Retrovirus isolated from humans

Abstract
The present invention comprises spumavirus isolated from humans. More specifically, the spumavirus of the present invention was isolated from humans who had exposure to nonhuman primates. Importantly, the spumavirus of the present invention or antibodies to the spumavirus can be used to detect the presence of spumavirus or antibodies in body fluids, for pathogenicity studies of related viruses, and as a vector for gene therapies. The spumavirus of the invention can also be used for treatment of conditions in humans due to the presence of rapidly dividing cells and for recombinant live virus vaccination.
Description




TECHNICAL FIELD




The present invention relates to a novel retrovirus, a spumavirus that has been isolated from humans. More particularly, the novel spumavirus may be used as a vector for gene therapy. The novel spumavirus may also be used as a recombinant live virus vaccine.




BACKGROUND OF THE INVENTION




Spumavirus, also known as foamy virus for the characteristics of vacuolization the virus induces in cell culture, belongs to a distinct group of retroviruses. The simian foamy viruses (SFVs) include isolates from Old World and New World monkeys and are classified into 10 different serotypes based on serological cross-reactivities. Virus appears to persist in the host for a long period of time in a latent form and can exist in the presence of neutralizing antibody.




Currently the most studied retrovirus, Human Immunodeficiency Virus, is believed to be derived from nonhuman primate transmission into humans at some past time. Concerns about the risk of transmission of retroviruses from non-human primates to humans working in research laboratories were heightened in the early 1990′s when two persons developed antibodies to SIV (Simian Immunodeficiency Virus) following work-related exposures, one of whom had clear evidence of persistent viral infection. (See CDC. Anonymous survey for simian immunodeficiency virus (SIV) seropositivity in SIV laboratory researchers—United States, 1992. MMWR Morb Mort Wkly Rep 1992; 41: 814-5; Khabbaz R. F., et al. Brief report: infection of a laboratory worker with simian immunodeficiency virus. New Eng J Med. 1994; 330: 172-7; Khabbaz R F, et al. Simian immunodeficiency virus needlestick accident in a laboratory worker. Lancet 1992; 340: 271-3; and CDC. Guideline to prevent simian immunodeficiency virus infection in laboratory workers and animal handlers. MMWR 1988; 37:693-704.) In addition to SIV, nonhuman primate species used in biomedical research are commonly infected with SFV (simian foamy virus), STLV (simian t-cell lymphotrophic virus), and/or type D retroviruses. All of these retroviruses cause lifelong infections in nonhuman primates, and some are known to be transmissible through sexual contact, blood, or breast-feeding. Natural SFV infections in non-human primates have not been definitively associated with disease. In non-human primates, infection with the other retroviruses may result in a clinical spectrum ranging from asymptomatic infection to life threatening immunodeficiency syndromes or lymphoproliferative disorders. The transmission routes of SFVs among nonhuman primates remain undefined, but the prevalence of seroreactivity is high among captive adult non-human primates.




Studies of the prevalence of spumavirus infection of humans are limited and the findings are not definitive. Though there is some evidence of human infection with SFV (antibodies and positive PCR results), such occurrence has been reported in only two persons, both of whom had occupational risks for infection. Associated disease was not reported in either. (See Schweizer M., et al. Absence of foamy virus DNA in Graves' disease. AIDS Res & Human Retrov 1994; 10: 601-5; Neumann-Haefelin D, et al., Foamy viruses. Intervirology 1993; 35: 196-207; and Schweizer M, et al., Markers of foamy virus infections in monkeys, apes, and accidentally infected humans: appropriate testing fails to confirm suspected foamy virus prevalence in humans. AIDS Res & Human Retrov 1995; 11: 161-70.) There have been no published reports that virus was ever isolated from these infected individuals.




Other inconclusive evidence was seen in early studies which described a relatively high rate of seroreactivity to antibodies to spumaviruses among human populations not known to be exposed to non-human primates. In some instances seroreactivity was suggestively linked to human disease, including disorders of the central nervous system, thyroid disease, and Chronic Fatigue Syndrome. In most instances these studies lacked definitive evidence of human infection and were not subsequently confirmed. (See Heneine W, et al., Absence of evidence for human spumaretrovirus sequences in patients with Graves' disease [letter]. J Acq Immune Defic Synd & Human Retrov. 1995; 9: 99-101; Simonsen L, et al.,. Absence of evidence for infection with the human spumaretrovirus in an outbreak of Meniere-like vertiginous illness in Wyoming, USA [letter]. Acta Oto-Laryngologica 1994; 114: 223-4; and Heneine W., et al., Lack of evidence for infection with known human and animal retroviruses in patients with chronic fatigue syndrome. Clin Infect Dis 1994; 18: S121-5).




To the knowledge of the inventors, there has not been a documented, definitive isolation of a spumavirus, such as the one of the present invention, from humans. Previous reports of human spumavirus isolates are now widely regarded as laboratory contaminants.




Recent publications indicate that earlier serological tests showing human spumavirus antibodies in the human population were incorrect. Immunological investigation of a previously reported human spumavirus revealed that it shared common antigens in complement fixation, immunofluorescence and neutralization assays with the chimpanzee foamy virus, SFV-6. Furthermore, failure to detect serological evidence of HFV infection in people from a wide geographical area suggested that this virus isolate was a variant of SFV-6, particularly since sera from chimpanzees naturally infected with SFV-6 neutralized both viruses. In a survey for prevalence of human foamy virus in more than 5000 human sera, collected from geographically diverse populations, none of the serum samples were confirmed as positive. Taken together with sequence analysis endorsing the phylogenetic closeness of the purported human spumavirus to SFV-6/7, these data strongly suggest that human foamy virus is not naturally found in the human population. (See Ali, M. et al., “No Evidence of Antibody to Human Foamy Virus in Widespread Human Populations,” AIDS Research and Human Retroviruses, Vol. 12, No. 15, 1996.)




Recent concern that xenotransplantation, the use of living tissues from nonhuman species in humans for medical purposes, may introduce new infections into the human community has increased the importance of defining the ability of simian retroviruses to infect and/or cause disease in humans (See Chapman L E, et al. Xenotransplantation and xenogeneic infections. New Engl J Med 1995; 333: 1498-1501; DHHS. Docket No. 96M-0311. Draft Public Health Service (PHS) Guideline on Infectious Disease Issues in Xenotransplantation. Federal Register Vol. 61, No. 185. Sep. 23, 1996.). The primary animal species considered as donors for xenografts are baboons and pigs. Thus, what is needed are compositions and methods for detecting viruses that may be transmitted from the nonhuman organ donors to the recipient human. Additionally, information regarding these transmissible agents may provide valuable information about the organ donors' cellular receptors that may be important for transplantation success.




Gene therapies have long looked for a good vector that can transport the foreign gene of choice into human cells. The lack of any known disease associated with the virus of the present invention makes the present invention an ideal candidate for gene therapy regimens. Thus, compositions and methods for gene therapy are needed that use a vector capable of carrying a significant amount of foreign DNA that will enter the host organism and not cause disease.




Compositions and methods for vaccination using recombinant live retroviruses are also needed. A live virus, that causes no illness in humans, and that has genes of antigens of choice incorporated into its genome, would provide for an excellent vaccination tool. The retrovirus would reproduce in the human host and expose the immune system to antigens so that an immune response can be initiated.




Targeted attack on reproducing cells is a goal of cancer treatment. What is needed is are compositions and methods for cancer treatment that are specific for dividing cells that do not cause systemic damage to the cancer patient. A virus that could infect and kill dividing cells, without killing other cells of the host would provide a solution for cancer treatment.




SUMMARY OF THE INVENTION




The present invention is directed to compositions and methods comprising a novel spumavirus or foamy virus, known as SFVHu-1. The present invention comprises a spumavirus isolate of human origin that has been definitively isolated from a human with no disease. The novel spumavirus of the present invention has been maintained through tissue culture cells where it causes the characteristic vacuolation of the cells that is known for foamy viruses.




The novel spumavirus of the present invention has utility as a reagent for the immunological screening of the human population for the prevalence of such viruses in the population. The novel spumavirus of the present invention can also serve as a vector in gene therapy because the virus appears to cause no disease in humans and is not transmitted to other humans. Additionally, the novel spumavirus of the present invention can be used as a reagent in pathogenicity studies of these and related viruses. Moreover, the sequences of the novel spumavirus of the present invention can be used as probes to detect virus in biological samples. Vectors include, but are not limited to, prokaryotic, eucaryotic and viral vectors. The foamy virus of the present invention can also be used as a live recombinant virus vaccine. Additionally, the spumavirus of the present invention can be used as a replicating viral system to kill live dividing cells, either in vitro or in vivo.




