a set of three pre-cycling steps (defined as a one-stage qPCR protocol) to the current qPCR protocol. The samples were targeted with XMRV env (FIG. 9), XMRV gag (FIG. 8) and XMRV pol2 (FIG. 10) primer/probe sets in single qPCR reactions.


d. Assessment of XMRV Detection Sensitivity from Human Whole Blood Sourced from Healthy Donors and Spiked with Plasmid DNA.


Genomic DNA from whole blood from healthy donors were used to spike in known copy numbers of plasmid DNA. Serial dilutions of the gDNA were made to generate 1E3, 1E2, 1E1 and 1E0 copies per reaction. A 0-Stage and a 1-stage qPCR protocol were performed. The samples were targeted with XMRV env (FIG. 12), XMRV gag (FIG. 11) or XMRV pol2 (FIG. 13) primer/probe sets in single qPCR reactions.


e. 22Rv1 Positive Control Recovery Assessment Spiked into Human Whole Blood gDNA.


22Rv1 gDNA (positive for XMRV, E. C. Knouf et al., J. Virol 83:78353-7356 2009) was spiked into purified human whole blood gDNA (pre and post gDNA extraction) at increasing log dilutions (one human whole blood sample control and one TE sample were spiked pre-extraction with 500 ng of 22Rv1 gDNA to yield a final concentration of ˜2.5 ng/μL). A 0-Stage and a 1-stage qPCR protocol were performed with primers targeting the XMRV gag, XMRV env and XMRV pol sequences.


Optimizations (primer concentration and temperature) for Pol primer set were carried out.


Both XMRV gag and XMRV env primer sets are XMRV specific whereas the Pol primer sets detect both MLV and XMRV.


A qPCR protocol used for all 4 primer sets: BioRad Supermix65.prcl



















Step 1:
95° C.
 5 min



Step 2:
95° C.
15 sec



Step 3:
65° C.
30 sec [repeat step 2-3 44X more times]











FIGS. 6 and 7 show results obtained by the methods and compositions disclosed above.


TaqqMan® Gold RT-PCR Kit and TaqMan° PCR universal master mix are obtained from PE Biosystems. RNAeasy® mini kit and QIAamp® viral RNA mini kit are obtained from Qiagen. Various cell culture materials and biological samples to be tested are obtained from vendors or subjects.


MLV recombinant isolates comprise the sequences set forth in International Application No. PCT/US09/58512 and published on Apr. 1, 2010 as publication no. WO 2010/036986.


Two primer/probe sets for the detection of XMRV were designed as set forth above. One forward primer (FP), one reverse primer (RP), and one probe were used for the detection of XMRV gag and XMRV env. A third set of primer/probe was used for the detection of XMRV and MLV using the primers above that amplify the pol region of XMRV and MLV.


The qPCR reaction mixture contains 900 nM primers (both forward and reverse) and 200 nM probe. Concentrations tested to be effective for detection include, 100, 200, 300, 400, 500, 600, 700, 800, 900 nM and any ratio between 1:1, 1:2, 1:3, 1:4 of primer concentrations. The activation of Taq polymerase is achieved at 95° C. for 5 minutes is followed by forty-four cycles of denaturation at 95° C. for 15 seconds and annealing and elongation at 65° C. for 30 seconds.


Example 5
Detection of MLV in Formalin Fixed Paraffin Embedded Tissue Samples

Tumors from mice were removed and divided into 2 equal parts. One part of the tumor was formalin-fixed, paraffin-embedded and the other part of the tumor was frozen at −80° C. The FFPE mouse tumor tissue was cut in half, with one half spiked-in with a known copy number amount of pAZ3-emd and the other half was not spiked-in. A known copy number amount of pAZ3-emd was spiked-in to the frozen fresh mouse tissue and pre-processing incubation buffer. The FFPE and frozen fresh mouse tissues were incubated at 56° C. overnight in a pre-processing incubation buffer containing proteinase K and dithiothreitol (DTT). The following day, the mouse tissue was processed on the Maxwell 16 instrument to extract out gDNA as per standard procedure. The extracted gDNA concentration was quantified on the Nanodrop 1000. The extracted DNA was tested for presence of MLV and env2 sequences by qPCR with the results shown in FIG. 14.


Example 6
XMRV/MLV RT-PCR Assay

The XMRV (xenotropic murine leukemia virus-related virus) RT-PCR assay is performed to quantify RNA from biological samples, such as whole blood and plasma, without the need for RNA extraction. The assay employs a two-step amplification process with the initial step consisting of the distribution of 2 μL of experimental sample directly into a cDNA reaction mix. Following completion of the reverse transcriptase (RT) cDNA synthesis, a 2 μL aliquot is removed, transferred into a qPCR reaction mix and a qPCR protocol is performed. A quantitation curve is established with 7 non-zero samples comprising of serial dilutions of defined copy number of reference vector to generate a Ct value versus copy number correlation. Linear regression analysis generates an equation which is used to calculate the copy number in the sample. (FIG. 15).


Four control samples and one reagent control are used for this assay and are run in parallel with all test samples. The two step reaction requires controls for both the RT procedure and the qPCR procedure. Therefore, a positive, a negative and a non-template control are included for the cDNA synthesis step and a positive, negative and non-template control are included for the qPCR portion of the process.


A negative matrix sample (i.e. whole blood) is spiked with a defined quantity of 22Rv1 viral vector (see description under ‘Reference Standard’). This control is prepared fresh with each run to determine the efficiency of the cDNA generation in the RT step.


22Rv1 genomic DNA containing the integrated retroviral vector sequences of XMRV provides the best biophysical mimic of the actual amplification target to be screened in patient tissues.


A negative matrix sample (i.e. whole blood) is used as a negative RT control as it does not contain any detectable XMRV endogenous sequences. This control is prepared fresh with each run to verify that non-specific products are not generated during cDNA synthesis of the qRT step. Confirmation is obtained upon completion of the qPCR procedure. No amplification is expected.


DNA isolated from non-infected U-87 cell is used as a negative control as it does not contain any endogenous sequences detectable by the XMRV primer sets.


The 22Rv1 human prostate carcinoma epithelial cell line has been shown to produce high-titer of the human retrovirus XMRV. This cell line was bought from ATCC and propagated in RPMI-1640 Medium containing 10% FBS, Sodium Pyruvate and Glutamax. The cell line was passaged four times before obtaining the supernatant containing the viral vector. The supernatant was filtered through a 0.45 μm filter and stored at −80° C.


Reference vector 22Rv1 was used to spike PBS for generating a quantitation curve. Known copy numbers of vector were serially diluted to generate a Ct value versus copy number correlation. Linear regression analysis generates an equation which was used to calculate the copy number in the sample. Copy number was determined by a titer analysis which measures the number of copies of the viral genome integrated into the genome of target cells (transduction units, TU). The copy number was measured in TU equivalents.


Several studies were conducted to determine the appropriate primer sets, the optimal concentration for the reactions and the optimal temperature for the cycling parameters. Specific primer sets were designed and tested for human derived material. The goal of these experiments was to identify primer sets that were XMRV specific and did not present background in test samples.


The following primer sets were identified for targeting genes specific for XMRV:











1. XMRV gag



XMRV 628F







(SEQ ID NO: 1)









(5′-ACTACCCCTCTGAGTCTAACC-3′)







XMRV764R







(SEQ ID NO: 2)









(5′-GGCCATCCTACATTGAAAGTTG-3′)







XMRV gag probe







(SEQ ID NO: 3)









(5′-FAM-CGCATTGCATCCAACCAGTCTGTG-3′-BHQ)







2. XMRV env



XMRV 6252F







(SEQ ID NO: 4)









(5′-TTTGATTCCTCAGTGGGCTC-3′)







XMRV6391R







(SEQ ID NO: 5)









(5′-CGATACAGTCTTAGTCCCCATG-3′)







XMRV env probe







(SEQ ID NO: 6)









(5′-HEX-CCCTTTTACCCGCGTCAGTGAATTCT-3′-BHQ)






Two primer probe sets were designed for detection of all MLV related retroviruses and XMRV.











3. MLV Pol 1



pol-F







(SEQ ID NO: 7)









(5′-AACAAGCGGGTGGAAGACATC-3′)







pol-R







(SEQ ID NO: 8)









(5′-CAAAGGCGAAGAGAGGCTGAC-3′)







pol probe







(SEQ ID NO: 9)









(5′-HEX-CCCACCGTGCCCAACCCTTACAACC-3′-TAMRA)







4. MLV Pol 2



5′ Pol2 Primer







(SEQ ID NO: 10)









(CAAGGGGCTACTGGAGGAAAG)







3′ Pol2 Primer:







(SEQ ID NO: 11)









(CTTTCCTCCATGTACCAGACTG)







Pol2 Probe:







(SEQ ID NO: 12)









(5HEX/TATCGCTGGACCACGGATCGCAA/3BHQ_1)






Two primer probe sets were designed for detection of amphotropic MLV virus.









5. MLV Env2


5′Env2 primer:







(SEQ ID NO: 13)







5′-ACCCTCAACCGCCCCTACAAGT-3′





3′Env2 primer:







(SEQ ID NO: 14)







5′-GTTAAGCGCCTGATAGGCTC-3′





Env2 probe:







(SEQ ID NO: 15)







5′-/FAM/CCCCAAATGAAAGACCCCCGCTGACG/BHQ/-3′





6. MLV LTR


One primer probe set was designed for detection of


MLV in the LTR sequence


5′MLVLTR primer:







(SEQ ID NO: 16)







AGC CCA CAA CCC CTC ACT C





3′ MLVLTR primer







(SEQ ID NO: 17)







TCT CCC GAT CCC GGA CGA





MLVLTR probe:







(SEQ ID NO: 18)







FAM-CCCCAAATGAAAGACCCCCGCTGACG 3BHQ_1





7. Cytosine deaminase gene


One primer probe set was designed for detection of


the Cytosine deaminase gene


5′ yCD2 Primer:







(SEQ ID NO: 19)







(ATC ATC ATG TAC GGC ATC CCT AG)





3′ yCD2 Primer:







(SEQ ID NO: 20)







(TGA ACT GCT TCA TCA GCT TCT TAC)





yCD2 Probe:







(SEQ ID NO: 21)







(5FAM/TCA TCG TCA ACA ACC ACC ACC TCG T/3BHQ_1).






Example 7
Monitoring of GBM Patients Treated with an MLV Vector

Open-label, ascending-dose trial of the safety and tolerability of increasing doses of Toca 511 administered to subjects with recurrent High Grade Glioma (including GBM) who have undergone surgery followed by adjuvant radiation and chemotherapy was carried out (see http[:]//clinicaltrials.gov/ct2/show/NCT01156584? term=tocagen&rank=1). Ascending doses of Toca 511(aka T5.0002) were prepared suitable for clinical use (WO2010148203) and delivered via stereotactic transcranial injection into the tumor. The starting dose was 2.6×103 TU/g. Subjects meeting all of the inclusion and none of the exclusion criteria received Toca 511 via stereotactic, transcranial injection into their tumor. Approximately three weeks (±1 week) later subjects underwent a baseline gadolinium-enhanced MRI (Gd-MRI) scan and then began treatment with oral 5-FC at approximately 130 mg/kg/day for 6 days. On the 4th, 5th or 6th day of dosing the trough 5-FC serum concentration was determined and the dose of 5-FC adjusted in subsequent cycles to maintain the trough concentration in the therapeutic range. If tolerated, these 6-day courses of 5-FC were repeated approximately every 4 weeks (±1 week) until institution of new antineoplastic treatment for tumor progression. Subjects undergo Gd-MRI scanning approximately every 8 weeks. Tumor response are assessed using the Macdonald criteria. A standard dose-escalation algorithm is being followed. Three subjects are evaluated at each of up to four dose levels of Toca 511 (2.6×103, 9.5×103, 2.5×104, and the Maximum Feasible Dose [MFD], not to exceed 1×105 TU/g). So far three patients at the lowest dose level have been treated. Two patients 101 and 102 were monitored using qPCR testing of whole blood DNA (MLVLTR Primer probe set) and RT-qPCR using the MLV env2 primer-probe set. In addition, saliva an urine were monitored by DNA qPCR, and antibodies to the vector were measured (ref MLV ELISA Application?). These data are shown in FIG. 16.


Other primers useful in the methods and composition of the disclosure for detecting XMRV and MLV related viruses include those in Table 1.
















TABLE 1





Sequence

Product
Product


5 XMRV
3 XMRV


Definition
Pair Rating
Length
Tm
Sense Primer
Anti-sense Primer
position
position






















XMRV 1581-1778
66.8
178
78.2
AGGTAGGAACCACCTAGTCC
AGGGTCATAAGGAGTGTACC
1581
1758





XMRV 1581-1778
63.6
168
78.3
AGGTAGGAACCACCTAGTCC
GGAGTGTACCTGCGATAGGC
1581
1748





XMRV 1581-1778
63.5
198
78.9
AGGTAGGAACCACCTAGTCC
GTTTCTTGCCCTGGGTCCTC
1581
1778





XMRV 1581-1778
62.5
188
78.8
AGGTAGGAACCACCTAGTCC
CTGGGTCCTCAGGGTCATAA
1581
1768





XMRV 1581-1778
60.1
173
78
AGGTAGGAACCACCTAGTCC
CATAAGGAGTGTACCTGCGA
1581
1753





XMRV 1729-1948
73.3
195
75.8
TCGCAGGTACACTCCTTATG
TCTCTTTCTTCCGGGGTTTC
1734
1928





XMRV 1729-1948
69.8
215
76
TCGCAGGTACACTCCTTATG
TTTCTCTCCTGATACGTTCC
1734
1948





XMRV 1729-1948
69
200
76
TCGCAGGTACACTCCTTATG
GTTCCTCTCTTTCTTCCGGG
1734
1933





XMRV 1729-1948
68.2
200
76
GCCTATCGCAGGTACACTCC
TCTCTTTCTTCCGGGGTTTC
1729
1928





XMRV 1729-1948
66
205
76.2
GCCTATCGCAGGTACACTCC
GTTCCTCTCTTTCTTCCGGG
1729
1933





XMRV 1729-1948
66
210
76.2
TCGCAGGTACACTCCTTATG
CTCCTGATACGTTCCTCTCT
1734
1943





XMRV 1729-1948
63.8
180
75.1
TTATGACCCTGAGGACCCAG
TCTCTTTCTTCCGGGGTTTC
1749
1928





XMRV 1729-1948
61.8
200
75.4
TTATGACCCTGAGGACCCAG
TTTCTCTCCTGATACGTTCC
1749
1948





XMRV 1729-1948
61.4
210
75.8
GGTACACTCCTTATGACCCT
TTTCTCTCCTGATACGTTCC
1739
1948





XMRV 1729-1948
61.1
185
75.3
TTATGACCCTGAGGACCCAG
GTTCCTCTCTTTCTTCCGGG
1749
1933









Table 2 provides additional primer pairs and probes that are useful in the methods and compositions of the disclosure, for example for quantitative PCR and quantitative RT-PCR, and useful for XMRV or XMRV and MLV related virus detection:



















TABLE 2















Detects












MLV










5′ XMRV
3′ XMRV
related




Probe


Product

Anti-sense
coor-
coor-
and


Sequence
Rating
Sequence
Tm
GC %
Length
Sense Primer
Primer
dinate
dinate
XMRV

























XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
106
CTATAAAGTCCAAAC
GAGGAAGGTTGT
1015
1121
no




CTCATTGACCTT



CTCCTAAGCC
GCTCCGTAC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
114
TCTATAAAGTCCAAA
GGCAGAGGAGGA
1015
1128
no




TCATTGACCTTC



CCTCCTAAGC
AGGTTGTG





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
114
TCTATAAAGTCCAAA
GGCAGAGGAGGA
1015
1128
no




TCATTGACCTT



CCTCCTAAGC
AGGTTGTG





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
114
TCTATAAAGTCCAAA
GGCAGAGGAGGA
1015
1128
no




CTCATTGACCTT



CCTCCTAAGC
AGGTTGTG





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
114
TCTATAAAGTCCAAA
GGCAGAGGAGGA
1015
1128
no




TCATTGACCT



CCTCCTAAGC
AGGTTGTG





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
114
TCTATAAAGTCCAAA
GGCAGAGGAGGA
1015
1128
no




TCTCATTGACCT



CCTCCTAAGC
AGGTTGTG





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
114
TCTATAAAGTCCAAA
GGCAGAGGAGGA
1015
1128
no




CTCATTGACCT



CCTCCTAAGC
AGGTTGTG





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
129
TCTATAAAGTCCAAA
TTCATTGTTCTCCC
1015
1143
no




TCATTGACCTTC



CCTCCTAAGC
TGGCAGAG





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
129
TCTATAAAGTCCAAA
TTCATTGTTCTCCC
1015
1143
no




TCATTGACCTT



CCTCCTAAGC
TGGCAGAG





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
129
TCTATAAAGTCCAAA
TTCATTGTTCTCCC
1015
1143
no




CTCATTGACCTT



CCTCCTAAGC
TGGCAGAG





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
129
TCTATAAAGTCCAAA
TTCATTGTTCTCCC
1015
1143
no




TCATTGACCT



CCTCCTAAGC
TGGCAGAG





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
129
TCTATAAAGTCCAAA
TTCATTGTTCTCCC
1015
1143
no




TCTCATTGACCT



CCTCCTAAGC
TGGCAGAG





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
129
TCTATAAAGTCCAAA
TTCATTGTTCTCCC
1015
1143
no




CTCATTGACCT



CCTCCTAAGC
TGGCAGAG





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
139
TCTATAAAGTCCAAA
CCGCCTCTTCTTCA
1015
1153
no




TCATTGACCTTC



CCTCCTAAGC
TTGTTCTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
139
TCTATAAAGTCCAAA
CCGCCTCTTCTTCA
1015
1153
no




TCATTGACCTT



CCTCCTAAGC
TTGTTCTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
139
TCTATAAAGTCCAAA
CCGCCTCTTCTTCA
1015
1153
no




CTCATTGACCTT



CCTCCTAAGC
TTGTTCTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
139
TCTATAAAGTCCAAA
CCGCCTCTTCTTCA
1015
1153
no




TCATTGACCT



CCTCCTAAGC
TTGTTCTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
139
TCTATAAAGTCCAAA
CCGCCTCTTCTTCA
1015
1153
no




TCTCATTGACCT



CCTCCTAAGC
TTGTTCTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
139
TCTATAAAGTCCAAA
CCGCCTCTTCTTCA
1015
1153
no




CTCATTGACCT



CCTCCTAAGC
TTGTTCTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
140
TCTATAAAGTCCAAA
GCCGCCTCTTCTTC
1015
1154
no




TCATTGACCTTC



CCTCCTAAGC
ATTGTTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
140
TCTATAAAGTCCAAA
GCCGCCTCTTCTTC
1015
1154
no




TCATTGACCTT



CCTCCTAAGC
ATTGTTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
140
TCTATAAAGTCCAAA
GCCGCCTCTTCTTC
1015
1154
no




CTCATTGACCTT



CCTCCTAAGC
ATTGTTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
140
TCTATAAAGTCCAAA
GCCGCCTCTTCTTC
1015
1154
no




TCATTGACCT



CCTCCTAAGC
ATTGTTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
140
TCTATAAAGTCCAAA
GCCGCCTCTTCTTC
1015
1154
no




TCTCATTGACCT



CCTCCTAAGC
ATTGTTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
140
TCTATAAAGTCCAAA
GCCGCCTCTTCTTC
1015
1154
no




CTCATTGACCT



CCTCCTAAGC
ATTGTTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
142
TCTATAAAGTCCAAA
TGGCCGCCTCTTCT
1015
1156
no




TCATTGACCTTC



CCTCCTAAGC
TCATTG





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
142
TCTATAAAGTCCAAA
TGGCCGCCTCTTCT
1015
1156
no




TCATTGACCTT



CCTCCTAAGC
TCATTG





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
142
TCTATAAAGTCCAAA
TGGCCGCCTCTTCT
1015
1156
no




CTCATTGACCTT



CCTCCTAAGC
TCATTG





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
142
TCTATAAAGTCCAAA
TGGCCGCCTCTTCT
1015
1156
no




TCATTGACCT



CCTCCTAAGC
TCATTG





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
142
TCTATAAAGTCCAAA
TGGCCGCCTCTTCT
1015
1156
no




TCTCATTGACCT



CCTCCTAAGC
TCATTG





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
142
TCTATAAAGTCCAAA
TGGCCGCCTCTTCT
1015
1156
no




CTCATTGACCT



CCTCCTAAGC
TCATTG





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
144
TCTATAAAGTCCAAA
GGTGGCCGCCTCT
1015
1158
no




TCATTGACCTTC



CCTCCTAAGC
TCTTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
144
TCTATAAAGTCCAAA
GGTGGCCGCCTCT
1015
1158
no




TCATTGACCTT



CCTCCTAAGC
TCTTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
144
TCTATAAAGTCCAAA
GGTGGCCGCCTCT
1015
1158
no




CTCATTGACCTT



CCTCCTAAGC
TCTTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
144
TCTATAAAGTCCAAA
GGTGGCCGCCTCT
1015
1158
no




TCATTGACCT



CCTCCTAAGC
TCTTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
144
TCTATAAAGTCCAAA
GGTGGCCGCCTCT
1015
1158
no




TCTCATTGACCT



CCTCCTAAGC
TCTTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
144
TCTATAAAGTCCAAA
GGTGGCCGCCTCT
1015
1158
no




CTCATTGACCT



CCTCCTAAGC
TCTTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
188
CTATAAAGTCCAAAC
CCGCAGTCGAGAC
1015
1203
no




CTCATTGACCTT



CTCCTAAGCC
ACCATG





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
191
CTATAAAGTCCAAAC
TCCCCGCAGTCGA
1015
1206
no




TCATTGACCTTC



CTCCTAAGCC
GACAC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
191
CTATAAAGTCCAAAC
TCCCCGCAGTCGA
1015
1206
no