The spumaviruses or foamy viruses are by far the least well characterized of the retroviruses. They have been isolated as agents that cause vacuolation (“foaming”) of cells in culture from a number of mammalian species, including monkeys, cattle, cats, and reportedly in humans. Persistent infection with these viruses is not associated with any known disease.




Recent studies using improved diagnostic assays have shown no evidence of foamy virus infection of humans in studies of large populations (approximately 8,000 persons). Given these results, the identification of seroreactivity in three persons occupationally exposed to non-human primates is notable. The PCR identification of viral genome sequences in biologic specimens from all three, and isolation of the virus from one, confirm virus infection in these workers.




The present invention includes the isolation and characterization of a spumavirus, SVFHu-1, that was shown to have been transmitted from non-human primates to humans at some point in the past. The spumavirus of the present invention does not appear to be readily transmitted from human to human. The spumavirus of the present invention can be used in constructing protocols for diagnosing spumavirus infections and may be used as a vector in gene therapy procedures.




The present invention also includes methods and compositions for detecting spumavirus in biological fluids. The methods and compositions, including kits, can be in any configuration well known to those of ordinary skill in the art. The present invention also includes antibodies specific for the spumavirus and antibodies that inhibit the binding of antibodies specific for the spumavirus. These antibodies can be polyclonal antibodies or monoclonal antibodies, which also includes fragments of any type of antibody. The antibodies specific for the spumavirus can be used in diagnostic kits to detect the presence and quantity of spumavirus in biological fluids or in organs from nonhuman primates for xenotransplantation. Antibodies specific for spumavirus may also be administered to a human or animal to passively immunize the human or animal against spumavirus, thereby reducing infection after accidental exposure to nonhuman primate bodily fluids.




The present invention also includes compositions and methods, including kits, for detecting the presence and quantity of antibodies that bind spumavirus in body fluids. The methods, including kits, can be in any configuration well known to those of ordinary skill in the art. Such kits for detection of spumavirus itself or detection of antibodies to the spumavirus can be used to monitor the blood supply for the presence of spumavirus in the blood supply.




The present invention also includes methods and compositions comprising recombinant live virus vaccines. The virus of the present invention has areas of its genome that make it ideal for the insertion of exogenous genes. The genes can code for any protein for which vaccination or gene therapy is desired. Because SFVHu-1 replicates at a higher level than other known foamy viruses, it is capable of providing a high level of antigen to the host carrying the virus. After administration of SFVHu-1 to the host, the virus would infect the cells, replicate and provide protein antigens to the immune system of the host. A novel aspect of such recombinant live viruses is that SFVHu-1 does not cause disease in the host organism. Additionally, there is no transmission from one host organism to other non-infected host organisms, even by close contact with exchange of bodily fluids. The recombinant live virus vaccines of the present invention are a safe way to provide antigen in a most optimum method to the immune system.




The present invention further includes methods and compositions for the use of replicating viral system to kill live dividing cells in a host or in vitro. In in vitro uses, SFVHu-1 can be used to detect and kill rapidly dividing cells. Foamy viruses, including SFVHu-1, can infect a wide variety of species of cells and can be used in many in vitro cell systems. For example, if the assay of the in vitro cell system required the identification of quiescent cells, application of SFVHu-1 to the tissue culture system would result in the selection of the rapidly dividing cells by SFVHu-1. The tissue culture cells would be infected, but because SFVHu-1 has a productive infection and cytopathic effects only in dividing cells, the dividing cells are killed by such dividing cells would be infected by SFVHu-1 and killed by such infection. The remaining non-dividing cells of the culture would remain alive.




In a host, the ability of SFVHu-1 to infect dividing cells provides an excellent treatment for conditions due to the presence of rapidly dividing cells. For example, a person with disease due to rapidly dividing cells, such as cancer or any known angiogenic condition, could be infected with SFVHu-1. Such virus may or may not carry other, exogenous genes for other effects in the host. Because SFVHu-1 does not cause disease in the host and there is no transmission of the virus to contacts with the host, only the person with the disease from rapidly dividing cells will be treated. In addition, only the rapidly dividing cells of that host person will be infected by SFVHu-1, and the rest of the body will remain uninfected. The virus will infect the rapidly dividing cells and kill them. For example, a person with a fast growing tumor would be infected with SFVHu-1 and the cells of the tumor would be destroyed by the virus. The SFVHu-1 can be recombinantly modified to be selective for cellular receptors on the tumor to make the virus even more specifically targeted to just those cells.




Such treatment with SFVHu-1 could be used for any condition in which rapidly dividing cells provide an aspect of the pathology of the condition. One such condition is the presence of uncontrolled angiogenesis within the body. Angiogenesis dependent diseases are well known in the art and are caused in part by the rapid growth of blood vessels.




Accordingly, it is an object of the present invention to provide a composition comprising a novel spumavirus.




It is another object of the present invention to provide a method of detecting a spumavirus.




It is yet another object of the present invention to provide methods and compositions for detecting the presence and amount of spumavirus in a body fluid or organ.




A further object of the present invention is to provide compositions and methods for treating genetic and physiologic disorders using gene therapy techniques comprising the novel spumavirus of the present invention as a vector for nucleic acid sequences and antisense sequences.




Another object of the present invention is to provide compositions and methods useful for manipulating the expression of genes.




Yet another object of the invention is to provide vaccines.




Yet another object of the present invention is to provide compositions and methods for treating viral infections in humans or animals.




Another object of the present invention is to provide compositions and methods that are effective in treating genetic diseases.




Yet another object of the present invention is to provide a method of treating microbial infections in humans or animals.




It is another object of the present invention to provide for treatments of conditions that are caused in part by rapidly dividing cellular growth.




Another object of the present invention is to provide live recombinant virus vaccines.




An object of the present invention is to provide diagnostic tools such as antibodies or antigens for the monitoring of the blood supply or organ and tissue donation for the presence of spumavirus.




These and other features and advantages of the present invention will become apparent after a review of the following detailed description of the disclosed embodiments and the appended claims.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

shows a transmission electron microscope photomicrograph of viral particles in Cf2Th canine thymocytes.





FIG. 2

shows tissue culture AMP-reverse transcriptase activity in canine thymocyte cells (Cf2Th) co-cultured with peripheral blood lymphocytes from an infected case worker. Along the baseline is another line showing control Cf2Th cells that were co-cultured with normal human peripheral blood lymphocytes, indicating there was no constitutive reverse transcriptase activity in these cultures.





FIG. 3

is a Western blot of sera from Case A, Case B and Case C and the sera of spouses of two of the cases. The sera was tested against the whole cell lysate from Cf2Th cells infected with the spumavirus isolate. Whole cell lysate of uninfected Cf2Th were used as a control for seroreactivity towards nonviral proteins. In addition, the sera of Case B provide a view of the history of infection because of the existence of Case B sera obtained in 1967, and in 1978, 1980, and 1981.





FIG. 4

is a phylogenetic tree showing the relationships between the sequences of the viruses of the novel spumavirus of the present invention and known spumaviruses.





FIG. 5

is a comparison of the nucleotide homology of the sequenced portion of the present invention and other retroviruses.











DETAILED DESCRIPTION OF THE INVENTION




In response to the identification of simian immunodeficiency virus infection in an occupationally exposed workers, Centers for Disease Control and National Institutes for Health collaborated in an anonymous serosurvey of persons with similar work exposures. Simian immunodeficiency virus seroreactivity was present in 3/427 (0.64%) stored serum samples from these anonymous workers (See CDC. Anonymous survey for simian immunodeficiency virus (SIV) seropositivity in SIV laboratory researchers—United States, 1992. MMWR


Morb Mort Wkly Rep


1992; 41: 814-5; Khabbaz R F, et al.,. Brief report: infection of a laboratory worker with simian immunodeficiency virus.


New Eng J Med.


1994; 330: 172-7). Consequently, a voluntary testing and counseling program was developed that allowed linkage between specific exposures or health outcomes and serostatus of persons occupationally exposed to simian immunodeficiency virus. The workers enrolled in this voluntary linked prospective simian immunodeficiency virus surveillance are also at occupational risk for exposure to other retroviruses common in nonhuman primates (non-human primates).




Therefore, in 1995, the linked surveillance was expanded to include voluntary testing and counseling for exposure to simian spumaviruses (more commonly called simian foamy viruses, or SFV), simian T-lymphotropic viruses (STLV), and simian type D retroviruses. 1,823 samples from 13 institutions in the United States had been tested for simian immunodeficiency virus; samples from 231 of the participating volunteer workers were also tested for other retroviruses from non-human primates. Three of these 231 workers (1.3%) were determined to be infected with a SFV-like virus by serology and PCR.




An immunofluorescent assay that was developed using cells infected with SFV serotype 3 identified antibodies to a SFV-like virus in recently collected serum specimens from all three workers. The 3 specimens were also western blot positive, showing reactivity to both p70 and p74 gag precursor bands of SFV-3 antigen. Repeat testing of additional sera obtained from these 3 workers at later time points are also positive in both assays. (These workers or cases are herein identified individually as Case A, Case B, and Case C.)




Additional blood samples from these three cases were tested for SFV proviral DNA sequences using polymerase chain reaction (PCR) assays employing primer sets from two regions of the polymerase gene that are conserved among known primate foamy viruses. All three cases were PCR positive in both regions. The PCR products from one region were sequenced. The sequences from each case were distinct from each other but all showed greater than 80% homology to known non-human primate foamy virus sequences. The partial sequences, produced with DNA polymerase PCR primer, of the viral sequence of the present invention is shown below. Seq. ID 1 is a viral DNA sequence isolated from infected Cf2Th cells and Seq. ID 2 is a viral DNA sequence isolated from PBLs from Case A. There is 99.76% homology between the two sequences. The corresponding RNA sequences and resulting proteins can be deduced from these sequences.













Seq. ID 1













TTACTACAAGGACAATATCCAAAAGGTTTTCCAAAACAATATCAATA







TGA













ACTTAATGAAGGACAAGTTATAGTAACTCGTCCTAATGGACAAAGA






ATTA













TTCCTCCAAAATCAGACAGGCCTCAAATTATTTTGCAAGCACATAAT






ATT













GCACATACAGGAAGAGATTCAACCTTTCTTAAGGTCTCTTCCAAGTA






TTG













GTGGCCAAATCTTAGAAAGGATGTGGTTAAAGTTATCAGACAATGTA






AGC













AATGTCTGGTCACAAATGCAGCTACCTTAGCTGCGCCTCCAATACTG






AGG













CCTGAAAGACCTGTAAAGCCTTTTGATAAATTTTTTGTTGACTATATT






GG













CCCTTTACCCCCTTCTAATGGGTACTTACATGTCCTTGTAGTAGTCGA






TG













GTATGACTGGATTTGTATGGTTA



















Seq. ID 2













TTACTACAAGGACAATATCCAAAAGGTTTTCCAAAACAATATCAATA







TGA













ACTTAATGAAGGACAAGTTATAGTAACTCGTCCTAATGGACAAAGA






ATTA













TTCCTCCAAAATCAGACAGGCCTCAAATTATTTTGCAAGCACATAAT






ATT













GCACATACAGGAAGAGATTCAACCTTTCTTAAGGTCTCTTCCAAGTA






TTG













GTGGCCAAATCTTAGAAAGGATGTGGTTAAAGTTATCAGACAATGTA






AGC













AATGTCTGGTCACAAATGCAGCTACCTTAGCTGCGCCTCCAATACTG






AGG**













CCTGAAAGACCTGTAAAGCCTTTTGATAAATTTTTTGTTGACTATATT






GG













CCCTTTACCCCCTTCTAATAGGTACTTACATGTCCTTGTAGTAGTCGA






TG













GTATGACTGGATTTGTATGGTTA











The relationship between each of the isolates and other known spumaviruses is shown in

FIG. 5

which is a phylogenetic tree showing the percent homology of the nucleotide sequences of these viruses and in FIG.


6


.




The 5′ end of the LTR of SFVHu-1, of 1567 nucleotide bases, has also been sequenced, and is shown as Seq. ID 3.














1




TTCCCAATAA ACATCATCCT GGGTGGACTA GACATCTTAC TAAATTCAAG














51




ATATCTAGAT TCTCCACTCC TGCTGATGTC CAGAAAATTG TGGATGAGCT













101




TCTCCCTAGA GGAGCAAGCA TTGTAATGCC TGATGGAACA AAGTATCCAA













151




GTACCAGAAA AGTGCACTTA GTCAATGAAG GAACCCTTGT AGAATACCAA













201




GCCAAATGTA AGGAGATAGA GGAAAAGTAC GGAGGATGCT TTTCTACAGA













251




TAGTGATGAT GACAGTGATG ATTACTCTGA GGATACTCCA GAAACTGAAA













301




CCACTGATGT GGAATAGAGT ACAGTGTTAA GGATTCACAT AATCTGCCTA













351




GCAACTGCTT ATGCTTAAGA ATGAATCAGT ATATTGTTTA GGAATAAGTT













401




ATAGTTTATA AGAAGTTAAT CCTTAGGGAG TATTTGGTGG AAATGACTGA













451




GTGACATGAA GTTTATTCAC CATACTCTCA ATAGGAGCCA CTAGTTGAGC













501




CTGTGCGTTC AAATCCATGC TCAGCTTAAG TGACTCCCTT TTAGTTTCAC













551




TTTAAGTTAA GTTAGGAATA AGTTCCATAT AATCCTAAGG GAGTATGTGG













601




ACCTTCTTGT TAGGAAATAG TTTAAGATAG TCCACAGCTC CCTTCTTTTT













651




GAGTTCTAGT CTTTGTTAAG TTTGTTGGCT CATACAGATA AAGTGCTCAT













701




TAAACAGGAA ACCGCAACCG GGTAAAGGTT AGCACAGTAA ATTAAGCTAG













751




CAGTTACTCA AGAGCCCGGT AAGCATTCAA GTAGTTCGAA TCCCTTTAAT













801




GCTGACGGAT TGCTCTTTAG TGAGGTGATG TAATCTGTTT TTGCAATCTG













851




AAATGTGTGT TTGCACAGGA AGTTGTACAA GAAAGGGAAT GGCTAAACTT













901




GTTACAGTTC GAACAAACAT TTAGCAATTT CCTTTGCTTT TGGAGTTCGA













951




GCCTTGTACT TATACTTTGA GCATATGTAT TGTAACACCT AAGTATGGAA













1001




AAATCTCCAA GTATGAGTCA CGAGATGCTT GGCTCACTGC GTTGGACGAC













1051




TGGAAAGAAG CTTCAACAGT CGGGACAGCA TCTCGAAGAA GGCCTCCGGA













1101




ATGAAAGAGT GAAAAATGAA GTCTCCTCAT TCAGAGAGCC TTCTTTTAGA













1151




ATTTCAGGCA GAATAGAGTT TCCAATAGAA TAAACTTTTG TATTAGCAGA













1201




TAGATAGGAT ATATAATCTC TGCTTTAGAT TGTACGGGAG CTCACCACTA













1251




CTCGCTGCGT CGAGAGTGTT CGAGTCTCTC CAGGCTTGGT AAGATATAAA













1301




CTTTGGTATT CTCTGTATTC TTATGATCCA ATATTACTCT GCTTATAGAT













1351




TGTAATGGGC AATGGCAATG CTTTATCAAT GAATGATTTT ATGGTGAATT













1401




AAGTTCATAT ATGTTTTAAG AAGTTTAACA ATAAACCGAC TTAATTCGAG













1451




AACCAGATTT ATTAGTATTG TCTCTTTCTA TACTTTAAGT AAAGTGAAAG













1501




GAGTTGTATA TTAGCCTTGC TTATAAGAGC CATCTAGTGG TATAAGTGTG













1551




TACTACACTT ATCTAAA











A 3′ internal region of SFVHu-1 has also been sequenced. This sequence includes ORF 1 (Open Reading Frame) and ORF-2, which are overlapping genes, and includes 3′ sequence from env and bel genes. This sequence is identified as Seq. ID 4 and contains 2406 nucleotides. This sequence is analogous to SFV-3 bases 8953 to 11,356.