CTCATTGACCTT



CTCCTAAGCC
GACAC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
194
TCTATAAAGTCCAAA
CTTCCCCGCAGTC
1015
1208
no




TCATTGACCTTC



CCTCCTAAGC
GAGAC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
194
TCTATAAAGTCCAAA
CTTCCCCGCAGTC
1015
1208
no




TCATTGACCTT



CCTCCTAAGC
GAGAC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
194
TCTATAAAGTCCAAA
CTTCCCCGCAGTC
1015
1208
no




CTCATTGACCTT



CCTCCTAAGC
GAGAC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
194
TCTATAAAGTCCAAA
CTTCCCCGCAGTC
1015
1208
no




TCATTGACCT



CCTCCTAAGC
GAGAC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
194
TCTATAAAGTCCAAA
CTTCCCCGCAGTC
1015
1208
no




TCTCATTGACCT



CCTCCTAAGC
GAGAC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
194
TCTATAAAGTCCAAA
CTTCCCCGCAGTC
1015
1208
no




CTCATTGACCT



CCTCCTAAGC
GAGAC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
199
CTATAAAGTCCAAAC
TCTCTCCTTCCCCG
1015
1214
no




TCATTGACCTTC



CTCCTAAGCC
CAGTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
199
CTATAAAGTCCAAAC
TCTCTCCTTCCCCG
1015
1214
no




CTCATTGACCTT



CTCCTAAGCC
CAGTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
199
CTATAAAGTCCAAAC
TCTCTCCTTCCCCG
1015
1214
no




CTCATTGACCT



CTCCTAAGCC
CAGTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
106
CTATAAAGTCCAAAC
GAGGAAGGTTGT
1016
1121
no




TCATTGACCTTC



CTCCTAAGCC
GCTCCGTAC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
106
CTATAAAGTCCAAAC
GAGGAAGGTTGT
1016
1121
no




TCATTGACCTT



CTCCTAAGCC
GCTCCGTAC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
106
CTATAAAGTCCAAAC
GAGGAAGGTTGT
1016
1121
no




TCATTGACCT



CTCCTAAGCC
GCTCCGTAC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
106
CTATAAAGTCCAAAC
GAGGAAGGTTGT
1016
1121
no




TCTCATTGACCT



CTCCTAAGCC
GCTCCGTAC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
106
CTATAAAGTCCAAAC
GAGGAAGGTTGT
1016
1121
no




CTCATTGACCT



CTCCTAAGCC
GCTCCGTAC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
111
CTATAAAGTCCAAAC
CAGAGGAGGAAG
1016
1126
no




TCATTGACCTTC



CTCCTAAGCC
GTTGTGCTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
111
CTATAAAGTCCAAAC
CAGAGGAGGAAG
1016
1126
no




TCATTGACCTT



CTCCTAAGCC
GTTGTGCTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
111
CTATAAAGTCCAAAC
CAGAGGAGGAAG
1016
1126
no




CTCATTGACCTT



CTCCTAAGCC
GTTGTGCTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
111
CTATAAAGTCCAAAC
CAGAGGAGGAAG
1016
1126
no




TCATTGACCT



CTCCTAAGCC
GTTGTGCTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
111
CTATAAAGTCCAAAC
CAGAGGAGGAAG
1016
1126
no




TCTCATTGACCT



CTCCTAAGCC
GTTGTGCTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
111
CTATAAAGTCCAAAC
CAGAGGAGGAAG
1016
1126
no




CTCATTGACCT



CTCCTAAGCC
GTTGTGCTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
188
CTATAAAGTCCAAAC
CCGCAGTCGAGAC
1016
1203
no




TCATTGACCTTC



CTCCTAAGCC
ACCATG





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
188
CTATAAAGTCCAAAC
CCGCAGTCGAGAC
1016
1203
no




TCATTGACCTT



CTCCTAAGCC
ACCATG





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
188
CTATAAAGTCCAAAC
CCGCAGTCGAGAC
1016
1203
no




TCATTGACCT



CTCCTAAGCC
ACCATG





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
188
CTATAAAGTCCAAAC
CCGCAGTCGAGAC
1016
1203
no




TCTCATTGACCT



CTCCTAAGCC
ACCATG





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
188
CTATAAAGTCCAAAC
CCGCAGTCGAGAC
1016
1203
no




CTCATTGACCT



CTCCTAAGCC
ACCATG





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
191
CTATAAAGTCCAAAC
TCCCCGCAGTCGA
1016
1206
no




TCATTGACCTT



CTCCTAAGCC
GACAC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
191
CTATAAAGTCCAAAC
TCCCCGCAGTCGA
1016
1206
no




TCATTGACCT



CTCCTAAGCC
GACAC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
191
CTATAAAGTCCAAAC
TCCCCGCAGTCGA
1016
1206
no




TCTCATTGACCT



CTCCTAAGCC
GACAC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
191
CTATAAAGTCCAAAC
TCCCCGCAGTCGA
1016
1206
no




CTCATTGACCT



CTCCTAAGCC
GACAC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
195
CTATAAAGTCCAAAC
TCCTTCCCCGCAGT
1016
1210
no




TCATTGACCTTC



CTCCTAAGCC
CGAG





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
195
CTATAAAGTCCAAAC
TCCTTCCCCGCAGT
1016
1210
no




TCATTGACCTT



CTCCTAAGCC
CGAG





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
195
CTATAAAGTCCAAAC
TCCTTCCCCGCAGT
1016
1210
no




CTCATTGACCTT



CTCCTAAGCC
CGAG





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
195
CTATAAAGTCCAAAC
TCCTTCCCCGCAGT
1016
1210
no




TCATTGACCT



CTCCTAAGCC
CGAG





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
195
CTATAAAGTCCAAAC
TCCTTCCCCGCAGT
1016
1210
no




TCTCATTGACCT



CTCCTAAGCC
CGAG





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
195
CTATAAAGTCCAAAC
TCCTTCCCCGCAGT
1016
1210
no




CTCATTGACCT



CTCCTAAGCC
CGAG





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
199
CTATAAAGTCCAAAC
TCTCTCCTTCCCCG
1016
1214
no




TCATTGACCTT



CTCCTAAGCC
CAGTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
199
CTATAAAGTCCAAAC
TCTCTCCTTCCCCG
1016
1214
no




TCATTGACCT



CTCCTAAGCC
CAGTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
199
CTATAAAGTCCAAAC
TCTCTCCTTCCCCG
1016
1214
no




TCTCATTGACCT



CTCCTAAGCC
CAGTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
127
TATAAAGTCCAAACC
TTCATTGTTCTCCC
1017
1143
no




TCATTGACCTTC



TCCTAAGCC
TGGCAGAG





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
127
TATAAAGTCCAAACC
TTCATTGTTCTCCC
1017
1143
no




TCATTGACCTT



TCCTAAGCC
TGGCAGAG





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
127
TATAAAGTCCAAACC
TTCATTGTTCTCCC
1017
1143
no




CTCATTGACCTT



TCCTAAGCC
TGGCAGAG





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
127
TATAAAGTCCAAACC
TTCATTGTTCTCCC
1017
1143
no




TCATTGACCT



TCCTAAGCC
TGGCAGAG





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
127
TATAAAGTCCAAACC
TTCATTGTTCTCCC
1017
1143
no




TCTCATTGACCT



TCCTAAGCC
TGGCAGAG





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
127
TATAAAGTCCAAACC
TTCATTGTTCTCCC
1017
1143
no




CTCATTGACCT



TCCTAAGCC
TGGCAGAG





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
137
TATAAAGTCCAAACC
CCGCCTCTTCTTCA
1017
1153
no




TCATTGACCTTC



TCCTAAGCC
TTGTTCTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
137
TATAAAGTCCAAACC
CCGCCTCTTCTTCA
1017
1153
no




TCATTGACCTT



TCCTAAGCC
TTGTTCTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
137
TATAAAGTCCAAACC
CCGCCTCTTCTTCA
1017
1153
no




CTCATTGACCTT



TCCTAAGCC
TTGTTCTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
137
TATAAAGTCCAAACC
CCGCCTCTTCTTCA
1017
1153
no




TCATTGACCT



TCCTAAGCC
TTGTTCTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
137
TATAAAGTCCAAACC
CCGCCTCTTCTTCA
1017
1153
no




TCTCATTGACCT



TCCTAAGCC
TTGTTCTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
137
TATAAAGTCCAAACC
CCGCCTCTTCTTCA
1017
1153
no




CTCATTGACCT



TCCTAAGCC
TTGTTCTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
138
TATAAAGTCCAAACC
GCCGCCTCTTCTTC
1017
1154
no




TCATTGACCTTC



TCCTAAGCC
ATTGTTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
138
TATAAAGTCCAAACC
GCCGCCTCTTCTTC
1017
1154
no




TCATTGACCTT



TCCTAAGCC
ATTGTTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
138
TATAAAGTCCAAACC
GCCGCCTCTTCTTC
1017
1154
no




CTCATTGACCTT



TCCTAAGCC
ATTGTTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
138
TATAAAGTCCAAACC
GCCGCCTCTTCTTC
1017
1154
no




TCATTGACCT



TCCTAAGCC
ATTGTTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
138
TATAAAGTCCAAACC
GCCGCCTCTTCTTC
1017
1154
no




TCTCATTGACCT



TCCTAAGCC
ATTGTTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
138
TATAAAGTCCAAACC
GCCGCCTCTTCTTC
1017
1154
no




CTCATTGACCT



TCCTAAGCC
ATTGTTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
140
TATAAAGTCCAAACC
TGGCCGCCTCTTCT
1017
1156
no




TCATTGACCTTC



TCCTAAGCC
TCATTG





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
140
TATAAAGTCCAAACC
TGGCCGCCTCTTCT
1017
1156
no




TCATTGACCTT



TCCTAAGCC
TCATTG





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
140
TATAAAGTCCAAACC
TGGCCGCCTCTTCT
1017
1156
no




CTCATTGACCTT



TCCTAAGCC
TCATTG





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
140
TATAAAGTCCAAACC
TGGCCGCCTCTTCT
1017
1156
no




TCATTGACCT



TCCTAAGCC
TCATTG





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
140
TATAAAGTCCAAACC
TGGCCGCCTCTTCT
1017
1156
no




TCTCATTGACCT



TCCTAAGCC
TCATTG





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
140
TATAAAGTCCAAACC
TGGCCGCCTCTTCT
1017
1156
no




CTCATTGACCT



TCCTAAGCC
TCATTG





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
142
TATAAAGTCCAAACC
GGTGGCCGCCTCT
1017
1158
no




TCATTGACCTTC



TCCTAAGCC
TCTTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
142
TATAAAGTCCAAACC
GGTGGCCGCCTCT
1017
1158
no




TCATTGACCTT



TCCTAAGCC
TCTTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
142
TATAAAGTCCAAACC
GGTGGCCGCCTCT
1017
1158
no




CTCATTGACCTT



TCCTAAGCC
TCTTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
142
TATAAAGTCCAAACC
GGTGGCCGCCTCT
1017
1158
no




TCATTGACCT



TCCTAAGCC
TCTTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
142
TATAAAGTCCAAACC
GGTGGCCGCCTCT
1017
1158
no




TCTCATTGACCT



TCCTAAGCC
TCTTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
142
TATAAAGTCCAAACC
GGTGGCCGCCTCT
1017
1158
no




CTCATTGACCT



TCCTAAGCC
TCTTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
186
ATAAAGTCCAAACCT
CCGCAGTCGAGAC
1018
1203
no




TCATTGACCTTC



CCTAAGCC
ACCATG





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
186
ATAAAGTCCAAACCT
CCGCAGTCGAGAC
1018
1203
no




TCATTGACCTT



CCTAAGCC
ACCATG





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
186
ATAAAGTCCAAACCT
CCGCAGTCGAGAC
1018
1203
no




CTCATTGACCTT



CCTAAGCC
ACCATG





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
186
ATAAAGTCCAAACCT
CCGCAGTCGAGAC
1018
1203
no




TCATTGACCT



CCTAAGCC
ACCATG





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
186
ATAAAGTCCAAACCT
CCGCAGTCGAGAC
1018
1203
no




TCTCATTGACCT



CCTAAGCC
ACCATG





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
186
ATAAAGTCCAAACCT
CCGCAGTCGAGAC
1018
1203
no




CTCATTGACCT



CCTAAGCC
ACCATG





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
197
ATAAAGTCCAAACCT
TCTCTCCTTCCCCG
1018
1214
no




TCATTGACCTTC



CCTAAGCC
CAGTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
197
ATAAAGTCCAAACCT
TCTCTCCTTCCCCG
1018
1214
no




TCATTGACCTT



CCTAAGCC
CAGTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
197
ATAAAGTCCAAACCT
TCTCTCCTTCCCCG
1018
1214
no




CTCATTGACCTT



CCTAAGCC
CAGTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
197
ATAAAGTCCAAACCT
TCTCTCCTTCCCCG
1018
1214
no




TCATTGACCT



CCTAAGCC
CAGTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
197
ATAAAGTCCAAACCT
TCTCTCCTTCCCCG
1018
1214
no




TCTCATTGACCT



CCTAAGCC
CAGTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
197
ATAAAGTCCAAACCT
TCTCTCCTTCCCCG
1018
1214
no




CTCATTGACCT



CCTAAGCC
CAGTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
135
TAAAGTCCAAACCTC
CCGCCTCTTCTTCA
1019
1153
no




TCATTGACCTTC



CTAAGCC
TTGTTCTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
135
TAAAGTCCAAACCTC
CCGCCTCTTCTTCA
1019
1153
no




TCATTGACCTT



CTAAGCC
TTGTTCTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
135
TAAAGTCCAAACCTC
CCGCCTCTTCTTCA
1019
1153
no




CTCATTGACCTT



CTAAGCC
TTGTTCTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
135
TAAAGTCCAAACCTC
CCGCCTCTTCTTCA
1019
1153
no




TCATTGACCT



CTAAGCC
TTGTTCTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
135
TAAAGTCCAAACCTC
CCGCCTCTTCTTCA
1019
1153
no




TCTCATTGACCT



CTAAGCC
TTGTTCTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
135
TAAAGTCCAAACCTC
CCGCCTCTTCTTCA
1019
1153
no




CTCATTGACCT



CTAAGCC
TTGTTCTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
136
TAAAGTCCAAACCTC
GCCGCCTCTTCTTC
1019
1154
no




TCATTGACCTTC



CTAAGCC
ATTGTTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
136
TAAAGTCCAAACCTC
GCCGCCTCTTCTTC
1019
1154
no




TCATTGACCTT



CTAAGCC
ATTGTTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
136
TAAAGTCCAAACCTC
GCCGCCTCTTCTTC
1019
1154
no




CTCATTGACCTT



CTAAGCC
ATTGTTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
136
TAAAGTCCAAACCTC
GCCGCCTCTTCTTC
1019
1154
no




TCATTGACCT



CTAAGCC
ATTGTTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
136
TAAAGTCCAAACCTC
GCCGCCTCTTCTTC
1019
1154
no




CTCATTGACCT



CTAAGCC
ATTGTTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
140
TAAAGTCCAAACCTC
GGTGGCCGCCTCT
1019
1158
no




TCATTGACCTTC



CTAAGCC
TCTTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
140
TAAAGTCCAAACCTC
GGTGGCCGCCTCT
1019
1158
no




TCATTGACCTT



CTAAGCC
TCTTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
140
TAAAGTCCAAACCTC
GGTGGCCGCCTCT
1019
1158
no




CTCATTGACCTT



CTAAGCC
TCTTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
140
TAAAGTCCAAACCTC
GGTGGCCGCCTCT
1019
1158
no




TCATTGACCT



CTAAGCC
TCTTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
136
TAAAGTCCAAACCTC
GCCGCCTCTTCTTC
1019
1158
no




TCTCATTGACCT



CTAAGCC
ATTGTTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
140
TAAAGTCCAAACCTC
GGTGGCCGCCTCT
1019
1158
no




TCTCATTGACCT



CTAAGCC
TCTTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
140
TAAAGTCCAAACCTC
GGTGGCCGCCTCT
1019
1158
no




CTCATTGACCT



CTAAGCC
TCTTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
92
CCTCCTAAGCCCCAG
GAGGAAGGTTGT
1030
1121
no




TCATTGACCTTC



GTTCTC
GCTCCGTAC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
92
CCTCCTAAGCCCCAG
GAGGAAGGTTGT
1030
1121
no




TCATTGACCTT



GTTCTC
GCTCCGTAC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
92
CCTCCTAAGCCCCAG
GAGGAAGGTTGT
1030
1121
no




CTCATTGACCTT



GTTCTC
GCTCCGTAC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
92
CCTCCTAAGCCCCAG
GAGGAAGGTTGT
1030
1121
no




TCATTGACCT



GTTCTC
GCTCCGTAC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
92
CCTCCTAAGCCCCAG
GAGGAAGGTTGT
1030
1121
no




TCTCATTGACCT



GTTCTC
GCTCCGTAC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
92
CCTCCTAAGCCCCAG
GAGGAAGGTTGT
1030
1121
no




CTCATTGACCT



GTTCTC
GCTCCGTAC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
99
CCTCCTAAGCCCCAG
GGCAGAGGAGGA
1030
1128
no




TCATTGACCTTC



GTTCTC
AGGTTGTG





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
99
CCTCCTAAGCCCCAG
GGCAGAGGAGGA
1030
1128
no




TCATTGACCTT



GTTCTC
AGGTTGTG





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
99
CCTCCTAAGCCCCAG
GGCAGAGGAGGA
1030
1128
no




CTCATTGACCTT



GTTCTC
AGGTTGTG





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
99
CCTCCTAAGCCCCAG
GGCAGAGGAGGA
1030
1128
no




TCATTGACCT



GTTCTC
AGGTTGTG





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
99
CCTCCTAAGCCCCAG
GGCAGAGGAGGA
1030
1128
no




TCTCATTGACCT



GTTCTC
AGGTTGTG





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
99
CCTCCTAAGCCCCAG
GGCAGAGGAGGA
1030
1128
no




CTCATTGACCT



GTTCTC
AGGTTGTG





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
114
CCTCCTAAGCCCCAG
TTCATTGTTCTCCC
1030
1143
no




TCATTGACCTTC



GTTCTC
TGGCAGAG





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
114
CCTCCTAAGCCCCAG
TTCATTGTTCTCCC
1030
1143
no




TCATTGACCTT



GTTCTC
TGGCAGAG





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
114
CCTCCTAAGCCCCAG
TTCATTGTTCTCCC
1030
1143
no




CTCATTGACCTT



GTTCTC
TGGCAGAG





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
114
CCTCCTAAGCCCCAG
TTCATTGTTCTCCC
1030
1143
no




TCATTGACCT



GTTCTC
TGGCAGAG





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
114
CCTCCTAAGCCCCAG
TTCATTGTTCTCCC
1030
1143
no




TCTCATTGACCT



GTTCTC
TGGCAGAG





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
124
CCTCCTAAGCCCCAG
CCGCCTCTTCTTCA
1030
1153
no




TCATTGACCTTC



GTTCTC
TTGTTCTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
124
CCTCCTAAGCCCCAG
CCGCCTCTTCTTCA
1030
1153
no




TCATTGACCTT



GTTCTC
TTGTTCTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
124
CCTCCTAAGCCCCAG
CCGCCTCTTCTTCA
1030
1153
no




CTCATTGACCTT



GTTCTC
TTGTTCTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
124
CCTCCTAAGCCCCAG
CCGCCTCTTCTTCA
1030
1153
no




TCATTGACCT



GTTCTC
TTGTTCTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
124
CCTCCTAAGCCCCAG
CCGCCTCTTCTTCA
1030
1153
no




TCTCATTGACCT



GTTCTC
TTGTTCTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
124
CCTCCTAAGCCCCAG
CCGCCTCTTCTTCA
1030
1153
no




CTCATTGACCT



GTTCTC
TTGTTCTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
125
CCTCCTAAGCCCCAG
GCCGCCTCTTCTTC
1030
1154
no




TCATTGACCTTC



GTTCTC
ATTGTTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
125
CCTCCTAAGCCCCAG
GCCGCCTCTTCTTC
1030
1154
no




TCATTGACCTT



GTTCTC
ATTGTTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
125
CCTCCTAAGCCCCAG
GCCGCCTCTTCTTC
1030
1154
no




CTCATTGACCTT



GTTCTC
ATTGTTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
125
CCTCCTAAGCCCCAG
GCCGCCTCTTCTTC
1030
1154
no




TCATTGACCT



GTTCTC
ATTGTTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
125
CCTCCTAAGCCCCAG
GCCGCCTCTTCTTC
1030
1154
no




TCTCATTGACCT



GTTCTC
ATTGTTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
125
CCTCCTAAGCCCCAG
GCCGCCTCTTCTTC
1030
1154
no




CTCATTGACCT



GTTCTC
ATTGTTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
127
CCTCCTAAGCCCCAG
TGGCCGCCTCTTCT
1030
1156
no




TCATTGACCTTC



GTTCTC
TCATTG





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
127
CCTCCTAAGCCCCAG
TGGCCGCCTCTTCT
1030
1156
no




TCATTGACCTT



GTTCTC
TCATTG





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
127
CCTCCTAAGCCCCAG
TGGCCGCCTCTTCT
1030
1156
no




CTCATTGACCTT



GTTCTC
TCATTG





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
127
CCTCCTAAGCCCCAG
TGGCCGCCTCTTCT
1030
1156
no




TCATTGACCT



GTTCTC
TCATTG





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
127
CCTCCTAAGCCCCAG
TGGCCGCCTCTTCT
1030
1156
no




TCTCATTGACCT



GTTCTC
TCATTG





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
127
CCTCCTAAGCCCCAG
TGGCCGCCTCTTCT
1030
1156
no




CTCATTGACCT



GTTCTC
TCATTG





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
132
CCTCCTAAGCCCCAG
GGTGGTGGCCGCC
1030
1158
no