1




AAGGGGATGT TGAGCAATCC AACATGTGCA TACCCACTTG AATCATCTTA




Seq. ID 4














51




AAACCATGTT ACTAATGAGG AAGATTGACT GGACTTTTAT TAAGAGTGAT













101




TGGATTAAAG AACAACTTCA GAAAACTGAA GATGAAATGA AGATTATTAG













151




AAGAACAGCT AAAAGTTTAG TATATTATGT GACTCAAACA TCATCTTCCA













201




CTACAGCAAC ATCATGGGAA ATTGGAATTT ATTATGAAAT AACTATACCA













251




AAACATATTT ATTTGAATAA TTGGCAAGTT GTTAACATAG GTCATCTGAT













301




TGAGTCAGCT GGTCATTTGA CCTTAATAAG GGTTAAACAT CCTTATGAAG













351




ACTTTAATAA AGAATGCACA TATGAACAAT ATTTACATCT TGAAGACTGC













401




ATATCTCAGG ATTATGTGAT TTGTGACACG GTACAAATAT TGTCACCATG













451




TGGAAACTCA ACAGTAACCA GTGACTGCCC TGTCACTGCT GAAAAGGTAA













501




AGGAACCATA TATTCAAGTG TCAGCTTTAA AAAATGGAAG CTATTTGGTT













551




CTAACCAGTA GAACAGATTG CTCAATACCA GCATATGTTC CCAGCATTGT













601




AACTGTGAAC GAAACAGTTA AGTGTTTTGG GGTTGAGTTT CATAAACCAC













651




TATACTCAGA AAGTAAAGTC AGCTTTGAAC CACAAGTTCC ACATCTGAAA













701




CTACGCTTGC CACATCTGGT TGGGATTATT GCAAGTCTTC AAAATTTGGA













751




AATTGAAGTA ACNAGCACCC AAGAGAGTAT ANAAGATCAG ATTGAAAGAG













801




TTCAATCACA GCTTCTTCGG CTGGACATTC ACGAGGGAGA CTTTCCTGCT













851




TGGATTCAAC AACTTGCTTC TGCAACCAAG GACGTCTGGC CTGCAGCTGC













901




TAAAGCTCTT CAAGGCATAG GTAACTTTTT ATCTAATACT GCCCAGGGAA













951




TATTTGGAAC TGCTGTAAGT ATTCTATCCT ATGCCAAGCC TATTCTTATA













1001




GGAATAGGTG TTATACTTTT GATTGCATTC TTGTTTAAGA TTGTATCATG













1051




GCTTCCTGGG AAGAAGAAAA AGAACTAGGA CATCTGCATC TTCCAGAAGA













1101




CGATCCTCTG CCCAATTTAG ATGTGCTCCT GGGTCTTGAT CATATGGAAT













1151




CCAATGAAGG ACCTGATCAA AATCCAGGAG CTGAAAAGAT CTACATTCAA













1201




CTCCAAGCAG TCCCAGGGGA AGCCTCAGAG AAAACTTACA AATTTGGATA













1251




TGAAGACAAA GAGGCACAAA ATCCTGACTT AAAAATGAGA AATTGGGTTC













1301




CTAACCCCGA CAAAATGAGT AAGTGGGCCT GTGCAAGGCT TATTCTTTGT













1351




GGACTTTATA ATGCAAXAAA GGCTGGAGAA CTCTTGGCTA TGGACTATAA













1401




TGTTCAATGG GAACAATCAA AAGAAGACCC AGGATACTTT GAAGTGGAAT













1451




ATCACTGTAA AATGTGCATG ACTGTTATTC ATGAACCTAT GCCTATCCAA













1501




TATGATGAAA ANACTGGATT ATGGCTAAAA ATGGGTCCCC TTAGGGGAGA













1551




TATAGGATCT GTAGTACATA CTTGTAGAAG GCATTACATG AGATGTTTGT













1601




CTGCCCTTCC TAGCAATGGA GAACCTCTCA AACCTAGAGT CCGGGCTAAT













1651




CCTGTCCGAA GATATCGAGA GAAGCAAGAG TTCGTTGCGA CTAGGCCTAA













1701




ACGCTCCAGA TGGGGTGTGG CCCCTAGCGC AGACTCCCAT ACTTCCAGTG













1751




GTGACGCCAT GGCCCTTATG CCAGGACCAT GCGGCCCCTT CGGTATGGAC













1801




ACTCCTGGTT GCTTACTGGA AGGGATACAA GGATCAGGGC CTGGAACCTC













1851




CGAAATGGCT GTGGCAATGT CAGGAGGACC TTTCTGGGAA GAAGTGTACC













1901




GGGACTCAAT TCCTGGTGCC CCCACTGGGT CTAGTGAAAA TTAGGCTTTA













1951




TCAAAATCTA ACTGTTGTAA ATGTTTGTGG ATCTGTTGAC CCATGGGAAA













2001




ATGAGAATCC CACTAGAGGT CGCAGAGGGC CTATGCATAG ATATGATTGT













2051




AGAATTGCTT GTGATCCAAG CTATTGCTTT AAGGCTATTT GGGAAGGAAA













2101




CTTTTGGGAC AAAAAAAAAA GGATCAGGCA TGCTGGCTAG TTCATCTGAA













2151




AGAAGGACAT AAATTTGGTG CAGATGAGTT ATCTTCTGGG GATCTTAAAA













2201




TATTAGCAGA ATCTAGACCT TATCCATATG GATCTATTGG TCATTGTGCT













2251




ATGCTTCAAT ATGCAGTACA AGTTAAAATG AGAGTTGATA GAGCTCCTTT













2301




GACCTCAAAG GTGAGAGCTA TTAAAGCTTT GCACTATCAT CGCTGGAATA













2351




TTTGTCAGCT GGAAAATCCT GGCATAGGAG AAGGATTCAG TCCCTCTGGT













2401




AATACACA











The entire sequence of SFVHu-1 has been sequenced. The entire sequence is Seq. ID 5.














1




TGTGGCTGAC AGCTACTAAA ATGATTGGCA CCCAGGAATC AGACTATTGG














51




CATGAGTACA AAAGATGGGG ATATTTCCCT TTGATTCCAA ATAAACATCA













101




TCCTGGGTGG ACTAGACATC TTACTAAATT CAAGATATCT AGATTCTCCA













151




CTCCTGCTGA TGTCCAGAAA ATTGTGGATG AGCTTCTCCC TAGAGGAGCA













201




AGCATTGTAA TGCCAGATGG AACAAAGTAT CCAAGTACCA GAAAAGTGCA













251




CTTAGTCAAT GAAGGAACCC TTGTAGAATA CCAAGCCAAA TGTAAGGAGA













301




TAGAGGAAAA GTACGGAGGA TGCTTTTCTA CAGATAGTGA TGATGACAGT













351




GATGATTACT CTGAGGATAC TCCAGAAACT GAAACCACTG ATGTGGAATA













401




GAGTACAGTG TTAAGGATTT ACATAATCTG CCTAGCAACT GCTTATGCTT













451




AAGAATGAAT CAGTATATTG TTTAGGAATA AGCCTTAGTT TATAAGTAGT













501




TAATCCTTAG GGAGTATTTG GTGGAAATGA CTGAGTGACA TGAAGTTTAT













551




TCACCATACT CTCAATAGGA GCCACTAGTT GAGCCTGTGC GTTCAAATCC













601




ATGCTCAGCT TAAGTGACTC CCTTTTAGTT TCACTTTAAG TTAAGTTAGG













651




AATAAGTTCC ATATAATCCT AAGGGAGTAT GTGGACCTTC TTGTTAGGAA













701




ATAGTTTAAG ATAGTCCACA GCTCCCTTCT TTTTGAGTTC TAGTCTTTGT













751




TAAGTTTGTT GGCTCATACA GATAAAGTGC TCATTAAACA GGAAACCGCA













801




ACCGGGTAAA GGTTAGCACA GTAAATTAAG CTAGCAGTTA CTCAAGAGCC













851




CGGTAAGCAT TCAAGTAGTT CGAATCCCTT TAATGCTGAC GGATTGCTCT













901




TTAGTGAGGT GATGTAATCT GTTTTTGCAA TCTGAAATGT GTGTTTGCAC













951




AGGAAGTTGT ACAAGAAAGG GAATGGCTAA ACTTGTTACA GTTCGAACAA













1001




ACATTTAGCA ATTTCCTTTG CTTTTGGAGT TCGAGCCTTG TACTTATACT













1051




TTGAGCATAT GTATTGTAAC ACCTAAGTAT GGAAAAATCT CCAAGTATGA













1101




GTCACGAGAT GCTTGGCTCA CTGCGTTGGA CGACTGGAAA GAAGCTTCAA













1151




CAGTCGGGACAGCATCTCGA AGAAGGCCTC CGGAATGAAA GAGTGAAAAA













1201




TGAAGTCTCC TCATTCAGAG AGCCTTCTTT TAGAATTTCA GGCAGAATAG













1251




AGTTTCCAAT AGAATAAACT TTTGTATTAG CAGATAGATA GGATATATAA













1301




TCTCTGCTTT AGATTGTACG GGAGCTCACC ACTACTCGCT GCGTCGAGAG













1351




TGTTCGAGTC TCTCCAGGCT TGGTAAGATA TAAACTTTGG TATTCTCTGT













1401




ATTCTTATGA TCCAATATTA CTCTGCTTAT AGATTGTAAT GGGCAATGGC













1451




AATGCTTTAT CAATGAATGA TTTTATGGTG AATTAAGTTC ATATATGTTT













1501




TAAGAAGTTT AACAATAAAC CGACTTAATT CGAGAACCAG ATTTATTAGT













1551




ATTGTCTCTT TCTATACTTT AAGTAAAGTG AAAGGAGTTG TATATTAGCC













1601




TTGCTTATAA GAGCCATCTA GTGGTATAAG TGTGTACTTA CACTTATCTA













1651




AAGAGGTGGA ATTCTTTAAG GATAACCAAT ATACAAAATT CCACGACAAT













1701




TGGCGCCCAA CGTGGGGCTC GAATATAAGT CGGGTTTTAT TATAAAGACT













1751




TGTTTAAGTC TTAGAATTAT CCCTAGGGAC CTTCACGCAC TGCGGAAGGT













1801




ATAAGTACTC AAAGATGGGT GATCATAATT TGAATGTTCA AGAACTCTTG













1851




AACCTTTTTC AGAATCTAGG TATTTCCAGA CAACCAAATC ATAGAGAAGT













1901




CRTAGGACTT CGTATGACAG GAGGCTGGTG GGGTCCAGGG ACCCGCTATA













1951




ATCTAGTTTC AATCTTTTTA CAAGATGATT CTGGACAACC TTTACAACAA













2001




CCCAGGTGGA GACCTGAAGG TAGACCAGTT AATCCTTTGG TTCATAATAC













2051




TATAGAAGCC CCTTGGGGAG ACTTAAGGTT AGCTTTTGAA GACTTGGATG













2101




TAGCAGAAGG TACTTTGAGG TTTGGTCCTT TAGCTAATGG AAATTGGATT













2151




CCTGGAGATG AATACTCCAT GGAATTCCAG CCTCCACTAG CACAAGAAAT













2201




AGCTCAATTA CAAAGAGACG AAATGGAAGA AATATTGGAT ATAACAGGAC













2251




AAATATGTGC ACAAGTTATA GATTTAGTAG ATATGCAAGA TGCTCAAATT













2301




AGAGGCCYTG AAAGACGTTT ACAAGATAGA CCAGGTTTAA GGGATAACTT













2351




ACCAGTTGCT GGTATACAAG CACCACCATC TAGTCCAATT GGGCAGCCTA













2401




TTGCATCATC TTCACTTCAA CCTGTTCCTG GATCCAGCCA ATCCTCTGCT













2451




GATCTTGGTT GGGAATCAGG AGCGCCTGGG CAAATAGATC CTAGATTGTC













2501




CAGGGTGGCC TATAACCCAT TTTTACCAGG ACCAAGTGAT GGGTCTGGGG













2551




GATCAATCCC AGTCCAGCCT AGTGCTCCTC CAGCGGTTCT TCCATCCTTA













2601




CCCTCACTTC CTGCACCTGT TGCTCAACCT GTTGTTCAGT ATGTTGTTCC













2651




ACCTGCCCCT GCTCCACAAG CTATTCCAAT TCAACACATT CGAGCAGTGA













2701




CAGGAAATAC ACCTACTAAT CCAAGAGATA TTCCTATGTG GCTTGGAAGA













2751




CATTCAGCTG CTATAGAAGG AGTATTTCCT ATGACTACGC CTGATCTTCG













2801




CTGTCGAGTT GTTAATGCTC TTATAGGAGG AAGTCTTGGA CTTTCTTTGG













2851




AGCCTATACA TTGTGTAAAT TGGGCTGCTG TTGTAGCTGC TCTATATGTG













2901




AGAACACATG GATCATATCC CATACATGAA CTAGCTAATG TACTCCGAGC













2951




AGTTGTTAAT CAAGAGGGAG TAGCAACAGG TTTTCAACTT GGAATTATGC













3001




TGTCCAATCA AGATTTTAAT CTTGTTTGGG GAATTCTACG TCCCCTATTG













3051




CCTGGACAAG CTGTAGTCAC AGCTATGCAG CAAARACTTG ATCAAGAAGT













3101




CAGTGACGCT GCTAGGATTG CCTCCTTTAA TGGACATTTA AATGATATAT













3151




ATCAACTTCT AGGACTGAAT GCCCGAGGTC AAAGCATTAC TAGAACTCAG













3201




GGTAGTTCAA TCTCTGGAAC CTCTACTTCT ACAGGCAGAG GAAGGAGAGG













3251




ACAAAGAAAC CAGCAACAGT CTGGTCAACA GCAACAACAA CAGGCAAGAA













3301




GAAGTAATCA GGGAAACCAG AGACAGAGAA ATAATAATCA GAGACAATCC













3351




TCTGGTAATA ATCAGGGACA AGGAGGCCAA GGAGGATATA ATTTGAGACC













3401




CAGAACTTAT CAGCCGCAGC GCTACGGAGG AGGACGTGGA AGAAGATGGA













3451




ACGATAATCA ACAACAGCAA CAAGCACAGC CAGGCAGATC AGCTGATCAA













3501




CCTCGTTCCC AGAGTCAGCA ACCACAAACA GAGGCTCGTG GCGATCAGTC













3551




ACGAACATCT GGTGCTGGGC GCGGACAACA AGGARGAGGG AACCAAAACC













3601




GAAATCAACG CCGGGCTGAT GCTAACAATA CTCGGAATGT GGATACTGTG













3651




ACAGTAACCA CAACTTCCTC CTCCACAACT GGTTCGGGTC AAAATGGATC













3701




CTCTACAGCT CCTCCAGCCC CTGGAAGCAG AAATCAAGGG GACTAAATTA













3751




AAGGCTCATT GGGACAGTGG AGCTACAGTA ACATGTGTTC CACAAGCCTT













3801




TCTAGAAGAT GAAGTACCAA TTAAAAATAT TTGGATCAAG ACAATTCATG













3851




GTGAAAAAGA ACAGCCTGTC TATTATTTAA CCTTTAAAAT MCAAGGAAGA













3901




AAAGTAGAAG CAGAAGTAAT CTCTTCCCCT TATGACTACA TATTAGTCAG













3951




TCCATCTGAC ATCCCCTGGC TAATGAAGAA ACCTCTCCAA TTGACAACTT













4001




TAGTTCCTCT TCAAGAATAC AAAGAAAGAC TTTTAAAGCA AACTATTTTA













4051




ACTGAAAAAT ATAAAGATAG ATTACAATCT TTATTTTTGA AATATGATGC













4101




ATTATGGCAA CATTGGGAAA ATCAAGTGGG CCATAGGCGT ATTAAGCCTC













4151




ATCATATAGC AACTGGTACA GTTAACCCTA GACCACAAAA GCAATATCCA













4201




ATTAATCCAA AAGCAAAGCC AAGTATACAA GTTGTAATTA ATGATTTATT













4251




AAAACAAGGT GTGCTAATAC AGCAAAATAG TGTGATGAAT ACTCCTGTAT













4301




ATCCTGTACC AAAACCAGAT GGAAAATGGA GAATGGTTTT AGATTATAGA