TCATTGACCTTC



GTTCTC
TCTTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
129
CCTCCTAAGCCCCAG
GGTGGCCGCCTCT
1030
1158
no




TCATTGACCTTC



GTTCTC
TCTTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
132
CCTCCTAAGCCCCAG
GGTGGTGGCCGCC
1030
1158
no




TCATTGACCTT



GTTCTC
TCTTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
129
CCTCCTAAGCCCCAG
GGTGGCCGCCTCT
1030
1158
no




TCATTGACCTT



GTTCTC
TCTTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
132
CCTCCTAAGCCCCAG
GGTGGTGGCCGCC
1030
1158
no




CTCATTGACCTT



GTTCTC
TCTTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
129
CCTCCTAAGCCCCAG
GGTGGCCGCCTCT
1030
1158
no




CTCATTGACCTT



GTTCTC
TCTTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
132
CCTCCTAAGCCCCAG
GGTGGTGGCCGCC
1030
1158
no




TCATTGACCT



GTTCTC
TCTTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
129
CCTCCTAAGCCCCAG
GGTGGCCGCCTCT
1030
1158
no




TCATTGACCT



GTTCTC
TCTTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
132
CCTCCTAAGCCCCAG
GGTGGTGGCCGCC
1030
1158
no




TCTCATTGACCT



GTTCTC
TCTTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
129
CCTCCTAAGCCCCAG
GGTGGCCGCCTCT
1030
1158
no




TCTCATTGACCT



GTTCTC
TCTTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
132
CCTCCTAAGCCCCAG
GGTGGTGGCCGCC
1030
1158
no




CTCATTGACCT



GTTCTC
TCTTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
129
CCTCCTAAGCCCCAG
GGTGGCCGCCTCT
1030
1158
no




CTCATTGACCT



GTTCTC
TCTTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
174
CCTCCTAAGCCCCAG
CCGCAGTCGAGAC
1030
1203
no




TCATTGACCTTC



GTTCTC
ACCATG





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
174
CCTCCTAAGCCCCAG
CCGCAGTCGAGAC
1030
1203
no




TCATTGACCTT



GTTCTC
ACCATG





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
174
CCTCCTAAGCCCCAG
CCGCAGTCGAGAC
1030
1203
no




CTCATTGACCTT



GTTCTC
ACCATG





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
174
CCTCCTAAGCCCCAG
CCGCAGTCGAGAC
1030
1203
no




TCATTGACCT



GTTCTC
ACCATG





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
174
CCTCCTAAGCCCCAG
CCGCAGTCGAGAC
1030
1203
no




TCTCATTGACCT



GTTCTC
ACCATG





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
174
CCTCCTAAGCCCCAG
CCGCAGTCGAGAC
1030
1203
no




CTCATTGACCT



GTTCTC
ACCATG





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
177
CCTCCTAAGCCCCAG
TCCCCGCAGTCGA
1030
1206
no




TCATTGACCTTC



GTTCTC
GACAC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
177
CCTCCTAAGCCCCAG
TCCCCGCAGTCGA
1030
1206
no




TCATTGACCTT



GTTCTC
GACAC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
177
CCTCCTAAGCCCCAG
TCCCCGCAGTCGA
1030
1206
no




CTCATTGACCTT



GTTCTC
GACAC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
177
CCTCCTAAGCCCCAG
TCCCCGCAGTCGA
1030
1206
no




TCATTGACCT



GTTCTC
GACAC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
177
CCTCCTAAGCCCCAG
TCCCCGCAGTCGA
1030
1206
no




TCTCATTGACCT



GTTCTC
GACAC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
177
CCTCCTAAGCCCCAG
TCCCCGCAGTCGA
1030
1206
no




CTCATTGACCT



GTTCTC
GACAC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
181
CCTCCTAAGCCCCAG
TCCTTCCCCGCAGT
1030
1210
no




TCATTGACCTTC



GTTCTC
CGAG





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
181
CCTCCTAAGCCCCAG
TCCTTCCCCGCAGT
1030
1210
no




TCATTGACCTT



GTTCTC
CGAG





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
181
CCTCCTAAGCCCCAG
TCCTTCCCCGCAGT
1030
1210
no




CTCATTGACCTT



GTTCTC
CGAG





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
181
CCTCCTAAGCCCCAG
TCCTTCCCCGCAGT
1030
1210
no




TCATTGACCT



GTTCTC
CGAG





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
181
CCTCCTAAGCCCCAG
TCCTTCCCCGCAGT
1030
1210
no




TCTCATTGACCT



GTTCTC
CGAG





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
114
CCTCCTAAGCCCCAG
TTCATTGTTCTCCC
1030
1210
no




CTCATTGACCT



GTTCTC
TGGCAGAG





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
181
CCTCCTAAGCCCCAG
TCCTTCCCCGCAGT
1030
1210
no




CTCATTGACCT



GTTCTC
CGAG





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
185
CCTCCTAAGCCCCAG
TCTCTCCTTCCCCG
1030
1214
no




TCATTGACCTTC



GTTCTC
CAGTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
185
CCTCCTAAGCCCCAG
TCTCTCCTTCCCCG
1030
1214
no




TCATTGACCTT



GTTCTC
CAGTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
185
CCTCCTAAGCCCCAG
TCTCTCCTTCCCCG
1030
1214
no




CTCATTGACCTT



GTTCTC
CAGTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
185
CCTCCTAAGCCCCAG
TCTCTCCTTCCCCG
1030
1214
no




TCATTGACCT



GTTCTC
CAGTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
185
CCTCCTAAGCCCCAG
TCTCTCCTTCCCCG
1030
1214
no




TCTCATTGACCT



GTTCTC
CAGTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
185
CCTCCTAAGCCCCAG
TCTCTCCTTCCCCG
1030
1214
no




CTCATTGACCT



GTTCTC
CAGTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
197
CCTCCTAAGCCCCAG
GCTGCGGGAGGG
1030
1226
no




TCATTGACCTTC



GTTCTC
TCTCTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
197
CCTCCTAAGCCCCAG
GCTGCGGGAGGG
1030
1226
no




TCATTGACCTT



GTTCTC
TCTCTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
197
CCTCCTAAGCCCCAG
GCTGCGGGAGGG
1030
1226
no




CTCATTGACCTT



GTTCTC
TCTCTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
197
CCTCCTAAGCCCCAG
GCTGCGGGAGGG
1030
1226
no




TCATTGACCT



GTTCTC
TCTCTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
197
CCTCCTAAGCCCCAG
GCTGCGGGAGGG
1030
1226
no




TCTCATTGACCT



GTTCTC
TCTCTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
197
CCTCCTAAGCCCCAG
GCTGCGGGAGGG
1030
1226
no




CTCATTGACCT



GTTCTC
TCTCTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
90
TCCTAAGCCCCAGGT
GAGGAAGGTTGT
1032
1121
no




TCATTGACCTTC



TCTCC
GCTCCGTAC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
90
TCCTAAGCCCCAGGT
GAGGAAGGTTGT
1032
1121
no




TCATTGACCTT



TCTCC
GCTCCGTAC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
90
TCCTAAGCCCCAGGT
GAGGAAGGTTGT
1032
1121
no




CTCATTGACCTT



TCTCC
GCTCCGTAC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
90
TCCTAAGCCCCAGGT
GAGGAAGGTTGT
1032
1121
no




TCATTGACCT



TCTCC
GCTCCGTAC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
90
TCCTAAGCCCCAGGT
GAGGAAGGTTGT
1032
1121
no




TCTCATTGACCT



TCTCC
GCTCCGTAC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
90
TCCTAAGCCCCAGGT
GAGGAAGGTTGT
1032
1121
no




CTCATTGACCT



TCTCC
GCTCCGTAC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
95
TCCTAAGCCCCAGGT
CAGAGGAGGAAG
1032
1126
no




TCATTGACCTTC



TCTCC
GTTGTGCTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
95
TCCTAAGCCCCAGGT
CAGAGGAGGAAG
1032
1126
no




TCATTGACCTT



TCTCC
GTTGTGCTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
95
TCCTAAGCCCCAGGT
CAGAGGAGGAAG
1032
1126
no




CTCATTGACCTT



TCTCC
GTTGTGCTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
95
TCCTAAGCCCCAGGT
CAGAGGAGGAAG
1032
1126
no




TCATTGACCT



TCTCC
GTTGTGCTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
95
TCCTAAGCCCCAGGT
CAGAGGAGGAAG
1032
1126
no




TCTCATTGACCT



TCTCC
GTTGTGCTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
95
TCCTAAGCCCCAGGT
CAGAGGAGGAAG
1032
1126
no




CTCATTGACCT



TCTCC
GTTGTGCTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
97
TCCTAAGCCCCAGGT
GGCAGAGGAGGA
1032
1128
no




TCATTGACCTTC



TCTCC
AGGTTGTG





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
97
TCCTAAGCCCCAGGT
GGCAGAGGAGGA
1032
1128
no




TCATTGACCTT



TCTCC
AGGTTGTG





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
97
TCCTAAGCCCCAGGT
GGCAGAGGAGGA
1032
1128
no




CTCATTGACCTT



TCTCC
AGGTTGTG





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
97
TCCTAAGCCCCAGGT
GGCAGAGGAGGA
1032
1128
no




TCATTGACCT



TCTCC
AGGTTGTG





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
97
TCCTAAGCCCCAGGT
GGCAGAGGAGGA
1032
1128
no




TCTCATTGACCT



TCTCC
AGGTTGTG





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
97
TCCTAAGCCCCAGGT
GGCAGAGGAGGA
1032
1128
no




CTCATTGACCT



TCTCC
AGGTTGTG





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
99
TCCTAAGCCCCAGGT
CTGGCAGAGGAG
1032
1130
no




TCATTGACCTTC



TCTCC
GAAGGTTG





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
99
TCCTAAGCCCCAGGT
CTGGCAGAGGAG
1032
1130
no




TCATTGACCTT



TCTCC
GAAGGTTG





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
99
TCCTAAGCCCCAGGT
CTGGCAGAGGAG
1032
1130
no




CTCATTGACCTT



TCTCC
GAAGGTTG





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
99
TCCTAAGCCCCAGGT
CTGGCAGAGGAG
1032
1130
no




TCATTGACCT



TCTCC
GAAGGTTG





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
99
TCCTAAGCCCCAGGT
CTGGCAGAGGAG
1032
1130
no




TCTCATTGACCT



TCTCC
GAAGGTTG





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
99
TCCTAAGCCCCAGGT
CTGGCAGAGGAG
1032
1130
no




CTCATTGACCT



TCTCC
GAAGGTTG





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
112
TCCTAAGCCCCAGGT
TTCATTGTTCTCCC
1032
1143
no




TCATTGACCTTC



TCTCC
TGGCAGAG





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
112
TCCTAAGCCCCAGGT
TTCATTGTTCTCCC
1032
1143
no




TCATTGACCTT



TCTCC
TGGCAGAG





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
112
TCCTAAGCCCCAGGT
TTCATTGTTCTCCC
1032
1143
no




CTCATTGACCTT



TCTCC
TGGCAGAG





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
112
TCCTAAGCCCCAGGT
TTCATTGTTCTCCC
1032
1143
no




TCATTGACCT



TCTCC
TGGCAGAG





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
112
TCCTAAGCCCCAGGT
TTCATTGTTCTCCC
1032
1143
no




TCTCATTGACCT



TCTCC
TGGCAGAG





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
112
TCCTAAGCCCCAGGT
TTCATTGTTCTCCC
1032
1143
no




CTCATTGACCT



TCTCC
TGGCAGAG





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
122
TCCTAAGCCCCAGGT
CCGCCTCTTCTTCA
1032
1153
no




TCATTGACCTTC



TCTCC
TTGTTCTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
122
TCCTAAGCCCCAGGT
CCGCCTCTTCTTCA
1032
1153
no




TCATTGACCTT



TCTCC
TTGTTCTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
122
TCCTAAGCCCCAGGT
CCGCCTCTTCTTCA
1032
1153
no




CTCATTGACCTT



TCTCC
TTGTTCTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
122
TCCTAAGCCCCAGGT
CCGCCTCTTCTTCA
1032
1153
no




TCATTGACCT



TCTCC
TTGTTCTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
122
TCCTAAGCCCCAGGT
CCGCCTCTTCTTCA
1032
1153
no




TCTCATTGACCT



TCTCC
TTGTTCTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
122
TCCTAAGCCCCAGGT
CCGCCTCTTCTTCA
1032
1153
no




CTCATTGACCT



TCTCC
TTGTTCTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
123
TCCTAAGCCCCAGGT
GCCGCCTCTTCTTC
1032
1154
no




TCATTGACCTTC



TCTCC
ATTGTTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
123
TCCTAAGCCCCAGGT
GCCGCCTCTTCTTC
1032
1154
no




TCATTGACCTT



TCTCC
ATTGTTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
123
TCCTAAGCCCCAGGT
GCCGCCTCTTCTTC
1032
1154
no




CTCATTGACCTT



TCTCC
ATTGTTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
123
TCCTAAGCCCCAGGT
GCCGCCTCTTCTTC
1032
1154
no




TCATTGACCT



TCTCC
ATTGTTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
123
TCCTAAGCCCCAGGT
GCCGCCTCTTCTTC
1032
1154
no




TCTCATTGACCT



TCTCC
ATTGTTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
123
TCCTAAGCCCCAGGT
GCCGCCTCTTCTTC
1032
1154
no




CTCATTGACCT



TCTCC
ATTGTTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
125
TCCTAAGCCCCAGGT
TGGCCGCCTCTTCT
1032
1156
no




TCATTGACCTTC



TCTCC
TCATTG





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
172
TCCTAAGCCCCAGGT
CCGCAGTCGAGAC
1032
1156
no




TCATTGACCTTC



TCTCC
ACCATG





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
125
TCCTAAGCCCCAGGT
TGGCCGCCTCTTCT
1032
1156
no




TCATTGACCTT



TCTCC
TCATTG





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
125
TCCTAAGCCCCAGGT
TGGCCGCCTCTTCT
1032
1156
no




CTCATTGACCTT



TCTCC
TCATTG





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
125
TCCTAAGCCCCAGGT
TGGCCGCCTCTTCT
1032
1156
no




TCATTGACCT



TCTCC
TCATTG





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
125
TCCTAAGCCCCAGGT
TGGCCGCCTCTTCT
1032
1156
no




TCTCATTGACCT



TCTCC
TCATTG





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
125
TCCTAAGCCCCAGGT
TGGCCGCCTCTTCT
1032
1156
no




CTCATTGACCT



TCTCC
TCATTG





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
127
TCCTAAGCCCCAGGT
GGTGGCCGCCTCT
1032
1158
no




TCATTGACCTTC



TCTCC
TCTTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
130
TCCTAAGCCCCAGGT
GGTGGTGGCCGCC
1032
1158
no




TCATTGACCTTC



TCTCC
TCTTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
127
TCCTAAGCCCCAGGT
GGTGGCCGCCTCT
1032
1158
no




TCATTGACCTT



TCTCC
TCTTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
130
TCCTAAGCCCCAGGT
GGTGGTGGCCGCC
1032
1158
no




TCATTGACCTT



TCTCC
TCTTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
127
TCCTAAGCCCCAGGT
GGTGGCCGCCTCT
1032
1158
no




CTCATTGACCTT



TCTCC
TCTTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
130
TCCTAAGCCCCAGGT
GGTGGTGGCCGCC
1032
1158
no




CTCATTGACCTT



TCTCC
TCTTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
127
TCCTAAGCCCCAGGT
GGTGGCCGCCTCT
1032
1158
no




TCATTGACCT



TCTCC
TCTTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
130
TCCTAAGCCCCAGGT
GGTGGTGGCCGCC
1032
1158
no




TCATTGACCT



TCTCC
TCTTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
127
TCCTAAGCCCCAGGT
GGTGGCCGCCTCT
1032
1158
no




TCTCATTGACCT



TCTCC
TCTTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
130
TCCTAAGCCCCAGGT
GGTGGTGGCCGCC
1032
1158
no




TCTCATTGACCT



TCTCC
TCTTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
127
TCCTAAGCCCCAGGT
GGTGGCCGCCTCT
1032
1158
no




CTCATTGACCT



TCTCC
TCTTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
130
TCCTAAGCCCCAGGT
GGTGGTGGCCGCC
1032
1161
no




CTCATTGACCT



TCTCC
TCTTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
172
TCCTAAGCCCCAGGT
CCGCAGTCGAGAC
1032
1203
no




TCATTGACCTT



TCTCC
ACCATG





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
172
TCCTAAGCCCCAGGT
CCGCAGTCGAGAC
1032
1203
no




CTCATTGACCTT



TCTCC
ACCATG





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
172
TCCTAAGCCCCAGGT
CCGCAGTCGAGAC
1032
1203
no




TCATTGACCT



TCTCC
ACCATG





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
172
TCCTAAGCCCCAGGT
CCGCAGTCGAGAC
1032
1203
no




TCTCATTGACCT



TCTCC
ACCATG





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
172
TCCTAAGCCCCAGGT
CCGCAGTCGAGAC
1032
1203
no




CTCATTGACCT



TCTCC
ACCATG





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
175
TCCTAAGCCCCAGGT
TCCCCGCAGTCGA
1032
1206
no




TCATTGACCTTC



TCTCC
GACAC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
175
TCCTAAGCCCCAGGT
TCCCCGCAGTCGA
1032
1206
no




TCATTGACCTT



TCTCC
GACAC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
175
TCCTAAGCCCCAGGT
TCCCCGCAGTCGA
1032
1206
no




CTCATTGACCTT



TCTCC
GACAC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
175
TCCTAAGCCCCAGGT
TCCCCGCAGTCGA
1032
1206
no




TCATTGACCT



TCTCC
GACAC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
175
TCCTAAGCCCCAGGT
TCCCCGCAGTCGA
1032
1206
no




TCTCATTGACCT



TCTCC
GACAC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
175
TCCTAAGCCCCAGGT
TCCCCGCAGTCGA
1032
1206
no




CTCATTGACCT



TCTCC
GACAC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
179
TCCTAAGCCCCAGGT
TCCTTCCCCGCAGT
1032
1210
no




TCATTGACCTTC



TCTCC
CGAG





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
179
TCCTAAGCCCCAGGT
TCCTTCCCCGCAGT
1032
1210
no




TCATTGACCTT



TCTCC
CGAG





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
179
TCCTAAGCCCCAGGT
TCCTTCCCCGCAGT
1032
1210
no




CTCATTGACCTT



TCTCC
CGAG





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
179
TCCTAAGCCCCAGGT
TCCTTCCCCGCAGT
1032
1210
no




TCATTGACCT



TCTCC
CGAG





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
179
TCCTAAGCCCCAGGT
TCCTTCCCCGCAGT
1032
1210
no




TCTCATTGACCT



TCTCC
CGAG





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
179
TCCTAAGCCCCAGGT
TCCTTCCCCGCAGT
1032
1210
no




CTCATTGACCT



TCTCC
CGAG





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
183
TCCTAAGCCCCAGGT
TCTCTCCTTCCCCG
1032
1214
no




TCATTGACCTTC



TCTCC
CAGTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
183
TCCTAAGCCCCAGGT
TCTCTCCTTCCCCG
1032
1214
no




TCATTGACCTT



TCTCC
CAGTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
183
TCCTAAGCCCCAGGT
TCTCTCCTTCCCCG
1032
1214
no




CTCATTGACCTT



TCTCC
CAGTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
183
TCCTAAGCCCCAGGT
TCTCTCCTTCCCCG
1032
1214
no




TCATTGACCT



TCTCC
CAGTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
183
TCCTAAGCCCCAGGT
TCTCTCCTTCCCCG
1032
1214
no




TCTCATTGACCT



TCTCC
CAGTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
183
TCCTAAGCCCCAGGT
TCTCTCCTTCCCCG
1032
1214
no




CTCATTGACCT



TCTCC
CAGTC





XMRV gag
84.9
AGCGGCGGACCTC
67.6
60
195
TCCTAAGCCCCAGGT
GCTGCGGGAGGG
1032
1226
no




TCATTGACCTTC



TCTCC
TCTCTC





XMRV gag
83.5
AGCGGCGGACCTC
67
58.3
195
TCCTAAGCCCCAGGT
GCTGCGGGAGGG
1032
1226
no




TCATTGACCTT



TCTCC
TCTCTC





XMRV gag
82.7
TAGCGGCGGACCT
66.7
56
195
TCCTAAGCCCCAGGT
GCTGCGGGAGGG
1032
1226
no




CTCATTGACCTT



TCTCC
TCTCTC





XMRV gag
82.5
AGCGGCGGACCTC
66.6
60.9
195
TCCTAAGCCCCAGGT
GCTGCGGGAGGG
1032
1226
no




TCATTGACCT



TCTCC
TCTCTC





XMRV gag
82.3
ATAGCGGCGGACC
66.5
56
195
TCCTAAGCCCCAGGT
GCTGCGGGAGGG
1032
1226
no




TCTCATTGACCT



TCTCC
TCTCTC





XMRV gag
81.6
TAGCGGCGGACCT
66.3
58.3
195
TCCTAAGCCCCAGGT
GCTGCGGGAGGG
1032
1226
no




CTCATTGACCT



TCTCC
TCTCTC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
173
CCAGGATCTGAGAG
AGGCGAAGAGAG
2919
3091
yes




ACCCTTACAACC



AAGTCAACAAG
GCTGACTG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
176
CCAGGATCTGAGAG
CAAAGGCGAAGA
2919
3094
yes




ACCCTTACAACC



AAGTCAACAAG
GAGGCTGAC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
122
CAGGATCTGAGAGA
TCCTTTAAATCAAG
2920
3041
yes




ACCCTTACAACC



AGTCAACAAG
CACAGTGTACC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
169
CAGGATCTGAGAGA
CGAAGAGAGGCT
2920
3088
yes




ACCCTTACAACC



AGTCAACAAG
GACTGGTG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
183
CAGGATCTGAGAGA
TCTCCACTCAAAG
2920
3102
yes