4351




GAAGTCAATA AGACCATCCC TTTAATTGCA GCTCAAAATC AACATTCTGC













4401




AGGGATTCTA TCATCCATAT TTAGAGGCAA ATATAAAACC ACTTTAGATT













4451




TATCTAATGG TTTTTGGGCT CATTCTATTA CACCAGAATC TTATTGGTTA













4501




ACTGCTTTTA CTTGGCTTGG ACAACAATAT TGTTGGACAA GATTACCTCA













4551




AGGATTTCTC AATAGTCCTG CTTTATTTAC AGCAGATGTT GTTGATTTAT













4601




TAAAAGAAGT ACCAAATGTA CAAGTTTATG TGGATGATAT TTATATTAGT













4651




CATGATGACC CTGAAGAACA TTTGGACCAA CTTGAGAAAG TGTTTTCGCT













4701




ATTGCTCAAA TGCGGTTATG GGGTTTCTCT TAAAAAATCT GAAATTGCTC













4751




AACATGAAGT TGAATTCCTT GGGTTTAATA TTACAAAAGA AGGTCGAGGC













4801




CTAACAGAAA CTTTTAAACA AAAACTCTTA AATATAACTC CACCAAAAGA













4851




TCTGAAACAG TTACAAAGTA TTTTAGGCCT TCTAAATTTT GCAAGGAACT













4901




TTGTTCCTAA TTTTTCTGAA TTAGTTAAAC CCTTATATAA TATCATTGCT













4951




AATGCCAATG AGAAATATAT TACATGGACT TCTGACAATA GTCAACAGCT













5001




ACAATATATA ATTTCATTAT TAAATTCTGC AGAAAACTTA GAAGAAAGAA













5051




ATCCAGAAGT CAGATTAATA ATGAAAGTAA ATACCTCTCC TTCAGCAGGA













5101




TATATACGGT TTTATAATGA ATTTGCTANA AGACCTATTA TGTACTTGAA













5151




TTATGTTTAT ACTAAGGCAG AAGTTAAGTT CACTAACACT GAAAAATTGC













5201




TAACTACTAT ACATAAAGGG TTAATTAGAG CCTTAGATCT TGCCATGGGA













5251




CAAGAAATCT TAGTATATAG TCCTATCGTA TCCATGACCA AAATTCAAAA













5301




AACACCATTA CCAGAAAGAA AAGCTCTACC AATTAGATGG ATAACCTGGA













5351




TGTCTTATTT AGAAGATCCC AGAATACAAT TTCATTATGA TAAGACATTA













5401




CCCGAGCTAC AACAGGTTCC TACTGTCACT GATGATGTTA TAGCTAAGAC













5451




TAAACATCCT AGTGAATTTA ATATGGTCTT CTACACTGAT GGTTCTGCAA













5501




TCAGACATCC AAATGTTAAT AAGTCACATA GTGCTGGAAT GGGTATTGCT













5551




CAAGTACAGT TTAAACCTGA GTTTACAGTT GTTAATACTT GGTCTATTCC













5601




TCTTGGAGAT CATACGGCAC AACTTGCCGA AGTTGCAGCT GTAGAATTTG













5651




CATGTAAAAA GGCCCTCAAA ATAGATGGAC CTGTTTTAAT AGTAACTGAT













5701




AGTTTCTATG TTGCTGAGAG TGCTAATAAG GAATTACCYT ATTGGCAATC













5751




AAATGGGTTC TTTAATAACA AAAAGAAACC CCTTAAACAT GTCTCCAAGT













5801




GGAAGTCAAT TGCAGAATGT GTACAATTAA AGCCTGACAT TACTATTATT













5851




CATGAAAAAG GTCACCAGCC TACTGCTTCA ACATTTCATA CAGAAGGTAA













5901




TAATTTAGCT GATAAGCTTG CCACCCAAGG AAGTTATGTG GTAAATACAA













5951




ATACCACTCC AAGCCTGGAT GCAGAGTTGG ATCAATTACT ACAAGGACAA













6001




TATCCAAAAG GTTTTCCAAA ACAATATCAA TATGAACTTA ATGAAGGACA













6051




AGTTATAGTA ACTCGTCCTA ATGGACAAAG AATTATTCCT CCAAAATCAG













6101




ACAGGCCTCA AATTATTTTG CAAGCACATA ATATTGCACA TACAGGAAGA













6151




GATTCAACCT TTCTTAAGGT CTCTTCCAAG TATTGGTGGC CAAATCTTAG













6201




AAAGGATGTG GTTAAAGTTA TCAGACAATG TAAGCAATGT CTGGTCACAA













6251




ATGCAGCTAC CTTAGCTGCG CCTCCAATAC TGAGGCCTGA AAGACCTGTA













6301




AAGCCTTTTG ATAAATTTTT TGTTGACTAT ATTGGCCCTT TACCCCCTTC













6351




TAATRGGTAC TTACATGTCC TTGTAGTAGT CGATGGTATG ACTGGATTTG













6401




TATGGTTATA CCCCACTAAG GCTCCTTCAA CTGGCGCAAC TGTTAAAGCT













6451




CTCAATATGC TCACTAGTAT TGCAGTTCCA AAGGTGATAC ACTCTGATCA













6501




GGGTACAGCA TTCACCTCTG CAACTTTTGC TGATTGGGCA AAAGACAAAG













6551




GTATACATTT GGAATTCAGT ACTCCTTACC ATCCCCAAAG TAGTGGCAAG













6601




GTGGAAAGGA AAAATAGTGA TATAAAACGA CTTTTAACTA AACTGCTTGG













6651




TGGGAGACCT GCTAAGTGGN ATGACCTTCT TTCAGTTGTT CAATTGGCAT













6701




TAAATAATTC ATATAGGCCT CTTTCTTCTA AATATACTCC TCATCAACTT













6751




TTGTTTGGTA TAGATTCAAA TACACCATTT GCAAACTCTG ATACACTTGA













6801




TTTATCAAGA GAAGAAGAAC TCTCTCTTTT ACAGGAAATC AGAACTTCTC













6851




TTTGCCATCC ATCCTCCCCT CCTGCCTCCG TTCGTGTCTG GTCTCCTTCT













6901




GTTGGCCAAT TGGTCCAGGA GAGGGTAGCC AGGCCTGCAT CTTTAAGACC













6951




TCGGTGGCAT AAACCTACTC CTGTTCTGGA AGTCATTAAT CCACGAACTG













7001




TTGTCATTTT GGACCATCTT GGCAACAGGA GAACTGTAAG TGTGGATAAT













7051




TTAAAATTAA CARCTTATCA GAAGGATGGC ACCTCCAATG AATCTGCAGC













7101




AATGGCTATT GTGGAAAAAG ATGAATGAAG CACATTCAGC GTTAGAGAAT













7151




ATTTCAACCC TTACTGAAGA ACAGAAGCAA CAAGTGATTA TTGAGATTCA













7201




ACAAGAAGAA GTAATACCTA CTAGGATGGA CAGAGTAAAG TATCTAGCAT













7251




ATGCATGTTG TGCTACCAGT ACACGTGTCA TGTGTTGGTT ATTTTTGATT













7301




TGTGTGTTGC TAATTATTGT ATTTGTATCT TGTTTTGTCA CTGTTGCTAG













7351




GATTCAATGG AATAAGGATA TTACTGTGTT TGGACCAGTC ATTGATTGGA













7401




ATGTTACCCA TCAAGCAACA TATCAACAGC TTAGAGCTTC CAGAATAGCT













7451




AGATCTTTAA GGGTAGAACA TCCTCATATA TCATATATAT CAATAAATAT













7501




GTCTAGTATA CCACAAGGTG TTATATATAC ACCTCACCCT GAACCTATAA













7551




TCCTCAAGGA GAGGGTTTTA GGGATTTCTC AGGTGTTAAT GATAAATTCT













7601




GAAAATATAG CTAATGTGGC CAATTTGTCT CAAGACACAA AAGTATTGTT













7651




GACTGATATG ATAAATGAGG AATTACAAGA TTTGTCAAAC CAAATGATTG













7701




ACTTCGAATT ACCTCTAGGA GATCCTAGAG ACCAAAATCA ATATGTACAT













7751




CATAAGTGTT ACCAGGAGTT TGCTCATTGT TATTTAGTCA AATATAAAAC













7801




ACNTAAAGAA TGGCCCTCTT CAGCTCTGAT TGCTGATCAG TGTCCCCTAC













7851




CAGGAGAACA TCCAACTGTA CAGTATTCAC ATCAAAATAT ATGGGACTAT













7901




TATGTTCCTT TTCAACAAAT ACGGCCAGAG AAATGGACTT CATCCTTAGT













7951




ATATGAAGAT GCTAGAATAG GGAGCTTCTA TATACCAAAA AATATGAGAA













8001




ACAAGAATGT TACACATGTA ATATTTTGTT CAGATCAATT ATATGGAAAA













8051




TGGTATAATT TGATGAATAC TGTACAAGAA AATGAACAAA TTCAAGTCAT













8101




AAAATTAAAA AATATTACCA AATCGGGTAC CTCTCAAGTT AAGGATAGAG













8151




GACTTCCGTC CGCTTGGCAT AAGAATGGTA AAAGTACATA TTTTAGGCCT













8201




ATTAATACTT TGGATATTTG TAATAGACCT GAGTTAGTAT TATTACTCAA













8251




TAGTACTTAT TATACTCTCT CTCTGTGGGA AGGAGATTGT GGATATACTA













8301




GGGAAAATGC TACTCAAGCT AATCCTCTTT GTAAAAACTT TTATAATGAA













8351




TCTAAAAAAC ATTGGCACCC ATACGCATGT AGGTTTTGGA GATATAAAAA













8401




TGATAAAGAA GAGGTTAAGT GTAGAAATGA GGATAAAAAA CACTGTATTT













8451




ATTATCCCCT TTGGGATACC CCGGAAGCCT TATATGATTT TGGATTTTTG













8501




GCATATCTTA ATGCATTCCC TTCACCACTT TGTATTACAA ATCAAACTGT













8551




TAGGGAGCCA GAGTATGAAG TATATTCCTT ATATATGGAA TGTATGAATT













8601




CTGCGGAAAA ATATGGAATA GATAGTGTTT TGTTTGCTTT AAAAACTTTT













8651




TTAAATTTTA CTGGAACACC AGTGAATGAA ATGCCAACAG CCAGAGCATT