ACCCTTACAACC



AGTCAACAAG
GCGAAGAG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
174
AGGATCTGAGAGAA
CAAAGGCGAAGA
2921
3094
yes




CTTACAACCTCT



GTCAACAAGC
GAGGCTGAC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
174
AGGATCTGAGAGAA
CAAAGGCGAAGA
2921
3094
yes




ACCCTTACAACC



GTCAACAAGC
GAGGCTGAC





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
181
AGGATCTGAGAGAA
CTCCACTCAAAGG
2921
3101
yes




CTTACAACCTCT



GTCAACAAGC
CGAAGAGAG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
181
AGGATCTGAGAGAA
CTCCACTCAAAGG
2921
3101
yes




ACCCTTACAACC



GTCAACAAGC
CGAAGAGAG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
120
GGATCTGAGAGAAG
TCCTTTAAATCAAG
2922
3041
yes




CTTACAACCTCT



TCAACAAGC
CACAGTGTACC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
120
GGATCTGAGAGAAG
TCCTTTAAATCAAG
2922
3041
yes




ACCCTTACAACC



TCAACAAGC
CACAGTGTACC





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
123
GGATCTGAGAGAAG
GCATCCTTTAAATC
2922
3044
yes




CTTACAACCTCT



TCAACAAGC
AAGCACAGTG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
181
GGATCTGAGAGAAG
TCTCCACTCAAAG
2922
3102
yes




CTTACAACCTCT



TCAACAAGC
GCGAAGAG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
181
GGATCTGAGAGAAG
TCTCCACTCAAAG
2922
3102
yes




ACCCTTACAACC



TCAACAAGC
GCGAAGAG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
124
GATCTGAGAGAAGT
AGGCATCCTTTAA
2923
3046
yes




CTTACAACCTCT



CAACAAGCG
ATCAAGCACAG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
128
AAGTCAACAAGCGG
TCTCAGGCAGAAA
2933
3060
yes




CTTACAACCTCT



GTGGAAG
AAGGCATCC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
128
AAGTCAACAAGCGG
TCTCAGGCAGAAA
2933
3060
yes




ACCCTTACAACC



GTGGAAG
AAGGCATCC





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
147
AAGTCAACAAGCGG
GCTGACTGGTGGG
2933
3079
yes




CTTACAACCTCT



GTGGAAG
GTGGAG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
147
AAGTCAACAAGCGG
GCTGACTGGTGGG
2933
3079
yes




ACCCTTACAACC



GTGGAAG
GTGGAG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
159
AAGTCAACAAGCGG
AGGCGAAGAGAG
2933
3091
yes




CTTACAACCTCT



GTGGAAG
GCTGACTG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
159
AAGTCAACAAGCGG
AGGCGAAGAGAG
2933
3091
yes




ACCCTTACAACC



GTGGAAG
GCTGACTG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
162
AAGTCAACAAGCGG
CAAAGGCGAAGA
2933
3094
yes




CTTACAACCTCT



GTGGAAG
GAGGCTGAC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
162
AAGTCAACAAGCGG
CAAAGGCGAAGA
2933
3094
yes




ACCCTTACAACC



GTGGAAG
GAGGCTGAC





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
108
AGTCAACAAGCGGG
TCCTTTAAATCAAG
2934
3041
yes




CTTACAACCTCT



TGGAAG
CACAGTGTACC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
108
AGTCAACAAGCGGG
TCCTTTAAATCAAG
2934
3041
yes




ACCCTTACAACC



TGGAAG
CACAGTGTACC





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
111
AGTCAACAAGCGGG
GCATCCTTTAAATC
2934
3044
yes




CTTACAACCTCT



TGGAAG
AAGCACAGTG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
111
AGTCAACAAGCGGG
GCATCCTTTAAATC
2934
3044
yes




ACCCTTACAACC



TGGAAG
AAGCACAGTG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
113
AGTCAACAAGCGGG
AGGCATCCTTTAA
2934
3046
yes




CTTACAACCTCT



TGGAAG
ATCAAGCACAG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
113
AGTCAACAAGCGGG
AGGCATCCTTTAA
2934
3046
yes




ACCCTTACAACC



TGGAAG
ATCAAGCACAG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
132
AGTCAACAAGCGGG
TGGAGTCTCAGGC
2934
3065
yes




CTTACAACCTCT



TGGAAG
AGAAAAAGG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
132
AGTCAACAAGCGGG
TGGAGTCTCAGGC
2934
3065
yes




ACCCTTACAACC



TGGAAG
AGAAAAAGG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
140
AGTCAACAAGCGGG
TGGTGGGGTGGA
2934
3073
yes




CTTACAACCTCT



TGGAAG
GTCTCAG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
140
AGTCAACAAGCGGG
TGGTGGGGTGGA
2934
3073
yes




ACCCTTACAACC



TGGAAG
GTCTCAG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
142
AGTCAACAAGCGGG
ACTGGTGGGGTG
2934
3075
yes




CTTACAACCTCT



TGGAAG
GAGTCTC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
142
AGTCAACAAGCGGG
ACTGGTGGGGTG
2934
3075
yes




ACCCTTACAACC



TGGAAG
GAGTCTC





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
155
AGTCAACAAGCGGG
CGAAGAGAGGCT
2934
3088
yes




CTTACAACCTCT



TGGAAG
GACTGGTG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
155
AGTCAACAAGCGGG
CGAAGAGAGGCT
2934
3088
yes




ACCCTTACAACC



TGGAAG
GACTGGTG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
200
AGTCAACAAGCGGG
TCAGTTGTCCTGA
2934
3133
yes




CTTACAACCTCT



TGGAAG
GATTCCCATC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
200
AGTCAACAAGCGGG
TCAGTTGTCCTGA
2934
3133
yes




ACCCTTACAACC



TGGAAG
GATTCCCATC





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
106
TCAACAAGCGGGTG
TCCTTTAAATCAAG
2936
3041
yes




CTTACAACCTCT



GAAGAC
CACAGTGTACC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
106
TCAACAAGCGGGTG
TCCTTTAAATCAAG
2936
3041
yes




ACCCTTACAACC



GAAGAC
CACAGTGTACC





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
109
TCAACAAGCGGGTG
GCATCCTTTAAATC
2936
3044
yes




CTTACAACCTCT



GAAGAC
AAGCACAGTG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
109
TCAACAAGCGGGTG
GCATCCTTTAAATC
2936
3044
yes




ACCCTTACAACC



GAAGAC
AAGCACAGTG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
111
TCAACAAGCGGGTG
AGGCATCCTTTAA
2936
3046
yes




CTTACAACCTCT



GAAGAC
ATCAAGCACAG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
111
TCAACAAGCGGGTG
AGGCATCCTTTAA
2936
3046
yes




ACCCTTACAACC



GAAGAC
ATCAAGCACAG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
125
TCAACAAGCGGGTG
TCTCAGGCAGAAA
2936
3060
yes




CTTACAACCTCT



GAAGAC
AAGGCATCC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
125
TCAACAAGCGGGTG
TCTCAGGCAGAAA
2936
3060
yes




ACCCTTACAACC



GAAGAC
AAGGCATCC





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
130
TCAACAAGCGGGTG
TGGAGTCTCAGGC
2936
3065
yes




CTTACAACCTCT



GAAGAC
AGAAAAAGG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
138
TCAACAAGCGGGTG
TGGTGGGGTGGA
2936
3073
yes




CTTACAACCTCT



GAAGAC
GTCTCAG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
138
TCAACAAGCGGGTG
TGGTGGGGTGGA
2936
3073
yes




ACCCTTACAACC



GAAGAC
GTCTCAG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
140
TCAACAAGCGGGTG
ACTGGTGGGGTG
2936
3075
yes




CTTACAACCTCT



GAAGAC
GAGTCTC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
140
TCAACAAGCGGGTG
ACTGGTGGGGTG
2936
3075
yes




ACCCTTACAACC



GAAGAC
GAGTCTC





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
144
TCAACAAGCGGGTG
GCTGACTGGTGGG
2936
3079
yes




CTTACAACCTCT



GAAGAC
GTGGAG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
144
TCAACAAGCGGGTG
GCTGACTGGTGGG
2936
3079
yes




ACCCTTACAACC



GAAGAC
GTGGAG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
153
TCAACAAGCGGGTG
CGAAGAGAGGCT
2936
3088
yes




CTTACAACCTCT



GAAGAC
GACTGGTG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
153
TCAACAAGCGGGTG
CGAAGAGAGGCT
2936
3088
yes




ACCCTTACAACC



GAAGAC
GACTGGTG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
156
TCAACAAGCGGGTG
AGGCGAAGAGAG
2936
3091
yes




CTTACAACCTCT



GAAGAC
GCTGACTG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
156
TCAACAAGCGGGTG
AGGCGAAGAGAG
2936
3091
yes




ACCCTTACAACC



GAAGAC
GCTGACTG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
159
TCAACAAGCGGGTG
CAAAGGCGAAGA
2936
3094
yes




CTTACAACCTCT



GAAGAC
GAGGCTGAC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
159
TCAACAAGCGGGTG
CAAAGGCGAAGA
2936
3094
yes




ACCCTTACAACC



GAAGAC
GAGGCTGAC





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
167
TCAACAAGCGGGTG
TCTCCACTCAAAG
2936
3102
yes




CTTACAACCTCT



GAAGAC
GCGAAGAG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
167
TCAACAAGCGGGTG
TCTCCACTCAAAG
2936
3102
yes




ACCCTTACAACC



GAAGAC
GCGAAGAG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
198
TCAACAAGCGGGTG
TCAGTTGTCCTGA
2936
3133
yes




CTTACAACCTCT



GAAGAC
GATTCCCATC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
198
TCAACAAGCGGGTG
TCAGTTGTCCTGA
2936
3133
yes




ACCCTTACAACC



GAAGAC
GATTCCCATC





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
104
AACAAGCGGGTGGA
TCCTTTAAATCAAG
2938
3041
yes




CTTACAACCTCT



AGACATC
CACAGTGTACC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
104
AACAAGCGGGTGGA
TCCTTTAAATCAAG
2938
3041
yes




ACCCTTACAACC



AGACATC
CACAGTGTACC





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
109
AACAAGCGGGTGGA
AGGCATCCTTTAA
2938
3046
yes




CTTACAACCTCT



AGACATC
ATCAAGCACAG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
109
AACAAGCGGGTGGA
AGGCATCCTTTAA
2938
3046
yes




ACCCTTACAACC



AGACATC
ATCAAGCACAG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
123
AACAAGCGGGTGGA
TCTCAGGCAGAAA
2938
3060
yes




CTTACAACCTCT



AGACATC
AAGGCATCC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
123
AACAAGCGGGTGGA
TCTCAGGCAGAAA
2938
3060
yes




ACCCTTACAACC



AGACATC
AAGGCATCC





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
128
AACAAGCGGGTGGA
TGGAGTCTCAGGC
2938
3065
yes




CTTACAACCTCT



AGACATC
AGAAAAAGG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
142
AACAAGCGGGTGGA
GCTGACTGGTGGG
2938
3079
yes




CTTACAACCTCT



AGACATC
GTGGAG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
142
AACAAGCGGGTGGA
GCTGACTGGTGGG
2938
3079
yes




ACCCTTACAACC



AGACATC
GTGGAG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
154
AACAAGCGGGTGGA
AGGCGAAGAGAG
2938
3091
yes




CTTACAACCTCT



AGACATC
GCTGACTG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
154
AACAAGCGGGTGGA
AGGCGAAGAGAG
2938
3091
yes




ACCCTTACAACC



AGACATC
GCTGACTG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
157
AACAAGCGGGTGGA
CAAAGGCGAAGA
2938
3094
yes




CTTACAACCTCT



AGACATC
GAGGCTGAC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
157
AACAAGCGGGTGGA
CAAAGGCGAAGA
2938
3094
yes




ACCCTTACAACC



AGACATC
GAGGCTGAC





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
184
AACAAGCGGGTGGA
AGATTCCCATCTCT
2938
3121
yes




CTTACAACCTCT



AGACATC
GGATCTCTCC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
184
AACAAGCGGGTGGA
AGATTCCCATCTCT
2938
3121
yes




ACCCTTACAACC



AGACATC
GGATCTCTCC





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
106
ACAAGCGGGTGGAA
GCATCCTTTAAATC
2939
3044
yes




CTTACAACCTCT



GACATC
AAGCACAGTG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
106
ACAAGCGGGTGGAA
GCATCCTTTAAATC
2939
3044
yes




ACCCTTACAACC



GACATC
AAGCACAGTG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
135
ACAAGCGGGTGGAA
TGGTGGGGTGGA
2939
3073
yes




CTTACAACCTCT



GACATC
GTCTCAG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
135
ACAAGCGGGTGGAA
TGGTGGGGTGGA
2939
3073
yes




ACCCTTACAACC



GACATC
GTCTCAG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
137
ACAAGCGGGTGGAA
ACTGGTGGGGTG
2939
3075
yes




CTTACAACCTCT



GACATC
GAGTCTC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
137
ACAAGCGGGTGGAA
ACTGGTGGGGTG
2939
3075
yes




ACCCTTACAACC



GACATC
GAGTCTC





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
150
ACAAGCGGGTGGAA
CGAAGAGAGGCT
2939
3088
yes




CTTACAACCTCT



GACATC
GACTGGTG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
150
ACAAGCGGGTGGAA
CGAAGAGAGGCT
2939
3088
yes




ACCCTTACAACC



GACATC
GACTGGTG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
164
ACAAGCGGGTGGAA
TCTCCACTCAAAG
2939
3102
yes




CTTACAACCTCT



GACATC
GCGAAGAG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
164
ACAAGCGGGTGGAA
TCTCCACTCAAAG
2939
3102
yes




ACCCTTACAACC



GACATC
GCGAAGAG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
195
ACAAGCGGGTGGAA
TCAGTTGTCCTGA
2939
3133
yes




CTTACAACCTCT



GACATC
GATTCCCATC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
195
ACAAGCGGGTGGAA
TCAGTTGTCCTGA
2939
3133
yes




ACCCTTACAACC



GACATC
GATTCCCATC





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
198
ACAAGCGGGTGGAA
AGGTCAGTTGTCC
2939
3136
yes




CTTACAACCTCT



GACATC
TGAGATTCC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
198
ACAAGCGGGTGGAA
AGGTCAGTTGTCC
2939
3136
yes




ACCCTTACAACC



GACATC
TGAGATTCC





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
102
CAAGCGGGTGGAAG
TCCTTTAAATCAAG
2940
3041
yes




CTTACAACCTCT



ACATCC
CACAGTGTACC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
102
CAAGCGGGTGGAAG
TCCTTTAAATCAAG
2940
3041
yes




ACCCTTACAACC



ACATCC
CACAGTGTACC





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
107
CAAGCGGGTGGAAG
AGGCATCCTTTAA
2940
3046
yes




CTTACAACCTCT



ACATCC
ATCAAGCACAG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
107
CAAGCGGGTGGAAG
AGGCATCCTTTAA
2940
3046
yes




ACCCTTACAACC



ACATCC
ATCAAGCACAG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
152
CAAGCGGGTGGAAG
AGGCGAAGAGAG
2940
3091
yes




CTTACAACCTCT



ACATCC
GCTGACTG





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
152
CAAGCGGGTGGAAG
AGGCGAAGAGAG
2940
3091
yes




ACCCTTACAACC



ACATCC
GCTGACTG





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
155
CAAGCGGGTGGAAG
CAAAGGCGAAGA
2940
3094
yes




CTTACAACCTCT



ACATCC
GAGGCTGAC





XMRV pol
75.1
CCCACCGTGCCCA
68.8
64
155
CAAGCGGGTGGAAG
CAAAGGCGAAGA
2940
3094
yes




ACCCTTACAACC



ACATCC
GAGGCTGAC





XMRV pol
75.6
ACCGTGCCCAACC
67.1
56
148
AAGCGGGTGGAAGA
CGAAGAGAGGCT
2941
3088
yes




CTTACAACCTCT



CATCC
GACTGGTG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
116
TGATTTAAAGGATGC
GTCTGGTCCAGGT
3030
3145
yes




CTCTCTTCGCCT



CTTTTTCTGC
CAGTTGTC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
116
TGATTTAAAGGATGC
GTCTGGTCCAGGT
3030
3145
yes




CTCTCTTCGCC



CTTTTTCTGC
CAGTTGTC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
116
TGATTTAAAGGATGC
GTCTGGTCCAGGT
3030
3145
yes




TCTCTTCGCCTT



CTTTTTCTGC
CAGTTGTC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
116
TGATTTAAAGGATGC
GTCTGGTCCAGGT
3030
3145
yes




TCTCTTCGCCT



CTTTTTCTGC
CAGTTGTC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
126
AAGGATGCCTTTTTC
TTTGAAACCCTGT
3037
3162
yes




CTCTCTTCGCC



TGCCTGAG
GGGAGTCTG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
165
AAGGATGCCTTTTTC
GTCTCTGTGCAGT
3037
3201
yes




CTCTCTTCGCC



TGCCTGAG
GCCTCATC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
84
AGGATGCCTTTTTCT
AGATTCCCATCTCT
3038
3121
yes




CTCTCTTCGCCT



GCCTGAG
GGATCTCTCC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
84
AGGATGCCTTTTTCT
AGATTCCCATCTCT
3038
3121
yes




CTCTCTTCGCC



GCCTGAG
GGATCTCTCC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
96
AGGATGCCTTTTTCT
TCAGTTGTCCTGA
3038
3133
yes




CTCTCTTCGCCT



GCCTGAG
GATTCCCATC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
96
AGGATGCCTTTTTCT
TCAGTTGTCCTGA
3038
3133
yes




CTCTCTTCGCC



GCCTGAG
GATTCCCATC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
126
AAGGATGCCTTTTTC
TTTGAAACCCTGT
3038
3162
yes




CTCTCTTCGCCT



TGCCTGAG
GGGAGTCTG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
149
AGGATGCCTTTTTCT
CTCATCAAACAGG
3038
3186
yes




CTCTCTTCGCCT



GCCTGAG
GTGGGACTG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
149
AGGATGCCTTTTTCT
CTCATCAAACAGG
3038
3186
yes




CTCTCTTCGCC



GCCTGAG
GTGGGACTG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
149
AGGATGCCTTTTTCT
CTCATCAAACAGG
3038
3186
yes




TCTCTTCGCCTT



GCCTGAG
GTGGGACTG





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
149
AGGATGCCTTTTTCT
CTCATCAAACAGG
3038
3186
yes




TCTCTTCGCCT



GCCTGAG
GTGGGACTG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
165
AAGGATGCCTTTTTC
GTCTCTGTGCAGT
3038
3201
yes




CTCTCTTCGCCT



TGCCTGAG
GCCTCATC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
178
AGGATGCCTTTTTCT
CGGAAATCTGCTA
3038
3215
yes




CTCTCTTCGCCT



GCCTGAG
GGTCTCTGTG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
178
AGGATGCCTTTTTCT
CGGAAATCTGCTA
3038
3215
yes




CTCTCTTCGCC



GCCTGAG
GGTCTCTGTG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
178
AGGATGCCTTTTTCT
CGGAAATCTGCTA
3038
3215
yes




TCTCTTCGCCTT



GCCTGAG
GGTCTCTGTG





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
178
AGGATGCCTTTTTCT
CGGAAATCTGCTA
3038
3215
yes




TCTCTTCGCCT



GCCTGAG
GGTCTCTGTG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
189
AGGATGCCTTTTTCT
GGTGCTGGATCCG
3038
3226
yes




CTCTCTTCGCCT



GCCTGAG
GAAATCTG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
189
AGGATGCCTTTTTCT
GGTGCTGGATCCG
3038
3226
yes




CTCTCTTCGCC



GCCTGAG
GAAATCTG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
98
GGATGCCTTTTTCTG
AGGTCAGTTGTCC
3039
3136
yes




CTCTCTTCGCCT



CCTGAG
TGAGATTCC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
98
GGATGCCTTTTTCTG
AGGTCAGTTGTCC
3039
3136
yes




CTCTCTTCGCC



CCTGAG
TGAGATTCC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
98
GGATGCCTTTTTCTG
AGGTCAGTTGTCC
3039
3136
yes




TCTCTTCGCCTT



CCTGAG
TGAGATTCC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
98
GGATGCCTTTTTCTG
AGGTCAGTTGTCC
3039
3136
yes




TCTCTTCGCCT



CCTGAG
TGAGATTCC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
107
GGATGCCTTTTTCTG
GTCTGGTCCAGGT
3039
3145
yes




CTCTCTTCGCCT



CCTGAG
CAGTTGTC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
107
GGATGCCTTTTTCTG
GTCTGGTCCAGGT
3039
3145
yes




CTCTCTTCGCC



CCTGAG
CAGTTGTC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
107
GGATGCCTTTTTCTG
GTCTGGTCCAGGT
3039
3145
yes




TCTCTTCGCCTT



CCTGAG
CAGTTGTC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
107
GGATGCCTTTTTCTG
GTCTGGTCCAGGT
3039
3145
yes




TCTCTTCGCCT



CCTGAG
CAGTTGTC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
109
GGATGCCTTTTTCTG
GAGTCTGGTCCAG
3039
3147
no




CTCTCTTCGCCT



CCTGAG
GTCAGTTG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
109
GGATGCCTTTTTCTG
GAGTCTGGTCCAG
3039
3147
no




CTCTCTTCGCC



CCTGAG
GTCAGTTG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
109
GGATGCCTTTTTCTG
GAGTCTGGTCCAG
3039
3147
no




TCTCTTCGCCTT



CCTGAG
GTCAGTTG





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
109
GGATGCCTTTTTCTG
GAGTCTGGTCCAG
3039
3147
no




TCTCTTCGCCT



CCTGAG
GTCAGTTG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
119
GGATGCCTTTTTCTG
AACCCTGTGGGAG
3039
3157
yes




CTCTCTTCGCCT



CCTGAG
TCTGGTC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
119
GGATGCCTTTTTCTG
AACCCTGTGGGAG
3039
3157
yes




CTCTCTTCGCC



CCTGAG
TCTGGTC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
119
GGATGCCTTTTTCTG
AACCCTGTGGGAG
3039
3157
yes




TCTCTTCGCCTT



CCTGAG
TCTGGTC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
119
GGATGCCTTTTTCTG
AACCCTGTGGGAG
3039
3157
yes




TCTCTTCGCCT



CCTGAG
TCTGGTC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
124
GGATGCCTTTTTCTG
TTTGAAACCCTGT
3039
3162
yes




CTCTCTTCGCCT



CCTGAG
GGGAGTCTG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
124
GGATGCCTTTTTCTG
TTTGAAACCCTGT
3039
3162
yes




CTCTCTTCGCC



CCTGAG
GGGAGTCTG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
124
GGATGCCTTTTTCTG
TTTGAAACCCTGT
3039
3162
yes




TCTCTTCGCCTT



CCTGAG
GGGAGTCTG





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
124
GGATGCCTTTTTCTG
TTTGAAACCCTGT
3039
3162
yes




TCTCTTCGCCT



CCTGAG
GGGAGTCTG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
157
GGATGCCTTTTTCTG
GTGCAGTGCCTCA
3039
3195
yes




CTCTCTTCGCCT



CCTGAG
TCAAACAG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
157
GGATGCCTTTTTCTG
GTGCAGTGCCTCA
3039
3195
yes




CTCTCTTCGCC



CCTGAG
TCAAACAG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
157
GGATGCCTTTTTCTG
GTGCAGTGCCTCA
3039
3195
yes




TCTCTTCGCCTT



CCTGAG
TCAAACAG





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
157
GGATGCCTTTTTCTG
GTGCAGTGCCTCA
3039
3195
yes




TCTCTTCGCCT



CCTGAG
TCAAACAG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
159
GGATGCCTTTTTCTG
CTGTGCAGTGCCT
3039
3197
yes




CTCTCTTCGCCT



CCTGAG
CATCAAAC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
159
GGATGCCTTTTTCTG
CTGTGCAGTGCCT
3039
3197
yes




CTCTCTTCGCC



CCTGAG
CATCAAAC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
159
GGATGCCTTTTTCTG
CTGTGCAGTGCCT
3039
3197
yes




TCTCTTCGCCTT



CCTGAG
CATCAAAC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
159
GGATGCCTTTTTCTG
CTGTGCAGTGCCT
3039
3197
yes




TCTCTTCGCCT



CCTGAG
CATCAAAC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
163
GGATGCCTTTTTCTG
GTCTCTGTGCAGT
3039
3201
yes




CTCTCTTCGCCT



CCTGAG
GCCTCATC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
163
GGATGCCTTTTTCTG
GTCTCTGTGCAGT
3039
3201
yes




CTCTCTTCGCC



CCTGAG
GCCTCATC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
163
GGATGCCTTTTTCTG
GTCTCTGTGCAGT
3039
3201
yes




TCTCTTCGCCTT



CCTGAG
GCCTCATC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
163
GGATGCCTTTTTCTG
GTCTCTGTGCAGT
3039
3201
yes




TCTCTTCGCCT



CCTGAG
GCCTCATC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
168
GGATGCCTTTTTCTG
GCTAGGTCTCTGT
3039
3206
yes




CTCTCTTCGCCT



CCTGAG
GCAGTGC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
168
GGATGCCTTTTTCTG
GCTAGGTCTCTGT
3039
3206
yes




CTCTCTTCGCC



CCTGAG
GCAGTGC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
168
GGATGCCTTTTTCTG
GCTAGGTCTCTGT
3039
3206
yes




TCTCTTCGCCTT



CCTGAG
GCAGTGC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
168
GGATGCCTTTTTCTG
GCTAGGTCTCTGT
3039
3206
yes




TCTCTTCGCCT



CCTGAG
GCAGTGC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
178
GGATGCCTTTTTCTG
CCGGAAATCTGCT
3039
3216
yes




CTCTCTTCGCCT



CCTGAG
AGGTCTCTG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
178
GGATGCCTTTTTCTG
CCGGAAATCTGCT
3039
3216
yes




CTCTCTTCGCC



CCTGAG
AGGTCTCTG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
178
GGATGCCTTTTTCTG
CCGGAAATCTGCT
3039
3216
yes




TCTCTTCGCCTT



CCTGAG
AGGTCTCTG





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
178
GGATGCCTTTTTCTG
CCGGAAATCTGCT
3039
3216
yes




TCTCTTCGCCT



CCTGAG
AGGTCTCTG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
181
GGATGCCTTTTTCTG
GATCCGGAAATCT
3039
3219
yes




CTCTCTTCGCCT



CCTGAG
GCTAGGTCTC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
181
GGATGCCTTTTTCTG
GATCCGGAAATCT
3039
3219
yes




CTCTCTTCGCC



CCTGAG
GCTAGGTCTC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
181
GGATGCCTTTTTCTG
GATCCGGAAATCT
3039
3219
yes




TCTCTTCGCCTT



CCTGAG
GCTAGGTCTC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
181
GGATGCCTTTTTCTG
GATCCGGAAATCT
3039
3219
yes




TCTCTTCGCCT



CCTGAG
GCTAGGTCTC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
198
GGATGCCTTTTTCTG
ATCAAGTCTGGGT
3039
3236
yes




CTCTCTTCGCCT



CCTGAG
GCTGGATC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
198
GGATGCCTTTTTCTG
ATCAAGTCTGGGT
3039
3236
yes




CTCTCTTCGCC



CCTGAG
GCTGGATC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
198
GGATGCCTTTTTCTG
ATCAAGTCTGGGT
3039
3236
yes




TCTCTTCGCCTT



CCTGAG
GCTGGATC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
198
GGATGCCTTTTTCTG
ATCAAGTCTGGGT
3039
3236
yes




TCTCTTCGCCT



CCTGAG
GCTGGATC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
82
GATGCCTTTTTCTGC
AGATTCCCATCTCT
3040
3121
yes




CTCTCTTCGCCT



CTGAGAC
GGATCTCTCC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
82
GATGCCTTTTTCTGC
AGATTCCCATCTCT
3040
3121
no




CTCTCTTCGCC



CTGAGAC
GGATCTCTCC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
94
GATGCCTTTTTCTGC
TCAGTTGTCCTGA
3040
3133
yes




CTCTCTTCGCCT



CTGAGAC
GATTCCCATC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
94
GATGCCTTTTTCTGC
TCAGTTGTCCTGA
3040
3133
yes




CTCTCTTCGCC



CTGAGAC
GATTCCCATC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
94
GATGCCTTTTTCTGC
TCAGTTGTCCTGA
3040
3133
yes




TCTCTTCGCCTT



CTGAGAC
GATTCCCATC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
94
GATGCCTTTTTCTGC
TCAGTTGTCCTGA
3040
3133
yes




TCTCTTCGCCT



CTGAGAC
GATTCCCATC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
110
GATGCCTTTTTCTGC
GGGAGTCTGGTCC
3040
3149
no




CTCTCTTCGCCT



CTGAGAC
AGGTCAG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
110
GATGCCTTTTTCTGC
GGGAGTCTGGTCC
3040
3149
no




CTCTCTTCGCC



CTGAGAC
AGGTCAG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
110
GATGCCTTTTTCTGC
GGGAGTCTGGTCC
3040
3149
no




TCTCTTCGCCTT



CTGAGAC
AGGTCAG





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
110
GATGCCTTTTTCTGC
GGGAGTCTGGTCC
3040
3149
no




TCTCTTCGCCT



CTGAGAC
AGGTCAG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
126
GATGCCTTTTTCTGC
GTTTTTGAAACCCT
3040
3165
yes




CTCTCTTCGCCT



CTGAGAC
GTGGGAGTC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
126
GATGCCTTTTTCTGC
GTTTTTGAAACCCT
3040
3165
yes




CTCTCTTCGCC



CTGAGAC
GTGGGAGTC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
126
GATGCCTTTTTCTGC
GTTTTTGAAACCCT
3040
3165
yes




TCTCTTCGCCTT



CTGAGAC
GTGGGAGTC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
126
GATGCCTTTTTCTGC
GTTTTTGAAACCCT
3040
3165
yes




TCTCTTCGCCT



CTGAGAC
GTGGGAGTC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
132
GATGCCTTTTTCTGC
GGGACTGTTTTTG
3040
3171
yes




CTCTCTTCGCCT



CTGAGAC
AAACCCTGTG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
132
GATGCCTTTTTCTGC
GGGACTGTTTTTG
3040
3171
yes




CTCTCTTCGCC



CTGAGAC
AAACCCTGTG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
147
GATGCCTTTTTCTGC
CTCATCAAACAGG
3040
3186
yes




CTCTCTTCGCCT



CTGAGAC
GTGGGACTG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
147
GATGCCTTTTTCTGC
CTCATCAAACAGG
3040
3186
yes




CTCTCTTCGCC



CTGAGAC
GTGGGACTG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
147
GATGCCTTTTTCTGC
CTCATCAAACAGG
3040
3186
yes




TCTCTTCGCCTT



CTGAGAC
GTGGGACTG





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
147
GATGCCTTTTTCTGC
CTCATCAAACAGG
3040
3186
yes




TCTCTTCGCCT



CTGAGAC
GTGGGACTG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
181
GATGCCTTTTTCTGC
GGATCCGGAAATC
3040
3220
yes




CTCTCTTCGCCT



CTGAGAC
TGCTAGGTC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
181
GATGCCTTTTTCTGC
GGATCCGGAAATC
3040
3220
yes




CTCTCTTCGCC



CTGAGAC
TGCTAGGTC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
181
GATGCCTTTTTCTGC
GGATCCGGAAATC
3040
3220
yes




TCTCTTCGCCTT



CTGAGAC
TGCTAGGTC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
181
GATGCCTTTTTCTGC
GGATCCGGAAATC
3040
3220
yes




TCTCTTCGCCT



CTGAGAC
TGCTAGGTC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
183
GATGCCTTTTTCTGC
CTGGATCCGGAAA
3040
3222
yes




CTCTCTTCGCCT



CTGAGAC
TCTGCTAGG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
183
GATGCCTTTTTCTGC
CTGGATCCGGAAA
3040
3222
yes




CTCTCTTCGCC



CTGAGAC
TCTGCTAGG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
183
GATGCCTTTTTCTGC
CTGGATCCGGAAA
3040
3222
yes




TCTCTTCGCCTT



CTGAGAC
TCTGCTAGG





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
183
GATGCCTTTTTCTGC
CTGGATCCGGAAA
3040
3222
yes




TCTCTTCGCCT



CTGAGAC
TCTGCTAGG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
187
GATGCCTTTTTCTGC
GGTGCTGGATCCG
3040
3226
yes




CTCTCTTCGCCT



CTGAGAC
GAAATCTG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
187
GATGCCTTTTTCTGC
GGTGCTGGATCCG
3040
3226
yes




CTCTCTTCGCC



CTGAGAC
GAAATCTG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
187
GATGCCTTTTTCTGC
GGTGCTGGATCCG
3040
3226
yes




TCTCTTCGCCTT



CTGAGAC
GAAATCTG





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
187
GATGCCTTTTTCTGC
GGTGCTGGATCCG
3040
3226
yes




TCTCTTCGCCT



CTGAGAC
GAAATCTG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
188
GATGCCTTTTTCTGC
GGGTGCTGGATCC
3040
3227
yes




CTCTCTTCGCCT



CTGAGAC
GGAAATC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
188
GATGCCTTTTTCTGC
GGGTGCTGGATCC
3040
3227
yes




CTCTCTTCGCC



CTGAGAC
GGAAATC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
188
GATGCCTTTTTCTGC
GGGTGCTGGATCC
3040
3227
yes




TCTCTTCGCCTT



CTGAGAC
GGAAATC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
188
GATGCCTTTTTCTGC
GGGTGCTGGATCC
3040
3227
yes




TCTCTTCGCCT



CTGAGAC
GGAAATC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
200
GATGCCTTTTTCTGC
AGGATCAAGTCTG
3040
3239
yes




CTCTCTTCGCCT



CTGAGAC
GGTGCTG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
200
GATGCCTTTTTCTGC
AGGATCAAGTCTG
3040
3239
yes




CTCTCTTCGCC



CTGAGAC
GGTGCTG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
200
GATGCCTTTTTCTGC
AGGATCAAGTCTG
3040
3239
yes




TCTCTTCGCCTT



CTGAGAC
GGTGCTG





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
200
GATGCCTTTTTCTGC
AGGATCAAGTCTG
3040
3239
yes




TCTCTTCGCCT



CTGAGAC
GGTGCTG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
96
ATGCCTTTTTCTGCCT
AGGTCAGTTGTCC
3041
3136
yes




CTCTCTTCGCCT



GAGAC
TGAGATTCC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
96
ATGCCTTTTTCTGCCT
AGGTCAGTTGTCC
3041
3136
yes




CTCTCTTCGCC



GAGAC
TGAGATTCC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
96
ATGCCTTTTTCTGCCT
AGGTCAGTTGTCC
3041
3136
yes




TCTCTTCGCCTT



GAGAC
TGAGATTCC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
96
ATGCCTTTTTCTGCCT
AGGTCAGTTGTCC
3041
3136
yes




TCTCTTCGCCT



GAGAC
TGAGATTCC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
107
ATGCCTTTTTCTGCCT
GAGTCTGGTCCAG
3041
3147
no




CTCTCTTCGCCT



GAGAC
GTCAGTTG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
107
ATGCCTTTTTCTGCCT
GAGTCTGGTCCAG
3041
3147
no




CTCTCTTCGCC



GAGAC
GTCAGTTG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
107
ATGCCTTTTTCTGCCT
GAGTCTGGTCCAG
3041
3147
no




TCTCTTCGCCTT



GAGAC
GTCAGTTG





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
107
ATGCCTTTTTCTGCCT
GAGTCTGGTCCAG
3041
3147
no




TCTCTTCGCCT



GAGAC
GTCAGTTG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
196
ATGCCTTTTTCTGCCT
ATCAAGTCTGGGT
3041
3236
yes




CTCTCTTCGCCT



GAGAC
GCTGGATC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
196
ATGCCTTTTTCTGCCT
ATCAAGTCTGGGT
3041
3236
yes




CTCTCTTCGCC



GAGAC
GCTGGATC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
196
ATGCCTTTTTCTGCCT
ATCAAGTCTGGGT
3041
3236
yes




TCTCTTCGCCTT



GAGAC
GCTGGATC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
196
ATGCCTTTTTCTGCCT
ATCAAGTCTGGGT
3041
3236
yes




TCTCTTCGCCT



GAGAC
GCTGGATC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
80
TGCCTTTTTCTGCCT
AGATTCCCATCTCT
3042
3121
yes




CTCTCTTCGCCT



GAGACTC
GGATCTCTCC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
80
TGCCTTTTTCTGCCT
AGATTCCCATCTCT
3042
3121
yes




CTCTCTTCGCC



GAGACTC
GGATCTCTCC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
80
TGCCTTTTTCTGCCT
AGATTCCCATCTCT
3042
3121
yes




TCTCTTCGCCTT



GAGACTC
GGATCTCTCC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
80
TGCCTTTTTCTGCCT
AGATTCCCATCTCT
3042
3121
yes




TCTCTTCGCCT



GAGACTC
GGATCTCTCC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
92
TGCCTTTTTCTGCCT
TCAGTTGTCCTGA
3042
3133
yes




CTCTCTTCGCCT



GAGACTC
GATTCCCATC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
92
TGCCTTTTTCTGCCT
TCAGTTGTCCTGA
3042
3133
yes




CTCTCTTCGCC



GAGACTC
GATTCCCATC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
92
TGCCTTTTTCTGCCT
TCAGTTGTCCTGA
3042
3133
yes




TCTCTTCGCCTT



GAGACTC
GATTCCCATC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
92
TGCCTTTTTCTGCCT
TCAGTTGTCCTGA
3042
3133
yes




TCTCTTCGCCT



GAGACTC
GATTCCCATC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
104
TGCCTTTTTCTGCCT
GTCTGGTCCAGGT
3042
3145
yes




CTCTCTTCGCCT



GAGACTC
CAGTTGTC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
104
TGCCTTTTTCTGCCT
GTCTGGTCCAGGT
3042
3145
yes




CTCTCTTCGCC



GAGACTC
CAGTTGTC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
104
TGCCTTTTTCTGCCT
GTCTGGTCCAGGT
3042
3145
yes




TCTCTTCGCCTT



GAGACTC
CAGTTGTC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
104
TGCCTTTTTCTGCCT
GTCTGGTCCAGGT
3042
3145
yes




TCTCTTCGCCT



GAGACTC
CAGTTGTC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
130
TGCCTTTTTCTGCCT
GGGACTGTTTTTG
3042
3171
yes




CTCTCTTCGCCT



GAGACTC
AAACCCTGTG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
130
TGCCTTTTTCTGCCT
GGGACTGTTTTTG
3042
3171
yes




CTCTCTTCGCC



GAGACTC
AAACCCTGTG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
130
TGCCTTTTTCTGCCT
GGGACTGTTTTTG
3042
3171
yes




TCTCTTCGCCTT



GAGACTC
AAACCCTGTG





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
130
TGCCTTTTTCTGCCT
GGGACTGTTTTTG
3042
3171
yes




TCTCTTCGCCT



GAGACTC
AAACCCTGTG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
145
TGCCTTTTTCTGCCT
CTCATCAAACAGG
3042
3186
yes




CTCTCTTCGCCT



GAGACTC
GTGGGACTG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
145
TGCCTTTTTCTGCCT
CTCATCAAACAGG
3042
3186
yes




CTCTCTTCGCC



GAGACTC
GTGGGACTG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
145
TGCCTTTTTCTGCCT
CTCATCAAACAGG
3042
3186
yes




TCTCTTCGCCTT



GAGACTC
GTGGGACTG





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
145
TGCCTTTTTCTGCCT
CTCATCAAACAGG
3042
3186
yes




TCTCTTCGCCT



GAGACTC
GTGGGACTG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
154
TGCCTTTTTCTGCCT
GTGCAGTGCCTCA
3042
3195
yes




CTCTCTTCGCCT



GAGACTC
TCAAACAG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
154
TGCCTTTTTCTGCCT
GTGCAGTGCCTCA
3042
3195
yes




CTCTCTTCGCC



GAGACTC
TCAAACAG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
154
TGCCTTTTTCTGCCT
GTGCAGTGCCTCA
3042
3195
yes




TCTCTTCGCCTT



GAGACTC
TCAAACAG





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
154
TGCCTTTTTCTGCCT
GTGCAGTGCCTCA
3042
3195
yes




TCTCTTCGCCT



GAGACTC
TCAAACAG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
156
TGCCTTTTTCTGCCT
CTGTGCAGTGCCT
3042
3197
yes




CTCTCTTCGCCT



GAGACTC
CATCAAAC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
156
TGCCTTTTTCTGCCT
CTGTGCAGTGCCT
3042
3197
yes




CTCTCTTCGCC



GAGACTC
CATCAAAC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
156
TGCCTTTTTCTGCCT
CTGTGCAGTGCCT
3042
3197
yes




TCTCTTCGCCTT



GAGACTC
CATCAAAC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
156
TGCCTTTTTCTGCCT
CTGTGCAGTGCCT
3042
3197
yes




TCTCTTCGCCT



GAGACTC
CATCAAAC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
160
TGCCTTTTTCTGCCT
GTCTCTGTGCAGT
3042
3201
yes




CTCTCTTCGCCT



GAGACTC
GCCTCATC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
160
TGCCTTTTTCTGCCT
GTCTCTGTGCAGT
3042
3201
yes




CTCTCTTCGCC



GAGACTC
GCCTCATC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
160
TGCCTTTTTCTGCCT
GTCTCTGTGCAGT
3042
3201
yes




TCTCTTCGCCTT



GAGACTC
GCCTCATC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
160
TGCCTTTTTCTGCCT
GTCTCTGTGCAGT
3042
3201
yes




TCTCTTCGCCT



GAGACTC
GCCTCATC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
174
TGCCTTTTTCTGCCT
CGGAAATCTGCTA
3042
3215
yes




CTCTCTTCGCCT



GAGACTC
GGTCTCTGTG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
174
TGCCTTTTTCTGCCT
CGGAAATCTGCTA
3042
3215
yes




CTCTCTTCGCC



GAGACTC
GGTCTCTGTG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
174
TGCCTTTTTCTGCCT
CGGAAATCTGCTA
3042
3215
yes




TCTCTTCGCCTT



GAGACTC
GGTCTCTGTG





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
174
TGCCTTTTTCTGCCT
CGGAAATCTGCTA
3042
3215
yes




TCTCTTCGCCT



GAGACTC
GGTCTCTGTG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
175
TGCCTTTTTCTGCCT
CCGGAAATCTGCT
3042
3216
yes




CTCTCTTCGCCT



GAGACTC
AGGTCTCTG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
175
TGCCTTTTTCTGCCT
CCGGAAATCTGCT
3042
3216
yes




CTCTCTTCGCC



GAGACTC
AGGTCTCTG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
175
TGCCTTTTTCTGCCT
CCGGAAATCTGCT
3042
3216
yes




TCTCTTCGCCTT



GAGACTC
AGGTCTCTG





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
175
TGCCTTTTTCTGCCT
CCGGAAATCTGCT
3042
3216
yes




TCTCTTCGCCT



GAGACTC
AGGTCTCTG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
179
TGCCTTTTTCTGCCT
GGATCCGGAAATC
3042
3220
yes




CTCTCTTCGCCT



GAGACTC
TGCTAGGTC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
179
TGCCTTTTTCTGCCT
GGATCCGGAAATC
3042
3220
yes




CTCTCTTCGCC



GAGACTC
TGCTAGGTC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
179
TGCCTTTTTCTGCCT
GGATCCGGAAATC
3042
3220
yes