8701




TGTAGGCCTG ACTGATCCTA AATTCCCTCC AGTATATCCA AATATTACTA













8751




AAGAACGAAG AGGATGTGAC AATTCAAGAA GGAAAAGAAG AAGCACTAAT













8801




ATTGAAAAAC TTAGGTCAAT GGGATACTCA TTGACTGGAG CTGTGCAGAC













8851




CCTCTCACAA ATATCAGATA TAAATGATGA AAGACTTCAA CAAGGAGTTT













8901




ACTTATTGAG AGATCATGTT GTCACCTTAA TGGAAGCCGC CTTGCATGAT













8951




ATTACTATTA TGGAAGGAAT GTTAGCAATC GGTCATGTGC ATACCCACTT













9001




GAATCATCTT AAAACCATGT TACTAATGAG GAAGATTGAC TGGACTTTTA













9051




TTAAGAGTGA TTGGATTAAA GAACAACTTC AGAAAACTGA AGATGAAATG













9101




AAGATTATTA GAAGAACAGC TAAAAGTTTA GTATATTATG TGACTCAAAC













9151




ATCATCTTCC ACTACAGCAA CATCATGGGA AATTGGAATT TATTATGAAA













9201




TAACTATACC AAAACATATT TATTTGAATA ATTGGCAAGT TGTTAACATA













9251




GGTCATCTGA TTGAGTCAGC TGGTCATTTG ACCTTAATAA GGGTTAAACA













9301




TCCTTATGAA GACTTTAATA AAGAATGCAC ATATGAACAA TATTTACATC













9351




TTGAAGACTG CATATCTCAG GATTATGTGA TTTGTGACAC GGTACAAATA













9401




GTGTCACCAT GTGGAAACTC AACAGTAACC AGTGACTGCC CTGTCACTGC













9451




TGAAAAGGTA AAGGAACCAT ATATTCAAGT GTCAGCTTTA AAAAATGGAA













9501




GCTATTTGGT TCTAACCAGT AGAACAGATT GCTCAATACC AGCATATGTT













9551




CCCAGCATTG TAACTGTGAA CGAAACAGTT AAGTGTTTTG GGGTTGAGTT













9601




TCATAAACCA CTATACTCAG AAAGTAAAGT CAGCTTTGAA CCACAAGTTC













9651




CACATCTGAA ACTACGCTTG CCACATCTGG TTGGGATTAT TGCAAGTCTT













9701




CAAAATTTGG AAATTGAAGT AACCAGCACC CAAGAGAGTA TAAAAGATCA













9751




GATTGAAAGA GTTCAATCAC AGCTTCTTCG GCTGGACATT CACGAGGGAG













9801




ACTTTCCTGC TTGGATTCAA CAACTTGCTT CTGCAACCAA GGACGTCTGG













9851




CCTGCAGCTG CTAAAGCTCT TCAAGGCATA GGTAACTTTT TATCTAATAC













9901




TGCCCAGGGA ATATTTGGAA CTGCTGTAAG TATTCTATCC TATGCCAAGC













9951




CTATTCTTAT AGGAATAGGT GTTATACTTT TGATTGCATT CTTGTTTAAG













10001




ATTGTATCAT GGCTTCCTGG GAAGAAGAAA AAGAACTAGG ACATCTGCAT













10051




CTTCCAGAAG ACGATCCTCT GCCCAATTTA GATGTGCTCC TGGGTCTTGA













10101




TCATATGGAA TCCAATGAAG GACCTGATCA AAATCCAGGA GCTGAAAAGA













10151




TCTACATTCA ACTCCAAGCA GTCCCAGGGG AAGCCTCAGA GAAAACTTAC













10201




AAATTTGGAT ATGAAGACAA AGAGGCACAA AATCCTGACT TAAAAATGAG













10251




AAATTGGGTT CCTAACCCCG ACAAAATGAG TAAGTGGGCC TGTGCAAGGC













10301




TTATTCTTTG TGGACTTTAT AATGCAAAAA AGGCTGGAGA ACTCTTGGCT













10351




ATGGACTATA ATGTTCAATG GGAACAATCA AAAGAAGACC CAGGATACTT













10401




TGAAGTGGAA TATCACTGTA AAATGTGCAT GACTGTTATT CATGAACCTA













10451




TGCCTATCCA ATATGATGAA AAAACTGGAT TATGGCTAAA AATGGGTCCC













10501




CTTAGGGGAG ATATAGGATC TGTAGTACAT ACTTGTAGAA GGCATTACAT













10551




GAGATGTTTG TCTGCCCTTC CTAGCAATGG AGAACCTCTC AAACCTAGAG













10601




TCCGGGCTAA TCCTGTCCGA AGATATCGAG AGAAGCAAGA GTTCGTTGCG













10651




ACTAGGCCTA AACGCTCCAG ATGGGGTGTG GCCCCTAGCG CAGACTCCCA













10701




TACTTCCAGT GGTGACGCCA TGGCCCTTAT GCCAGGACCA TGCGGCCCCC













10751




TCGGTATGGA CACTCCTGGT TGCTTACTGG AAGGGATACA AGGATCAGGG













10801




CCTGGAACCT CCGAAATGGC TGTGGCAATG TCAGGAGGAC CTTTCTGGGA













10851




AGAAGTGTAT CGAGACTCAA TTCTTGGTGC CCCCACTGGG TCTAGTGAAA













10901




ATTAGGCTTT ATCAAAATCT AACTGTTGTA AATGTTTGTG GATCTGTTGA













10951




CCCATGGGAA AATGAGAATC CCACTAGAGG TCGCAGAGGG CCTATGCATA













11001




GATATGATTG TAGAATTGCT TGTGATCCAA GCTATTGCTT TAAGGCTATT













11051




TGGGAAGGAA ACTTTTGGGA CAAAAAAAAA AGGATCAGGC ATGCTGGCTA













11101




GTTCATCTGA AAGAAGGACA TAAATTTGGT GCAGATGAGT TATCTTCTGG













11151




GGATCTTAAA ATATTAGCAG AATCTAGACC TTATCCATAT GGATCTATTG













11201




GTCATTGTGC TATGCTTCAA TATGCAGTAC AAGTTAAAAT GAGAGTTGAT













11251




AGAGCTCCTT TGACCTCAAA GGTGAGAGCT ATTAAAGCTT TGCACTATCA













11301




TCGCTGGAAT ATTTGTCAGC TGGAAAATCC TGGCATAGGA GAGGGATTCA













11351




GTCCCTCTGG TAATACACAA GCTCTTAAAG CCTATGGACC TCAGCATGGA













11401




AGTGAAGAGG AGAGGGTGTG GCTGACAGCT ACTAAAATGA TTGGCACCCA













11451




GGAATCAGAC TATTGGCATG AGTACAAAAG ATGGGGATAT TTCCCTTTGA













11501




TTCCAAATAA ACATCATCCT GGGTGGACTA GACATCTTAC TAAATTCAAG













11551




ATATCTAGAT TCTCCACTCC TGCTGATGTC CAGAAAATTG TGGATGAGCT













11601




TCTCCCTAGA GGAGCAAGCA TTGTAATGCC AGATGGAACA AAGTATCCAA













11651




GTACCAGAAA AGTGCACTTA GTCAATGAAG GAACCCTTGT AGAATACCAA













11701




GCCAAATGTA AGGAGATAGA GGAAAAGTAC GGAGGATGCT TTTCTACAGA













11751




TAGTGATGAT GACAGTGATG ATTACTCTGA GGATACTCCA GAAACTGAAA













11801




CCACTGATGT GGAATAGAGT ACAGTGTTAA GGATTTACAT AATCTGCCTA













11851




GCAACTGCTT ATGCTTAAGA ATGAATCAGT ATATTGTTTA GGAATAAGCC













11901




TTAGTTTATA AGTAGTTAAT CCTTAGGGAG TATTTGGTGG AAATGACTGA













11951




GTGACATGAA GTTTATTCAC CATACTCTCA ATAGGAGCCA CTAGTTGAGC













12001




CTGTGCGTTC AAATCCATGC TCAGCTTAAG TGACTCCCTT TTAGTTTCAC













12051




TTTAAGTTAA GTTAGGAATA AGTTCCATAT AATCCTAAGG GAGTATGTGG













12101




ACCTTCTTGT TAGGAAATAG TTTAAGATAG TCCACAGCTC CCTTCTTTTT













12151




GAGTTCTAGT CTTTGTTAAG TTTGTTGGCT CATACAGATA AAGTGCTCAT













12201




TAAACAGGAA ACCGCAACCG GGTAAAGGTT AGCACAGTAA ATTAAGCTAG













12251




CAGTTACTCA AGAGCCCGGT AAGCATTCAA GTAGTTCGAA TCCCTTTAAT













12301




GCTGACGGAT TGCTCTTTAG TGAGGTGATG TAATCTGTTT TTGCAATCTG













12351




AAATGTGTGT TTGCACAGGA AGTTGTACAA GAAAGGGAAT GGCTAAACTT













12401




GTTACAGTTC GAACAAACAT TTAGCAATTT CCTTTGCTTT TGGAGTTCGA













12451




GCCTTGTACT TATACTTTGA GCATATGTAT TGTAACACCT AAGTATGGAA













12501




AAATCTCCAA GTATGAGTCA CGAGATGCTT GGCTCACTGC GTTGGACGAC













12551




TGGAAAGAAG CTTCAACAGT CGGGACAGCA TCTCGAAGAA GGCCTCCGGA













12601




ATGAAAGAGT GAAAAATGAA GTCTCCTCAT TCAGAGAGCC TTCTTTTAGA













12651




ATTTCAGGCA GAATAGAGTT TCCAATAGAA TAAACTTTTG TATTAGCAGA













12701




TAGATAGGAT ATATAATCTC TGCTTTAGAT TGTACGGGAG CTCACCACTA













12751




CTCGCTGCGT CGAGAGTGTT CGAGTCTCTC CAGGCTTGGT AAGATATAAA













12801




CTTTGGTATT CTCTGTATTC TTATGATCCA ATATTACTCT GCTTATAGAT













12851




TGTAATGGGC AATGGCAATG CTTTATCAAT GAATGATTTT ATGGTGAATT













12901




AAGTTCATAT ATGTTTTAAG AAGTTTAACA ATAAACCGAC TTAATTCGAG













12951