TCTCTTCGCCTT



GAGACTC
TGCTAGGTC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
179
TGCCTTTTTCTGCCT
GGATCCGGAAATC
3042
3220
yes




TCTCTTCGCCT



GAGACTC
TGCTAGGTC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
181
TGCCTTTTTCTGCCT
CTGGATCCGGAAA
3042
3222
yes




CTCTCTTCGCCT



GAGACTC
TCTGCTAGG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
181
TGCCTTTTTCTGCCT
CTGGATCCGGAAA
3042
3222
yes




CTCTCTTCGCC



GAGACTC
TCTGCTAGG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
181
TGCCTTTTTCTGCCT
CTGGATCCGGAAA
3042
3222
yes




TCTCTTCGCCTT



GAGACTC
TCTGCTAGG





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
181
TGCCTTTTTCTGCCT
CTGGATCCGGAAA
3042
3222
yes




TCTCTTCGCCT



GAGACTC
TCTGCTAGG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
185
TGCCTTTTTCTGCCT
GGTGCTGGATCCG
3042
3226
yes




CTCTCTTCGCCT



GAGACTC
GAAATCTG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
185
TGCCTTTTTCTGCCT
GGTGCTGGATCCG
3042
3226
yes




CTCTCTTCGCC



GAGACTC
GAAATCTG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
185
TGCCTTTTTCTGCCT
GGTGCTGGATCCG
3042
3226
yes




TCTCTTCGCCTT



GAGACTC
GAAATCTG





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
185
TGCCTTTTTCTGCCT
GGTGCTGGATCCG
3042
3226
yes




TCTCTTCGCCT



GAGACTC
GAAATCTG





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
186
TGCCTTTTTCTGCCT
GGGTGCTGGATCC
3042
3227
yes




CTCTCTTCGCCT



GAGACTC
GGAAATC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
186
TGCCTTTTTCTGCCT
GGGTGCTGGATCC
3042
3227
yes




CTCTCTTCGCC



GAGACTC
GGAAATC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
186
TGCCTTTTTCTGCCT
GGGTGCTGGATCC
3042
3227
yes




TCTCTTCGCCTT



GAGACTC
GGAAATC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
186
TGCCTTTTTCTGCCT
GGGTGCTGGATCC
3042
3227
yes




TCTCTTCGCCT



GAGACTC
GGAAATC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
94
GCCTTTTTCTGCCTG
AGGTCAGTTGTCC
3043
3136
yes




CTCTCTTCGCCT



AGACTC
TGAGATTCC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
94
GCCTTTTTCTGCCTG
AGGTCAGTTGTCC
3043
3136
yes




CTCTCTTCGCC



AGACTC
TGAGATTCC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
94
GCCTTTTTCTGCCTG
AGGTCAGTTGTCC
3043
3136
yes




TCTCTTCGCCTT



AGACTC
TGAGATTCC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
94
GCCTTTTTCTGCCTG
AGGTCAGTTGTCC
3043
3136
yes




TCTCTTCGCCT



AGACTC
TGAGATTCC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
194
GCCTTTTTCTGCCTG
ATCAAGTCTGGGT
3043
3236
yes




CTCTCTTCGCCT



AGACTC
GCTGGATC





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
194
GCCTTTTTCTGCCTG
ATCAAGTCTGGGT
3043
3236
yes




CTCTCTTCGCC



AGACTC
GCTGGATC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
194
GCCTTTTTCTGCCTG
ATCAAGTCTGGGT
3043
3236
yes




TCTCTTCGCCTT



AGACTC
GCTGGATC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
194
GCCTTTTTCTGCCTG
ATCAAGTCTGGGT
3043
3236
yes




TCTCTTCGCCT



AGACTC
GCTGGATC





XMRV pol
77.2
CCCACCAGTCAGC
68.9
64
197
GCCTTTTTCTGCCTG
AGGATCAAGTCTG
3043
3239
yes




CTCTCTTCGCCT



AGACTC
GGTGCTG





XMRV pol
76.5
CCCACCAGTCAGC
67.7
66.7
197
GCCTTTTTCTGCCTG
AGGATCAAGTCTG
3043
3239
yes




CTCTCTTCGCC



AGACTC
GGTGCTG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
89
CTTTTTCTGCCTGAG
TCAGTTGTCCTGA
3045
3133
yes




TCTCTTCGCCTT



ACTCCAC
GATTCCCATC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
89
CTTTTTCTGCCTGAG
TCAGTTGTCCTGA
3045
3133
yes




TCTCTTCGCCT



ACTCCAC
GATTCCCATC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
92
CTTTTTCTGCCTGAG
AGGTCAGTTGTCC
3045
3136
yes




TCTCTTCGCCTT



ACTCCAC
TGAGATTCC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
92
CTTTTTCTGCCTGAG
AGGTCAGTTGTCC
3045
3136
yes




TCTCTTCGCCT



ACTCCAC
TGAGATTCC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
101
CTTTTTCTGCCTGAG
GTCTGGTCCAGGT
3045
3145
yes




TCTCTTCGCCTT



ACTCCAC
CAGTTGTC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
101
CTTTTTCTGCCTGAG
GTCTGGTCCAGGT
3045
3145
yes




TCTCTTCGCCT



ACTCCAC
CAGTTGTC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
151
CTTTTTCTGCCTGAG
GTGCAGTGCCTCA
3045
3195
yes




TCTCTTCGCCTT



ACTCCAC
TCAAACAG





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
151
CTTTTTCTGCCTGAG
GTGCAGTGCCTCA
3045
3195
yes




TCTCTTCGCCT



ACTCCAC
TCAAACAG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
153
CTTTTTCTGCCTGAG
CTGTGCAGTGCCT
3045
3197
yes




TCTCTTCGCCTT



ACTCCAC
CATCAAAC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
153
CTTTTTCTGCCTGAG
CTGTGCAGTGCCT
3045
3197
yes




TCTCTTCGCCT



ACTCCAC
CATCAAAC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
158
CCTTTTTCTGCCTGA
GTCTCTGTGCAGT
3045
3201
yes




TCTCTTCGCCTT



GACTCCAC
GCCTCATC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
158
CCTTTTTCTGCCTGA
GTCTCTGTGCAGT
3045
3201
yes




TCTCTTCGCCT



GACTCCAC
GCCTCATC





XMRV pol
76
CCACCAGTCAGCC
67.3
60
172
CCTTTTTCTGCCTGA
CGGAAATCTGCTA
3045
3215
yes




TCTCTTCGCCTT



GACTCCAC
GGTCTCTGTG





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
172
CCTTTTTCTGCCTGA
CGGAAATCTGCTA
3045
3215
yes




TCTCTTCGCCT



GACTCCAC
GGTCTCTGTG





XMRV pol
76
CCACCAGTCAGCC
67.3
60
192
CTTTTTCTGCCTGAG
ATCAAGTCTGGGT
3045
3236
yes




TCTCTTCGCCTT



ACTCCAC
GCTGGATC





XMRV pol
75.5
CCACCAGTCAGCC
67
62.5
192
CTTTTTCTGCCTGAG
ATCAAGTCTGGGT
3045
3236
yes




TCTCTTCGCCT



ACTCCAC
GCTGGATC





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
94
AAACATGGGGACTA
ACGCGGGGCCCTA
6367
6460
no




CTGACCCGCCA



AGACTGTATCG
CATTG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
135
AACATGGGGACTAA
GGGGGTAGCTGTT
6368
6502
no




CTGACCCGCCA



GACTGTATCG
CAGTGATC





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
172
AACATGGGGACTAA
AGGAGTCCTGGG
6368
6539
no




CTGACCCGCCA



GACTGTATCG
GAGCATG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
200
AACATGGGGACTAA
TAGAGGCCGCGCC
6368
6567
no




CTGACCCGCCA



GACTGTATCG
TGAAG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
90
ACATGGGGACTAAG
GCGGGGCCCTACA
6369
6458
no




CTGACCCGCCA



ACTGTATCG
TTGAG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
115
ACATGGGGACTAAG
TCACGGGATTAGG
6369
6483
no




CTGACCCGCCA



ACTGTATCG
CCCAATG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
122
ACATGGGGACTAAG
TCAGTGATCACGG
6369
6490
no




CTGACCCGCCA



ACTGTATCG
GATTAGGC





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
126
ACATGGGGACTAAG
CTGTTCAGTGATC
6369
6494
no




CTGACCCGCCA



ACTGTATCG
ACGGGATTAG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
155
ACATGGGGACTAAG
ATGATCTGCACGG
6369
6523
no




CTGACCCGCCA



ACTGTATCG
GTTGGG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
159
AACATGGGGACTAA
AGCATGATCTGCA
6369
6526
no




CTGACCCGCCA



GACTGTATCG
CGGGTTG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
167
ACATGGGGACTAAG
GTCCTGGGGAGCA
6369
6535
no




CTGACCCGCCA



ACTGTATCG
TGATCTG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
169
ACATGGGGACTAAG
GAGTCCTGGGGA
6369
6537
no




CTGACCCGCCA



ACTGTATCG
GCATGATC





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
189
ACATGGGGACTAAG
GCCTGAAGGAGG
6369
6557
no




CTGACCCGCCA



ACTGTATCG
AGGACGAG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
195
AAACATGGGGACTA
CCGCGCCTGAAGG
6369
6561
no




CTGACCCGCCA



AGACTGTATCG
AGGAG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
193
ACATGGGGACTAAG
CCGCGCCTGAAGG
6369
6561
no




CTGACCCGCCA



ACTGTATCG
AGGAG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
189
CATGGGGACTAAGA
CGCCTGAAGGAG
6370
6558
no




CTGACCCGCCA



CTGTATCG
GAGGAC





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
153
ATGGGGACTAAGAC
ATGATCTGCACGG
6371
6523
no




CTGACCCGCCA



TGTATCGATC
GTTGGG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
182
ATGGGGACTAAGAC
AAGGAGGAGGAC
6371
6552
no




CTGACCCGCCA



TGTATCGATC
GAGGAGTC





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
180
GGGGACTAAGACTG
AAGGAGGAGGAC
6373
6552
no




CTGACCCGCCA



TATCGATCC
GAGGAGTC





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
86
GGACTAAGACTGTA
ACGCGGGGCCCTA
6375
6460
no




CTGACCCGCCA



TCGATCCACTG
CATTG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
109
GGACTAAGACTGTA
TCACGGGATTAGG
6375
6483
no




CTGACCCGCCA



TCGATCCACTG
CCCAATG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
149
GGACTAAGACTGTA
ATGATCTGCACGG
6375
6523
no




CTGACCCGCCA



TCGATCCACTG
GTTGGG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
152
GGACTAAGACTGTA
AGCATGATCTGCA
6375
6526
no




CTGACCCGCCA



TCGATCCACTG
CGGGTTG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
178
GGACTAAGACTGTA
AAGGAGGAGGAC
6375
6552
no




CTGACCCGCCA



TCGATCCACTG
GAGGAGTC





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
187
GGACTAAGACTGTA
CCGCGCCTGAAGG
6375
6561
no




CTGACCCGCCA



TCGATCCACTG
AGGAG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
193
GGACTAAGACTGTA
TAGAGGCCGCGCC
6375
6567
no




CTGACCCGCCA



TCGATCCACTG
TGAAG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
83
GACTAAGACTGTATC
GCGGGGCCCTACA
6376
6458
no




CTGACCCGCCA



GATCCACTG
TTGAG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
108
GACTAAGACTGTATC
TCACGGGATTAGG
6376
6483
no




CTGACCCGCCA



GATCCACTG
CCCAATG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
148
GACTAAGACTGTATC
ATGATCTGCACGG
6376
6523
no




CTGACCCGCCA



GATCCACTG
GTTGGG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
162
GACTAAGACTGTATC
GAGTCCTGGGGA
6376
6537
no




CTGACCCGCCA



GATCCACTG
GCATGATC





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
183
GACTAAGACTGTATC
CGCCTGAAGGAG
6376
6558
no




CTGACCCGCCA



GATCCACTG
GAGGAC





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
150
ACTAAGACTGTATCG
AGCATGATCTGCA
6377
6526
no




CTGACCCGCCA



ATCCACTGG
CGGGTTG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
159
ACTAAGACTGTATCG
GTCCTGGGGAGCA
6377
6535
no




CTGACCCGCCA



ATCCACTGG
TGATCTG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
163
ACTAAGACTGTATCG
AGGAGTCCTGGG
6377
6539
no




CTGACCCGCCA



ATCCACTGG
GAGCATG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
176
ACTAAGACTGTATCG
AAGGAGGAGGAC
6377
6552
no




CTGACCCGCCA



ATCCACTGG
GAGGAGTC





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
185
ACTAAGACTGTATCG
CCGCGCCTGAAGG
6377
6561
no




CTGACCCGCCA



ATCCACTGG
AGGAG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
191
ACTAAGACTGTATCG
TAGAGGCCGCGCC
6377
6567
no




CTGACCCGCCA



ATCCACTGG
TGAAG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
106
CTAAGACTGTATCGA
TCACGGGATTAGG
6378
6483
no




CTGACCCGCCA



TCCACTGG
CCCAATG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
146
CTAAGACTGTATCGA
ATGATCTGCACGG
6378
6523
no




CTGACCCGCCA



TCCACTGG
GTTGGG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
160
CTAAGACTGTATCGA
GAGTCCTGGGGA
6378
6537
no




CTGACCCGCCA



TCCACTGG
GCATGATC





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
181
CTAAGACTGTATCGA
CGCCTGAAGGAG
6378
6558
no




CTGACCCGCCA



TCCACTGG
GAGGAC





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
186
ACATGGGGACTAAG
TGAAGGAGGAGG
6535
6554
no




CTGACCCGCCA



ACTGTATCG
ACGAGGAG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
178
ACTAAGACTGTATCG
TGAAGGAGGAGG
6535
6554
no




CTGACCCGCCA



ATCCACTGG
ACGAGGAG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
180
GGACTAAGACTGTA
TGAAGGAGGAGG
6535
6554
no




CTGACCCGCCA



TCGATCCACTG
ACGAGGAG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
184
ATGGGGACTAAGAC
TGAAGGAGGAGG
6535
6554
no




CTGACCCGCCA



TGTATCGATC
ACGAGGAG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
182
GGGGACTAAGACTG
TGAAGGAGGAGG
6535
6554
no




CTGACCCGCCA



TATCGATCC
ACGAGGAG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
191
AAACATGGGGACTA
GCCTGAAGGAGG
6538
6557
no




CTGACCCGCCA



AGACTGTATCG
AGGACGAG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
183
GGACTAAGACTGTA
GCCTGAAGGAGG
6538
6557
no




CTGACCCGCCA



TCGATCCACTG
AGGACGAG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
184
ACATGGGGACTAAG
GCCTGAAGGAGG
6538
6557
no




CTGACCCGCCA



ACTGTATCG
AGGACGAG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
181
ACTAAGACTGTATCG
GCCTGAAGGAGG
6538
6557
no




CTGACCCGCCA



ATCCACTGG
AGGACGAG





XRMV env
76.9
TGACCCTGTTCTCT
68.1
60
186
TGGGGACTAAGACT
GCCTGAAGGAGG
6538
6557
no




CTGACCCGCCA



GTATCGATCC
AGGACGAG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
95
CTTCAGGCGCGGCCT
GTAGGCTCCTTCT
6550
6644
no




ACCTGGGACGGG



CTATG
ACCAGGTTTAG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
111
CTTCAGGCGCGGCCT
TGAGGTTGAGGGC
6550
6660
no




ACCTGGGACGGG



CTATG
TAGGTAGG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
116
CTTCAGGCGCGGCCT
ACTGGTGAGGTTG
6550
6665
no




ACCTGGGACGGG



CTATG
AGGGCTAG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
121
CTTCAGGCGCGGCCT
TCGGGACTGGTGA
6550
6670
no




ACCTGGGACGGG



CTATG
GGTTGAG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
123
CTTCAGGCGCGGCCT
TGTCGGGACTGGT
6550
6672
no




ACCTGGGACGGG



CTATG
GAGGTTG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
128
CTTCAGGCGCGGCCT
GGTTTTGTCGGGA
6550
6677
no




ACCTGGGACGGG



CTATG
CTGGTGAG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
129
CTTCAGGCGCGGCCT
GGGTTTTGTCGGG
6550
6678
no




ACCTGGGACGGG



CTATG
ACTGGTG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
133
CTTCAGGCGCGGCCT
TCTTGGGTTTTGTC
6550
6682
no




ACCTGGGACGGG



CTATG
GGGACTG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
142
CTTCAGGCGCGGCCT
AGCCAGCACTCTT
6550
6691
no




ACCTGGGACGGG



CTATG
GGGTTTTG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
150
CTTCAGGCGCGGCCT
CTAGACACAGCCA
6550
6699
no




ACCTGGGACGGG



CTATG
GCACTCTTG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
154
CTTCAGGCGCGGCCT
GATACTAGACACA
6550
6703
no




ACCTGGGACGGG



CTATG
GCCAGCACTC





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
155
CTTCAGGCGCGGCCT
CGATACTAGACAC
6550
6704
no




ACCTGGGACGGG



CTATG
AGCCAGCAC





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
89
TCAGGCGCGGCCTCT
GCTCCTTCTACCAG
6552
6640
no




ACCTGGGACGGG



ATG
GTTTAGCAG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
93
TCAGGCGCGGCCTCT
GTAGGCTCCTTCT
6552
6644
no




ACCTGGGACGGG



ATG
ACCAGGTTTAG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
100
TCAGGCGCGGCCTCT
GGGCTAGGTAGG
6552
6651
no




ACCTGGGACGGG



ATG
CTCCTTCTAC





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
97
GGCGCGGCCTCTAT
GGGCTAGGTAGG
6552
6651
no




ACCTGGGACGGG



GGTG
CTCCTTCTAC





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
101
TCAGGCGCGGCCTCT
AGGGCTAGGTAG
6552
6652
no




ACCTGGGACGGG



ATG
GCTCCTTC





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
109
TCAGGCGCGGCCTCT
TGAGGTTGAGGGC
6552
6660
no




ACCTGGGACGGG



ATG
TAGGTAGG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
114
TCAGGCGCGGCCTCT
ACTGGTGAGGTTG
6552
6665
no




ACCTGGGACGGG



ATG
AGGGCTAG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
138
TCAGGCGCGGCCTCT
CCAGCACTCTTGG
6552
6669
no




ACCTGGGACGGG



ATG
GTTTTGTC





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
119
TCAGGCGCGGCCTCT
TCGGGACTGGTGA
6552
6670
no




ACCTGGGACGGG



ATG
GGTTGAG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
121
TCAGGCGCGGCCTCT
TGTCGGGACTGGT
6552
6672
no




ACCTGGGACGGG



ATG
GAGGTTG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
126
TCAGGCGCGGCCTCT
GGTTTTGTCGGGA
6552
6677
no




ACCTGGGACGGG



ATG
CTGGTGAG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
127
TCAGGCGCGGCCTCT
GGGTTTTGTCGGG
6552
6678
no




ACCTGGGACGGG



ATG
ACTGGTG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
131
TCAGGCGCGGCCTCT
TCTTGGGTTTTGTC
6552
6682
no




ACCTGGGACGGG



ATG
GGGACTG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
140
TCAGGCGCGGCCTCT
AGCCAGCACTCTT
6552
6691
no




ACCTGGGACGGG



ATG
GGGTTTTG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
143
TCAGGCGCGGCCTCT
CACAGCCAGCACT
6552
6694
no




ACCTGGGACGGG



ATG
CTTGGG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
148
TCAGGCGCGGCCTCT
CTAGACACAGCCA
6552
6699
no




ACCTGGGACGGG



ATG
GCACTCTTG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
152
TCAGGCGCGGCCTCT
GATACTAGACACA
6552
6703
no




ACCTGGGACGGG



ATG
GCCAGCACTC





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
153
TCAGGCGCGGCCTCT
CGATACTAGACAC
6552
6704
no




ACCTGGGACGGG



ATG
AGCCAGCAC





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
159
TCAGGCGCGGCCTCT
GGGTCCCGATACT
6552
6710
no




ACCTGGGACGGG



ATG
AGACACAG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
161
TCAGGCGCGGCCTCT
GGGGGTCCCGATA
6552
6712
no




ACCTGGGACGGG



ATG
CTAGACAC





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
182
TTCAGGCGCGGCCTC
CGGCCACCCCTTC
6552
6732
no




ACCTGGGACGGG



TATG
GTAGTAG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
187
TCAGGCGCGGCCTCT
CTAGGACGGCCAC
6552
6738
no




ACCTGGGACGGG



ATG
CCCTTC





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
180
CAGGCGCGGCCTCT
CGGCCACCCCTTC
6553
6732
no




ACCTGGGACGGG



ATGG
GTAGTAG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
86
GGCGCGGCCTCTAT
GCTCCTTCTACCAG
6555
6640
no




ACCTGGGACGGG



GGTG
GTTTAGCAG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
90
GGCGCGGCCTCTAT
GTAGGCTCCTTCT
6555
6644
no




ACCTGGGACGGG



GGTG
ACCAGGTTTAG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
106
GGCGCGGCCTCTAT
TGAGGTTGAGGGC
6555
6660
no




ACCTGGGACGGG



GGTG
TAGGTAGG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
111
GGCGCGGCCTCTAT
ACTGGTGAGGTTG
6555
6665
no




ACCTGGGACGGG



GGTG
AGGGCTAG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
135
GGCGCGGCCTCTAT
CCAGCACTCTTGG
6555
6669
no




ACCTGGGACGGG



GGTG
GTTTTGTC





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
116
GGCGCGGCCTCTAT
TCGGGACTGGTGA
6555
6670
no




ACCTGGGACGGG



GGTG
GGTTGAG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
118
GGCGCGGCCTCTAT
TGTCGGGACTGGT
6555
6672
no




ACCTGGGACGGG



GGTG
GAGGTTG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
123
GGCGCGGCCTCTAT
GGTTTTGTCGGGA
6555
6677
no




ACCTGGGACGGG



GGTG
CTGGTGAG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
124
GGCGCGGCCTCTAT
GGGTTTTGTCGGG
6555
6678
no




ACCTGGGACGGG



GGTG
ACTGGTG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
128
GGCGCGGCCTCTAT
TCTTGGGTTTTGTC
6555
6682
no




ACCTGGGACGGG



GGTG
GGGACTG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
137
GGCGCGGCCTCTAT
AGCCAGCACTCTT
6555
6691
no




ACCTGGGACGGG



GGTG
GGGTTTTG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
140
GGCGCGGCCTCTAT
CACAGCCAGCACT
6555
6694
no




ACCTGGGACGGG



GGTG
CTTGGG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
145
GGCGCGGCCTCTAT
CTAGACACAGCCA
6555
6699
no




ACCTGGGACGGG



GGTG
GCACTCTTG





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
149
GGCGCGGCCTCTAT
GATACTAGACACA
6555
6703
no




ACCTGGGACGGG



GGTG
GCCAGCACTC





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
150
GGCGCGGCCTCTAT
CGATACTAGACAC
6555
6704
no




ACCTGGGACGGG



GGTG
AGCCAGCAC





XRMV env
77.1
CGCCTTCTCAACA
68.5
64
178
GGCGCGGCCTCTAT
CGGCCACCCCTTC
6555
6732
no




ACCTGGGACGGG



GGTG
GTAGTAG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
159
GACGGGAGACAGGC
GCAGAGGTATGGT
6605
6763
no




ACCAGTCCCGA



TGCTAAAC
TGGAGTAAGTAC





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
159
GACGGGAGACAGGC
GCAGAGGTATGGT
6605
6763
no




ACCAGTCCCGA



TGCTAAAC
TGGAGTAAGTAC





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
127
ACGGGAGACAGGCT
CGGCCACCCCTTC
6606
6732
no




ACCAGTCCCGA



GCTAAAC
GTAGTAG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
93
CGGGAGACAGGCTG
CTAGACACAGCCA
6607
6699
no




ACCAGTCCCGA



CTAAAC
GCACTCTTG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
93
CGGGAGACAGGCTG
CTAGACACAGCCA
6607
6699
no




ACCAGTCCCGA



CTAAAC
GCACTCTTG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
97
CGGGAGACAGGCTG
GATACTAGACACA
6607
6703
no




ACCAGTCCCGA



CTAAAC
GCCAGCACTC





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
97
CGGGAGACAGGCTG
GATACTAGACACA
6607
6703
no




ACCAGTCCCGA



CTAAAC
GCCAGCACTC





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
127
ACGGGAGACAGGCT
CGGCCACCCCTTC
6607
6732
no




ACCAGTCCCGA



GCTAAAC
GTAGTAG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
157
CGGGAGACAGGCTG
GCAGAGGTATGGT
6607
6763
no




ACCAGTCCCGA



CTAAAC
TGGAGTAAGTAC





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
157
CGGGAGACAGGCTG
GCAGAGGTATGGT
6607
6763
no




ACCAGTCCCGA



CTAAAC
TGGAGTAAGTAC





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
158
CGGGAGACAGGCTG
GGCAGAGGTATG
6607
6764
no




ACCAGTCCCGA



CTAAAC
GTTGGAGTAAG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
158
CGGGAGACAGGCTG
GGCAGAGGTATG
6607
6764
no




ACCAGTCCCGA



CTAAAC
GTTGGAGTAAG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
159
CGGGAGACAGGCTG
GGGCAGAGGTAT
6607
6765
no




ACCAGTCCCGA



CTAAAC
GGTTGGAG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
159
CGGGAGACAGGCTG
GGGCAGAGGTAT
6607
6765
no




ACCAGTCCCGA



CTAAAC
GGTTGGAG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
161
CGGGAGACAGGCTG
CGGGGCAGAGGT
6607
6767
no




ACCAGTCCCGA



CTAAAC
ATGGTTG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
161
CGGGAGACAGGCTG
CGGGGCAGAGGT
6607
6767
no




ACCAGTCCCGA



CTAAAC
ATGGTTG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
163
CGGGAGACAGGCTG
GCCGGGGCAGAG
6607
6769
no




ACCAGTCCCGA



CTAAAC
GTATGG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
163
CGGGAGACAGGCTG
GCCGGGGCAGAG
6607
6769
no




ACCAGTCCCGA



CTAAAC
GTATGG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
185
CGGGAGACAGGCTG
TTGGGAGGTCACG
6607
6791
no




ACCAGTCCCGA



CTAAAC
GAGCAG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
185
CGGGAGACAGGCTG
TTGGGAGGTCACG
6607
6791
no




ACCAGTCCCGA



CTAAAC
GAGCAG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
192
CGGGAGACAGGCTG
GCTTGTGTTGGGA
6607
6798
no




ACCAGTCCCGA



CTAAAC
GGTCACG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
192
CGGGAGACAGGCTG
GCTTGTGTTGGGA
6607
6798
no




ACCAGTCCCGA



CTAAAC
GGTCACG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
196
CGGGAGACAGGCTG
GTCAGCTTGTGTT
6607
6802
no




ACCAGTCCCGA



CTAAAC
GGGAGGTC





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
196
CGGGAGACAGGCTG
GTCAGCTTGTGTT
6607
6802
no




ACCAGTCCCGA



CTAAAC
GGGAGGTC





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
200
CGGGAGACAGGCTG
CAGGGTCAGCTTG
6607
6806
no




ACCAGTCCCGA



CTAAAC
TGTTGGG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
200
CGGGAGACAGGCTG
CAGGGTCAGCTTG
6607
6806
no




ACCAGTCCCGA



CTAAAC
TGTTGGG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
103
GGGAGACAGGCTGC
GGGTCCCGATACT
6608
6710
no




ACCAGTCCCGA



TAAACC
AGACACAG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
103
GGGAGACAGGCTGC
GGGTCCCGATACT
6608
6710
no




ACCAGTCCCGA



TAAACC
AGACACAG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
178
GGGAGACAGGCTGC
GGTCACGGAGCA
6608
6785
no




ACCAGTCCCGA



TAAACC
GTTAGCC





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
178
GGGAGACAGGCTGC
GGTCACGGAGCA
6608
6785
no




ACCAGTCCCGA



TAAACC
GTTAGCC





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
181
GGGAGACAGGCTGC
GGAGGTCACGGA
6608
6788
no




ACCAGTCCCGA



TAAACC
GCAGTTAG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
181
GGGAGACAGGCTGC
GGAGGTCACGGA
6608
6788
no




ACCAGTCCCGA



TAAACC
GCAGTTAG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
152
GACAGGCTGCTAAA
GCAGAGGTATGGT
6612
6763
no




ACCAGTCCCGA



CCTGGTAG
TGGAGTAAGTAC





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
152
GACAGGCTGCTAAA
GCAGAGGTATGGT
6612
6763
no




ACCAGTCCCGA



CCTGGTAG
TGGAGTAAGTAC





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
153
GACAGGCTGCTAAA
GGCAGAGGTATG
6612
6764
no




ACCAGTCCCGA



CCTGGTAG
GTTGGAGTAAG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
153
GACAGGCTGCTAAA
GGCAGAGGTATG
6612
6764
no




ACCAGTCCCGA



CCTGGTAG
GTTGGAGTAAG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
195
GACAGGCTGCTAAA
CAGGGTCAGCTTG
6612
6806
no




ACCAGTCCCGA



CCTGGTAG
TGTTGGG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
195
GACAGGCTGCTAAA
CAGGGTCAGCTTG
6612
6806
no




ACCAGTCCCGA



CCTGGTAG
TGTTGGG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
98
ACAGGCTGCTAAAC
GGGTCCCGATACT
6613
6710
no




ACCAGTCCCGA



CTGGTAG
AGACACAG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
98
ACAGGCTGCTAAAC
GGGTCCCGATACT
6613
6710
no




ACCAGTCCCGA



CTGGTAG
AGACACAG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
153
ACAGGCTGCTAAAC
GGGCAGAGGTAT
6613
6765
no




ACCAGTCCCGA



CTGGTAG
GGTTGGAG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
153
ACAGGCTGCTAAAC
GGGCAGAGGTAT
6613
6765
no




ACCAGTCCCGA



CTGGTAG
GGTTGGAG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
176
ACAGGCTGCTAAAC
GGAGGTCACGGA
6613
6788
no




ACCAGTCCCGA



CTGGTAG
GCAGTTAG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
176
ACAGGCTGCTAAAC
GGAGGTCACGGA
6613
6788
no




ACCAGTCCCGA



CTGGTAG
GCAGTTAG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
85
AGGCTGCTAAACCT
CTAGACACAGCCA
6615
6699
no




ACCAGTCCCGA



GGTAGAAG
GCACTCTTG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
85
AGGCTGCTAAACCT
CTAGACACAGCCA
6615
6699
no




ACCAGTCCCGA



GGTAGAAG
GCACTCTTG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
89
AGGCTGCTAAACCT
GATACTAGACACA
6615
6703
no




ACCAGTCCCGA



GGTAGAAG
GCCAGCACTC





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
89
AGGCTGCTAAACCT
GATACTAGACACA
6615
6703
no




ACCAGTCCCGA



GGTAGAAG
GCCAGCACTC





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
96
AGGCTGCTAAACCT
GGGTCCCGATACT
6615
6710
no




ACCAGTCCCGA



GGTAGAAG
AGACACAG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
96
AGGCTGCTAAACCT
GGGTCCCGATACT
6615
6710
no




ACCAGTCCCGA



GGTAGAAG
AGACACAG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
150
CAGGCTGCTAAACCT
GCAGAGGTATGGT
6615
6763
no




ACCAGTCCCGA



GGTAGAAG
TGGAGTAAGTAC





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
150
CAGGCTGCTAAACCT
GCAGAGGTATGGT
6615
6763
no




ACCAGTCCCGA



GGTAGAAG
TGGAGTAAGTAC





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
150
AGGCTGCTAAACCT
GGCAGAGGTATG
6615
6764
no




ACCAGTCCCGA



GGTAGAAG
GTTGGAGTAAG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
150
AGGCTGCTAAACCT
GGCAGAGGTATG
6615
6764
no




ACCAGTCCCGA



GGTAGAAG
GTTGGAGTAAG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
151
AGGCTGCTAAACCT
GGGCAGAGGTAT
6615
6765
no




ACCAGTCCCGA



GGTAGAAG
GGTTGGAG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
151
AGGCTGCTAAACCT
GGGCAGAGGTAT
6615
6765
no




ACCAGTCCCGA



GGTAGAAG
GGTTGGAG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
153
AGGCTGCTAAACCT
CGGGGCAGAGGT
6615
6767
no




ACCAGTCCCGA



GGTAGAAG
ATGGTTG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
153
AGGCTGCTAAACCT
CGGGGCAGAGGT
6615
6767
no




ACCAGTCCCGA



GGTAGAAG
ATGGTTG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
155
AGGCTGCTAAACCT
GCCGGGGCAGAG
6615
6769
no




ACCAGTCCCGA



GGTAGAAG
GTATGG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
155
AGGCTGCTAAACCT
GCCGGGGCAGAG
6615
6769
no




ACCAGTCCCGA



GGTAGAAG
GTATGG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
171
AGGCTGCTAAACCT
GGTCACGGAGCA
6615
6785
no




ACCAGTCCCGA



GGTAGAAG
GTTAGCC





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
171
AGGCTGCTAAACCT
GGTCACGGAGCA
6615
6785
no




ACCAGTCCCGA



GGTAGAAG
GTTAGCC





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
174
AGGCTGCTAAACCT
GGAGGTCACGGA
6615
6788
no




ACCAGTCCCGA



GGTAGAAG
GCAGTTAG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
174
AGGCTGCTAAACCT
GGAGGTCACGGA
6615
6788
no




ACCAGTCCCGA



GGTAGAAG
GCAGTTAG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
184
AGGCTGCTAAACCT
GCTTGTGTTGGGA
6615
6798
no




ACCAGTCCCGA



GGTAGAAG
GGTCACG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
184
AGGCTGCTAAACCT
GCTTGTGTTGGGA
6615
6798
no




ACCAGTCCCGA



GGTAGAAG
GGTCACG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
188
AGGCTGCTAAACCT
GTCAGCTTGTGTT
6615
6802
no




ACCAGTCCCGA



GGTAGAAG
GGGAGGTC





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
188
AGGCTGCTAAACCT
GTCAGCTTGTGTT
6615
6802
no




ACCAGTCCCGA



GGTAGAAG
GGGAGGTC





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
192
AGGCTGCTAAACCT
CAGGGTCAGCTTG
6615
6806
no




ACCAGTCCCGA



GGTAGAAG
TGTTGGG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
192
AGGCTGCTAAACCT
CAGGGTCAGCTTG
6615
6806
no




ACCAGTCCCGA



GGTAGAAG
TGTTGGG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
195
AGGCTGCTAAACCT
GGACAGGGTCAG
6615
6809
no




ACCAGTCCCGA



GGTAGAAG
CTTGTGTTG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
195
AGGCTGCTAAACCT
GGACAGGGTCAG
6615
6809
no




ACCAGTCCCGA



GGTAGAAG
CTTGTGTTG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
196
AGGCTGCTAAACCT
CGGACAGGGTCA
6615
6810
no




ACCAGTCCCGA



GGTAGAAG
GCTTGTG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
196
AGGCTGCTAAACCT
CGGACAGGGTCA
6615
6810
no




ACCAGTCCCGA



GGTAGAAG
GCTTGTG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
148
GGCTGCTAAACCTG
GCAGAGGTATGGT
6616
6763
no




ACCAGTCCCGA



GTAGAAGG
TGGAGTAAGTAC





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
148
GGCTGCTAAACCTG
GCAGAGGTATGGT
6616
6763
no




ACCAGTCCCGA



GTAGAAGG
TGGAGTAAGTAC





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
83
GCTGCTAAACCTGGT
CTAGACACAGCCA
6617
6699
no




ACCAGTCCCGA



AGAAGGAG
GCACTCTTG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
83
GCTGCTAAACCTGGT
CTAGACACAGCCA
6617
6699
no




ACCAGTCCCGA



AGAAGGAG
GCACTCTTG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
87
GCTGCTAAACCTGGT
GATACTAGACACA
6617
6703
no




ACCAGTCCCGA



AGAAGGAG
GCCAGCACTC





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
87
GCTGCTAAACCTGGT
GATACTAGACACA
6617
6703
no




ACCAGTCCCGA



AGAAGGAG
GCCAGCACTC





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
148
GCTGCTAAACCTGGT
GGCAGAGGTATG
6617
6764
no




ACCAGTCCCGA



AGAAGGAG
GTTGGAGTAAG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
148
GCTGCTAAACCTGGT
GGCAGAGGTATG
6617
6764
no




ACCAGTCCCGA



AGAAGGAG
GTTGGAGTAAG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
190
GCTGCTAAACCTGGT
CAGGGTCAGCTTG
6617
6806
no




ACCAGTCCCGA



AGAAGGAG
TGTTGGG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
190
GCTGCTAAACCTGGT
CAGGGTCAGCTTG
6617
6806
no




ACCAGTCCCGA



AGAAGGAG
TGTTGGG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
193
GCTGCTAAACCTGGT
GGACAGGGTCAG
6617
6809
no




ACCAGTCCCGA



AGAAGGAG
CTTGTGTTG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
193
GCTGCTAAACCTGGT
GGACAGGGTCAG
6617
6809
no




ACCAGTCCCGA



AGAAGGAG
CTTGTGTTG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
79
CTAAACCTGGTAGA
CTAGACACAGCCA
6621
6699
no




ACCAGTCCCGA



AGGAGCCTAC
GCACTCTTG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
79
CTAAACCTGGTAGA
CTAGACACAGCCA
6621
6699
no




ACCAGTCCCGA



AGGAGCCTAC
GCACTCTTG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
83
CTAAACCTGGTAGA
GATACTAGACACA
6621
6703
no




ACCAGTCCCGA



AGGAGCCTAC
GCCAGCACTC





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
83
CTAAACCTGGTAGA
GATACTAGACACA
6621
6703
no




ACCAGTCCCGA



AGGAGCCTAC
GCCAGCACTC





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
143
CTAAACCTGGTAGA
GCAGAGGTATGGT
6621
6763
no




ACCAGTCCCGA



AGGAGCCTAC
TGGAGTAAGTAC





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
143
CTAAACCTGGTAGA
GCAGAGGTATGGT
6621
6763
no




ACCAGTCCCGA



AGGAGCCTAC
TGGAGTAAGTAC





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
144
CTAAACCTGGTAGA
GGCAGAGGTATG
6621
6764
no




ACCAGTCCCGA



AGGAGCCTAC
GTTGGAGTAAG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
144
CTAAACCTGGTAGA
GGCAGAGGTATG
6621
6764
no




ACCAGTCCCGA



AGGAGCCTAC
GTTGGAGTAAG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
165
CTAAACCTGGTAGA
GGTCACGGAGCA
6621
6785
no




ACCAGTCCCGA



AGGAGCCTAC
GTTAGCC





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
165
CTAAACCTGGTAGA
GGTCACGGAGCA
6621
6785
no




ACCAGTCCCGA



AGGAGCCTAC
GTTAGCC





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
167
TAAACCTGGTAGAA
GGAGGTCACGGA
6622
6788
no




ACCAGTCCCGA



GGAGCCTAC
GCAGTTAG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
167
TAAACCTGGTAGAA
GGAGGTCACGGA
6622
6788
no




ACCAGTCCCGA



GGAGCCTAC
GCAGTTAG





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
163
AAACCTGGTAGAAG
GGTCACGGAGCA
6623
6785
no




ACCAGTCCCGA



GAGCCTAC
GTTAGCC





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
163
AAACCTGGTAGAAG
GGTCACGGAGCA
6623
6785
no




ACCAGTCCCGA



GAGCCTAC
GTTAGCC





XRMV env
76.8
AGCCCTCAACCTC
68
62.5
165
AACCTGGTAGAAGG
GGAGGTCACGGA
6624
6788
no




ACCAGTCCCGA



AGCCTAC
GCAGTTAG





XRMV env
76.5
TAGCCCTCAACCTC
67.7
60
165
AACCTGGTAGAAGG
GGAGGTCACGGA
6624
6788
no




ACCAGTCCCGA



AGCCTAC
GCAGTTAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
88
GCATAGGAGCAGTT
GCGGGAGAGGCC
6832
6919
no




CGAGCGACGG



CCCAAAAC
AAATAGTAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
88
GCATAGGAGCAGTT
GCGGGAGAGGCC
6832
6919
no




GACGAGCGACGG



CCCAAAAC
AAATAGTAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
113
GCATAGGAGCAGTT
GGTGCTGCAAGCC
6832
6944
no




CGAGCGACGG



CCCAAAAC
CAAATG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
113
GCATAGGAGCAGTT
GGTGCTGCAAGCC
6832
6944
no




GACGAGCGACGG



CCCAAAAC
CAAATG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
141
GCATAGGAGCAGTT
CAGTAGTAGATAG
6832
6972
no




CGAGCGACGG



CCCAAAAC
ACAGGGAGTGAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
141
GCATAGGAGCAGTT
CAGTAGTAGATAG
6832
6972
no




GACGAGCGACGG



CCCAAAAC
ACAGGGAGTGAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
160
GCATAGGAGCAGTT
TCAGTGGTTAAGT
6832
6991
no




CGAGCGACGG



CCCAAAAC
TAAGCACAGTAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
160
GCATAGGAGCAGTT
TCAGTGGTTAAGT
6832
6991
no




GACGAGCGACGG



CCCAAAAC
TAAGCACAGTAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
173
GCATAGGAGCAGTT
CAGGACACAGTAA
6832
7004
no




CGAGCGACGG



CCCAAAAC
TCAGTGGTTAAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
173
GCATAGGAGCAGTT
CAGGACACAGTAA
6832
7004
no




GACGAGCGACGG



CCCAAAAC
TCAGTGGTTAAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
178
GCATAGGAGCAGTT
TCAACCAGGACAC
6832
7009
no




CGAGCGACGG



CCCAAAAC
AGTAATCAGTG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
178
GCATAGGAGCAGTT
TCAACCAGGACAC
6832
7009
no




GACGAGCGACGG



CCCAAAAC
AGTAATCAGTG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
180
GCATAGGAGCAGTT
GTTCAACCAGGAC
6832
7011
no




CGAGCGACGG



CCCAAAAC
ACAGTAATCAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
180
GCATAGGAGCAGTT
GTTCAACCAGGAC
6832
7011
no




GACGAGCGACGG



CCCAAAAC
ACAGTAATCAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
174
GAGCAGTTCCCAAA
GTTCAACCAGGAC
6832
7011
no




GACGAGCGACGG



ACCCATC
ACAGTAATCAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
182
GCATAGGAGCAGTT
GAGTTCAACCAGG
6832
7013
no




CGAGCGACGG



CCCAAAAC
ACACAGTAATC





XRMV env
75.7
ATACCACCCAGAA
67.1
60
182
GCATAGGAGCAGTT
GAGTTCAACCAGG
6832
7013
no




GACGAGCGACGG



CCCAAAAC
ACACAGTAATC





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
185
GCATAGGAGCAGTT
CCAGAGTTCAACC
6832
7016
no




CGAGCGACGG



CCCAAAAC
AGGACACAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
185
GCATAGGAGCAGTT
CCAGAGTTCAACC
6832
7016
no




GACGAGCGACGG



CCCAAAAC
AGGACACAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
186
GCATAGGAGCAGTT
GCCAGAGTTCAAC
6832
7017
no




CGAGCGACGG



CCCAAAAC
CAGGACAC





XRMV env
75.7
ATACCACCCAGAA
67.1
60
186
GCATAGGAGCAGTT
GCCAGAGTTCAAC
6832
7017
no




GACGAGCGACGG



CCCAAAAC
CAGGACAC





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
187
GCATAGGAGCAGTT
GGCCAGAGTTCAA
6832
7018
no




CGAGCGACGG



CCCAAAAC
CCAGGAC





XRMV env
75.7
ATACCACCCAGAA
67.1
60
187
GCATAGGAGCAGTT
GGCCAGAGTTCAA
6832
7018
no




GACGAGCGACGG



CCCAAAAC
CCAGGAC





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
147
CATAGGAGCAGTTC
TTAAGCACAGTAG
6833
6979
no




CGAGCGACGG



CCAAAACC
TAGATAGACAGG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
147
CATAGGAGCAGTTC
TTAAGCACAGTAG
6833
6979
no




GACGAGCGACGG



CCAAAACC
TAGATAGACAGG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
171
ATAGGAGCAGTTCC
CAGGACACAGTAA
6834
7004
no




CGAGCGACGG



CAAAACCC
TCAGTGGTTAAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
171
ATAGGAGCAGTTCC
CAGGACACAGTAA
6834
7004
no




GACGAGCGACGG



CAAAACCC
TCAGTGGTTAAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
176
ATAGGAGCAGTTCC
TCAACCAGGACAC
6834
7009
no




CGAGCGACGG



CAAAACCC
AGTAATCAGTG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
176
ATAGGAGCAGTTCC
TCAACCAGGACAC
6834
7009
no




GACGAGCGACGG



CAAAACCC
AGTAATCAGTG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
178
ATAGGAGCAGTTCC
GTTCAACCAGGAC
6834
7011
no




CGAGCGACGG



CAAAACCC
ACAGTAATCAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
178
ATAGGAGCAGTTCC
GTTCAACCAGGAC
6834
7011
no




GACGAGCGACGG



CAAAACCC
ACAGTAATCAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
183
ATAGGAGCAGTTCC
CCAGAGTTCAACC
6834
7016
no




CGAGCGACGG



CAAAACCC
AGGACACAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
183
ATAGGAGCAGTTCC
CCAGAGTTCAACC
6834
7016
no




GACGAGCGACGG



CAAAACCC
AGGACACAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
184
ATAGGAGCAGTTCC
GCCAGAGTTCAAC
6834
7017
no




CGAGCGACGG



CAAAACCC
CAGGACAC





XRMV env
75.7
ATACCACCCAGAA
67.1
60
184
ATAGGAGCAGTTCC
GCCAGAGTTCAAC
6834
7017
no




GACGAGCGACGG



CAAAACCC
CAGGACAC





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
185
ATAGGAGCAGTTCC
GGCCAGAGTTCAA
6834
7018
no




CGAGCGACGG



CAAAACCC
CCAGGAC





XRMV env
75.7
ATACCACCCAGAA
67.1
60
185
ATAGGAGCAGTTCC
GGCCAGAGTTCAA
6834
7018
no




GACGAGCGACGG



CAAAACCC
CCAGGAC





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
157
TAGGAGCAGTTCCC
TCAGTGGTTAAGT
6835
6991
no




CGAGCGACGG



AAAACCC
TAAGCACAGTAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
157
TAGGAGCAGTTCCC
TCAGTGGTTAAGT
6836
6991
no




GACGAGCGACGG



AAAACCC
TAAGCACAGTAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
169
AGGAGCAGTTCCCA
CAGGACACAGTAA
6836
7004
no




CGAGCGACGG



AAACCC
TCAGTGGTTAAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
169
AGGAGCAGTTCCCA
CAGGACACAGTAA
6836
7004
no




GACGAGCGACGG



AAACCC
TCAGTGGTTAAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
176
AGGAGCAGTTCCCA
GTTCAACCAGGAC
6836
7011
no




CGAGCGACGG



AAACCC
ACAGTAATCAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
176
AGGAGCAGTTCCCA
GTTCAACCAGGAC
6836
7011
no




GACGAGCGACGG



AAACCC
ACAGTAATCAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
183
AGGAGCAGTTCCCA
GGCCAGAGTTCAA
6836
7018
no




CGAGCGACGG



AAACCC
CCAGGAC





XRMV env
75.7
ATACCACCCAGAA
67.1
60
183
AGGAGCAGTTCCCA
GGCCAGAGTTCAA
6836
7018
no




GACGAGCGACGG



AAACCC
CCAGGAC





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
107
GAGCAGTTCCCAAA
GGTGCTGCAAGCC
6838
6944
no




CGAGCGACGG



ACCCATC
CAAATG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
107
GAGCAGTTCCCAAA
GGTGCTGCAAGCC
6838
6944
no




GACGAGCGACGG



ACCCATC
CAAATG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
135
GAGCAGTTCCCAAA
CAGTAGTAGATAG
6838
6972
no




CGAGCGACGG



ACCCATC
ACAGGGAGTGAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
135
GAGCAGTTCCCAAA
CAGTAGTAGATAG
6838
6972
no




GACGAGCGACGG



ACCCATC
ACAGGGAGTGAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
142
GAGCAGTTCCCAAA
TTAAGCACAGTAG
6838
6979
no




CGAGCGACGG



ACCCATC
TAGATAGACAGG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
142
GAGCAGTTCCCAAA
TTAAGCACAGTAG
6838
6979
no




GACGAGCGACGG



ACCCATC
TAGATAGACAGG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
151
GAGCAGTTCCCAAA
GTGGTTAAGTTAA
6838
6988
no




CGAGCGACGG



ACCCATC
GCACAGTAGTAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
151
GAGCAGTTCCCAAA
GTGGTTAAGTTAA
6838
6988
no




GACGAGCGACGG



ACCCATC
GCACAGTAGTAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
154
GAGCAGTTCCCAAA
TCAGTGGTTAAGT
6838
6991
no




CGAGCGACGG



ACCCATC
TAAGCACAGTAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
154
GAGCAGTTCCCAAA
TCAGTGGTTAAGT
6838
6991
no




GACGAGCGACGG



ACCCATC
TAAGCACAGTAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
161
GAGCAGTTCCCAAA
ACAGTAATCAGTG
6838
6998
no




CGAGCGACGG



ACCCATC
GTTAAGTTAAGC





XRMV env
75.7
ATACCACCCAGAA
67.1
60
161
GAGCAGTTCCCAAA
ACAGTAATCAGTG
6838
6998
no




GACGAGCGACGG



ACCCATC
GTTAAGTTAAGC





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
167
GAGCAGTTCCCAAA
CAGGACACAGTAA
6838
7004
no




CGAGCGACGG



ACCCATC
TCAGTGGTTAAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
167
GAGCAGTTCCCAAA
CAGGACACAGTAA
6838
7004
no




GACGAGCGACGG



ACCCATC
TCAGTGGTTAAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
173
GGAGCAGTTCCCAA
TCAACCAGGACAC
6838
7009
no




CGAGCGACGG



AACCCATC
AGTAATCAGTG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
173
GGAGCAGTTCCCAA
TCAACCAGGACAC
6838
7009
no




GACGAGCGACGG



AACCCATC
AGTAATCAGTG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
174
GAGCAGTTCCCAAA
GTTCAACCAGGAC
6838
7011
no




CGAGCGACGG



ACCCATC
ACAGTAATCAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
176
GAGCAGTTCCCAAA
GAGTTCAACCAGG
6838
7013
no




CGAGCGACGG



ACCCATC
ACACAGTAATC





XRMV env
75.7
ATACCACCCAGAA
67.1
60
176
GAGCAGTTCCCAAA
GAGTTCAACCAGG
6838
7013
no




GACGAGCGACGG



ACCCATC
ACACAGTAATC





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
180
GGAGCAGTTCCCAA
CCAGAGTTCAACC
6838
7016
no




CGAGCGACGG



AACCCATC
AGGACACAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
180
GGAGCAGTTCCCAA
CCAGAGTTCAACC
6838
7016
no




GACGAGCGACGG



AACCCATC
AGGACACAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
181
GGAGCAGTTCCCAA
GCCAGAGTTCAAC
6838
7017
no




GACGAGCGACGG



AACCCATC
CAGGACAC





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
181
GAGCAGTTCCCAAA
GGCCAGAGTTCAA
6838
7018
no




CGAGCGACGG



ACCCATC
CCAGGAC





XRMV env
75.7
ATACCACCCAGAA
67.1
60
181
GAGCAGTTCCCAAA
GGCCAGAGTTCAA
6838
7018
no




GACGAGCGACGG



ACCCATC
CCAGGAC





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
171
AGCAGTTCCCAAAAC
TCAACCAGGACAC
6839
7009
no




CGAGCGACGG



CCATCAG
AGTAATCAGTG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
80
GCAGTTCCCAAAACC
GCGGGAGAGGCC
6840
6919
no




CGAGCGACGG



CATCAG
AAATAGTAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
80
GCAGTTCCCAAAACC
GCGGGAGAGGCC
6840
6919
no




GACGAGCGACGG



CATCAG
AAATAGTAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
81
GCAGTTCCCAAAACC
GGCGGGAGAGGC
6840
6920
no




CGAGCGACGG



CATCAG
CAAATAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
81
GCAGTTCCCAAAACC
GGCGGGAGAGGC
6840
6920
no




GACGAGCGACGG



CATCAG
CAAATAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
105
GCAGTTCCCAAAACC
GGTGCTGCAAGCC
6840
6944
no




CGAGCGACGG



CATCAG
CAAATG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
105
GCAGTTCCCAAAACC
GGTGCTGCAAGCC
6840
6944
no




GACGAGCGACGG



CATCAG
CAAATG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
133
GCAGTTCCCAAAACC
CAGTAGTAGATAG
6840
6972
no




CGAGCGACGG



CATCAG
ACAGGGAGTGAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
133
GCAGTTCCCAAAACC
CAGTAGTAGATAG
6840
6972
no




GACGAGCGACGG



CATCAG
ACAGGGAGTGAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
140
GCAGTTCCCAAAACC
TTAAGCACAGTAG
6840
6979
no




CGAGCGACGG



CATCAG
TAGATAGACAGG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
140
GCAGTTCCCAAAACC
TTAAGCACAGTAG
6840
6979
no




GACGAGCGACGG



CATCAG
TAGATAGACAGG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
149
GCAGTTCCCAAAACC
GTGGTTAAGTTAA
6840
6988
no




CGAGCGACGG



CATCAG
GCACAGTAGTAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
149
GCAGTTCCCAAAACC
GTGGTTAAGTTAA
6840
6988
no




GACGAGCGACGG



CATCAG
GCACAGTAGTAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
152
GCAGTTCCCAAAACC
TCAGTGGTTAAGT
6840
6991
no




CGAGCGACGG



CATCAG
TAAGCACAGTAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
152
GCAGTTCCCAAAACC
TCAGTGGTTAAGT
6840
6991
no




GACGAGCGACGG



CATCAG
TAAGCACAGTAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
165
GCAGTTCCCAAAACC
CAGGACACAGTAA
6840
7004
no




CGAGCGACGG



CATCAG
TCAGTGGTTAAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
165
GCAGTTCCCAAAACC
CAGGACACAGTAA
6840
7004
no




GACGAGCGACGG



CATCAG
TCAGTGGTTAAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
171
AGCAGTTCCCAAAAC
TCAACCAGGACAC
6840
7009
no




GACGAGCGACGG



CCATCAG
AGTAATCAGTG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
172
GCAGTTCCCAAAACC
GTTCAACCAGGAC
6840
7011
no




CGAGCGACGG



CATCAG
ACAGTAATCAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
172
GCAGTTCCCAAAACC
GTTCAACCAGGAC
6840
7011
no




GACGAGCGACGG



CATCAG
ACAGTAATCAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
174
GCAGTTCCCAAAACC
GAGTTCAACCAGG
6840
7013
no




CGAGCGACGG



CATCAG
ACACAGTAATC





XRMV env
75.7
ATACCACCCAGAA
67.1
60
174
GCAGTTCCCAAAACC
GAGTTCAACCAGG
6840
7013
no




GACGAGCGACGG



CATCAG
ACACAGTAATC





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
178
AGCAGTTCCCAAAAC
CCAGAGTTCAACC
6840
7016
no




CGAGCGACGG



CCATCAG
AGGACACAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
178
AGCAGTTCCCAAAAC
CCAGAGTTCAACC
6840
7016
no




GACGAGCGACGG



CCATCAG
AGGACACAG





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
179
AGCAGTTCCCAAAAC
GCCAGAGTTCAAC
6840
7017
no




CGAGCGACGG



CCATCAG
CAGGACAC





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
181
GGAGCAGTTCCCAA
GCCAGAGTTCAAC
6840
7017
no




CGAGCGACGG



AACCCATC
CAGGACAC





XRMV env
75.7
ATACCACCCAGAA
67.1
60
179
AGCAGTTCCCAAAAC
GCCAGAGTTCAAC
6840
7017
no




GACGAGCGACGG



CCATCAG
CAGGACAC





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
179
GCAGTTCCCAAAACC
GGCCAGAGTTCAA
6840
7018
no




CGAGCGACGG



CATCAG
CCAGGAC





XRMV env
75.7
ATACCACCCAGAA
67.1
60
179
GCAGTTCCCAAAACC
GGCCAGAGTTCAA
6840
7018
no




GACGAGCGACGG



CATCAG
CCAGGAC





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
158
CAGTTCCCAAAACCC
ACAGTAATCAGTG
6841
6998
no




CGAGCGACGG



ATCAGG
GTTAAGTTAAGC





XRMV env
75.7
ATACCACCCAGAA
67.1
60
158
CAGTTCCCAAAACCC
ACAGTAATCAGTG
6841
6998
no




GACGAGCGACGG



ATCAGG
GTTAAGTTAAGC





XRMV env
75.9
ACCACCCAGAAGA
67.2
65.2
176
CAGTTCCCAAAACCC
CCAGAGTTCAACC
6841
7016
no




CGAGCGACGG



ATCAGG
AGGACACAG





XRMV env
75.7
ATACCACCCAGAA
67.1
60
176
CAGTTCCCAAAACCC
CCAGAGTTCAACC
6841
7016
no




GACGAGCGACGG



ATCAGG
AGGACACAG









RT-PCR assay is performed to quantify RNA from biological samples, such as whole blood and plasma, without the need for RNA extraction. The assay employs a two-step amplification process with the initial step consisting of the distribution of 2 μL of experimental sample directly into a cDNA reaction mix. Following completion of the reverse transcriptase (RT) cDNA synthesis, a 2 μL aliquot is removed, transferred into a qPCR reaction mix and a qPCR protocol is performed.


In a separate embodiment, RNA is isolated from cell culture supernatants, whole blood or plasma using QIAamp®viral RNA Mini kit. The RNA is then used for reverse transcription. After reverse transcription, cDNA is subjected to qPCR assay.


A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.

Claims
  • 1. An isolated oligonucleotide consisting of a sequence selected from the group consisting of: SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, oligonucleotides haying regions of homology between XMRV and MLV and oligonucleotides that are at least 95% identical to any of the foregoing and can hybridize to an MLV-related polynucleotide.
  • 2. The isolated oligonucleotide of claim 1 comprising a primer pair consisting of SEQ ID NO:1 and 2 and sequence that are at least 95% identical to SEQ ID NO:1 and 2 and hybridize to an MLV-related polynucleotide.
  • 3. The isolated oligonucleotide of claim 1 comprising a primer pair consisting of SEQ ID NO:4 and 5 and sequence that are at least 95% identical to SEQ ID NO:4 and 5 and hybridize to an MLV-related polynucleotide.
  • 4. The isolated oligonucleotide of claim 1 comprising a primer pair consisting of SEQ ID NO:7 and 8 and sequence that are at least 95% identical to SEQ ID NO:7 and 8 and hybridize to an MLV-related polynucleotide.
  • 5. The isolated oligonucleotide of claim 1 comprising a primer pair consisting of SEQ ID NO:10 and 11 and sequence that are at least 95% identical to SEQ ID NO:10 and 11 and hybridize to an MLV-related polynucleotide.
  • 6. The isolated oligonucleotide of claim 1 comprising a primer pair consisting of SEQ ID NO:13 and 14 and sequence that are at least 95% identical to SEQ ID NO:13 and 14 and hybridize to an MLV-related polynucleotide.
  • 7. The isolated oligonucleotide of claim 1 comprising a primer pair consisting of SEQ ID NO:16 and 17 and sequence that are at least 95% identical to SEQ ID NO:16 and 17 and hybridize to an MLV-related polynucleotide.
  • 8. The isolated oligonucleotide of claim 1 comprising a primer pair consisting of SEQ ID NO:19 and 20 and sequence that are at least 95% identical to SEQ ID NO:19 and 20 and hybridize to an MLV-related polynucleotide.
  • 9. (canceled)
  • 10. A method of determining viral content in a subject prior to or after undergoing a retroviral gene delivery therapy using an MLV-related virus, comprising: obtaining a sample from the subject;contacting the sample with one or more primer pairs as set forth in claim 1 under conditions suitable for nucleic acid amplification to obtain amplified products;contacting the sample with a one or more probes that hydridizes to the amplified product;detecting a hybridized product;indicating that the subject has viral content comprising an MLV-related virus.
  • 11. The method of claim 10, wherein the MLV-related virus is a recombinant retroviral vector used in gene delivery.
  • 12. The method of claim 10, wherein the MLV-related virus is an XMRV virus.
  • 13-14. (canceled)
  • 15. The method of claim 10, wherein the MLV-related virus comprises a 5′ LTR, gag, pol, env genes, a regulatory domain 3′ of the env gene linked to a heterologous polynucleotide to be delivered and a 3′ LTR and a promoter for expression in mammalian cells in the 5′LTR.
  • 16. The method of claim 15, wherein the regulatory domain is an internal ribosome entry site (IRES).
  • 17. The method of claim 15 or 16, wherein the heterologous polynucleotide encodes a polypeptide having cytosine deaminase activity.
  • 18. The method of any one of claim 14, wherein the method monitors the spread of the MLV-related retroviral vector.
  • 19. The method of claim 18, wherein the method is carried out routinely over the course years.
  • 20. A method for detecting the presence of a viral agent in a sample comprising: measuring the amount of a polynucleotide in a sample using a quantitative polymerase chain reaction or other amplification process comprising oligonucleotide primer/probe combinations selected from the group consisting of: (i) SEQ ID NO: 1, 2 and 3;(ii) SEQ ID NO: 4, 5 and 6;(iii) SEQ ID NO: 7, 8 and 9;(iv) SEQ ID NO: 10, 11 and 12; and(v) primer pairs according to claim 9 and corresponding probes that have at least 95% identity to both XMRV and MLV.
  • 21. The method of claim 20, wherein the polynucleotide is DNA.
  • 22. The method of claim 20, wherein the polynucleotide is RNA.
  • 23. The method of claim 20, wherein the quantitative polymerase chain reaction is RT-qPCR.
  • 24. The method of claim 20, measuring detects a single copy of a viral agent related nucleic acid.
  • 25. The method of claim 20, wherein the viral agent comprises a MLV related virus and/or XMRV.
  • 26. The method of claim 20, wherein the sample is mammalian tissue or mammalian blood.
  • 27. (canceled)
  • 28. The method of claim 25, wherein the viral agent is a gene therapy vector.
  • 29. The method of claim 28, wherein the gene therapy vector is a replication-competent vector.
  • 30. The method of claim 20, wherein the method is performed prior to and/or subsequent to a therapeutic regimen comprising a gene therapy vector treatment.
  • 31. (canceled)
  • 32. The method of claim 20, wherein the method is performed to monitor the dosage of a therapeutic regimen comprising a gene therapy vector in a subject.
  • 33. The method of claim 28, wherein the gene therapy vector comprises a replication competent MLV vector.
  • 34-37. (canceled)
  • 38. A kit for performing the method of any one of claim 10.
  • 39. A kit for performing the method of claim 20.
  • 40. A method of claim 10 for detecting <100 copies of MLV related DNA in a sample extracted from fixed histopathological sections.
  • 41. A method of claim 10 for detecting <100 copies of MLV related RNA in a sample extracted from fixed histopathological sections.
  • 42. A method of claim 10 or 20, wherein the method detects both MLV related virus and XMRV.
  • 43. A method of claim 10 or 20, wherein the method detects only MLV related virus and does not detect XMRV.
  • 44. A method of claim 10 or 20, wherein the method detects XMRV gag and MLV gag.
  • 45. A method of claim 10 or 20, wherein the method detects XMRV pol and MLV pol.
  • 46. A method of claim 10 or 20, wherein the method detects XMRV Env and MLV Env.
  • 47. A method of claim 10 or 20, for detecting either XMRV or MLV related virus in plasma or serum from a mammalian host.
  • 48. A method of selectively detecting MLV related viruses in humans and which does not detect XMRV comprising primers selected from the group consisting of: SEQ ID NO:10 and 11;SEQ ID NO:13 and 14;SEQ ID NO:16 and 17;SEQ ID NO:19 and 20;sequences at least 95% identical to the foregoing;and combination thereof,
  • 49. A method of determining whether a human subject is at risk of having prostate cancer or chronic fatigue syndrome comprising utilizing primer pairs and probes as set forth in SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 or primer/probes as set forth in Table 1 or 2, to amplify polynucleotides in a sample from the subject, wherein the presence of an amplified product is indicative of a risk of prostate cancer or chronic fatigue syndrome.
  • 50. A method of screening a blood supply or tissue bank for infection by an MLV, MLV-variant or XMRV comprising performing an amplification reaction on the blood supply or tissue bank utilizing primers as set forth in SEQ ID NO:4, 5, 7, 8, 10, 11, 13, 14, or any of the primers in Table 1 or 2, and detecting an amplified product.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. 119 to U.S. Provisional Application Ser. Nos. 61/365,297, filed Jul. 16, 2010; 61/386,941, filed Sep. 27, 2010; and 61/391,360, filed Oct. 8, 2010, the disclosures of which are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2011/044296 7/16/2011 WO 00 3/29/2013
Provisional Applications (3)
Number Date Country
61365297 Jul 2010 US
61386941 Sep 2010 US
61391360 Oct 2010 US