AACCAGATTT ATTAGTATTG TCTCTTTCTA TACTTTAAGT AAAGTGAAAG













13001




GAGTTGTATA TTAGCCTTGC TTATAAGAGC CATCTAGTGG TATAAGTGTG













13051




TACTACACTT ATCTAAA











Seq. IDs 1-5 can be used for all the molecular biological techniques known to those skilled in the art. Such uses include, but are not limited to, generation of probes and vectors containing the sequences, antisense sequences derived from such sequences, and proteins synthesized using the sequences. RNA and other nucleic acid derivatives are contemplated by the present invention.




Knowing the entire sequence of SFVHu-1, Seq, ID 5, allows for the deletion and insertion of exogenous genetic sequences for use of the virus in treatments such as gene therapy. Having the complete genomic sequence will allow for the creation of novel viral vectors for gene therapy, attenuated recombinant vaccines and live viral vectors for the treatment and prevention of diseases. These and other molecular biological and medical procedures and treatments are contemplated by the present invention.




The 5′ sequenced region of SFVHu-1, shown in Seq ID 3, comprises the LTR (Long Terminal Repeat). In foamy viruses, the LTR aids in the replication of the virus. The LTR is transactivated by a virus-specific protein, and unlike related retrovirus, HIV (Human Immunodeficiency Virus), no human cellular transcription factors activate the virus. LTRs in retroviruses like HIV have conserved consensus sequences for cellular transcription factors.




According to sequence homology, SFVHu-1 Seq ID 3, the LTRs are stable. There has not been significant change in the sequence even after long passage in a human host. For gene therapy uses, this stability is very important. It also appears that the internal promoter, found in the 3′ sequence, Seq ID 4, is also conserved. Thus, the transcriptionally important regions of SFVHu-1 are stable. This indicates that the virus is not acquiring human sequences that would cause it to possibly become virulent or at least cause disease in humans due to introduced mutations. SFVHu-1, because of this stability, is an excellent vector, vaccine or gene therapy agent for humans. This stability is surprising is light of the high instability of the LTR of the virus known as HFV, Human Foamy Virus. HFV was derived from a nasocarcinoma and is now believed not to be a human foamy virus, but a chimpanzee virus. The HFV LTR is unstable and has lots of deletions, thus making it an undesirable vector.




The foamy viruses are unique in that at the 3′ end of the env gene there is an internal promoter, IP. ORF 1 codes for a transactivator protein, TAF. TAF activates IP. Once the virus infects the cell, a little TAF is made, this TAF activates the internal promoter IP, which then causes the virus to make lots of TAF. Once sufficient quantity of TAF is made, the TAF functions to initiate the promoter found in the 5′ LTR.




ORF 2 has presently unknown function, though it is theorized that it is necessary for replication of the virus in vivo. Without all of ORF 2 present, the virus will replicate in vitro, but the existing paradigm, prior to the present invention, was that ORF 2 was required for in vivo replication. ORF 2 is a putative site for gene insertion. Surprisingly, it has been found in Seq. ID 4, that ORF 2 of SFVHu-1 has multiple stop codons that prevent its translation. SFVHu-1 has a 5 base insertion and a point mutation that prevent accurate translation of ORF 2. According to the existing theory for foamy virus replication in vitro discussed above, these mutation should prevent replication of SFVHu-1 in humans. Surprisingly, the inventors have found that SFVHu-1 has a high rate of replication in the human host. The virus is found in the peripheral blood lymphocytes (PBL) of the host and is cultured from such cells in tissue culture systems. Reverse transcriptase activity has been found in the PBLs and plasma of the infected host. Viral RNA of SFVHu-1 has been shown by viral RT-PCR in both PBLs and plasma of the infected host. No other foamy virus has shown this activity. The literature has reported that there has been no identification of foamy viral replication in humans, until now, with the present invention, no such replication has been shown.




Knowing the entire sequence for SFVHu-1, Seq. ID 5, allows for various uses of the virus and viral sequences. The env gene of SFVHu-1 is necessary for foamy virus entry into animal cells. The gene of the present invention is effective in permitting infection of cells in a human host. Thus, for example, the env gene is used for uptake of foreign DNA by a wide range of human cells. There has long been a need for vectors for getting foreign nucleic acids into cells, both in vivo and in vitro. The introduction of foreign or exogenous nucleic acids into cells has been a technological hurdle for many gene therapy applications and has now been solved by the virus and sequences of the present invention. The env sequences can be used with any vector known to those skilled in the art, and with any other genetic sequences of choice, to allow for entry of the nucleic acids into the cells.




In another embodiment of the present invention, sequences of the foamy virus of the present invention can be used for other molecular biological applications. Regions of the gag gene are important in packaging genetic material. For example, the gag sequence or regions of the sequence are incorporated into other vectors and direct the packaging of the resultant genetic material for the particular application desired, such as packaging recombinant sequences to make altered infectious virions. Regions of the pol gene are known to be critical for the stable integration of foreign/viral DNA into the host genome. Vectors comprising the pol gene sequences can be used to integrate any DNA into a genome. The foamy virus and sequences of the present invention infect human cells, and thus, these sequences are used with other foreign or exogenous sequences in humans in methods, including, but not limited to, entry into cells, packaging, and insertion into the genome. Additionally, methods of using the foamy virus and sequences of the present invention are not limited to human cells, but all cells that allow for infection or entry of the nucleic acids.




The present invention is directed to compositions and methods comprising a new spumavirus, SFVHu-1, particularly compositions and methods for the sequences of the viral genome. The virus was isolated from humans who had worked with nonhuman primates. The new spumavirus, or foamy virus, does not appear to cause any disease in the human hosts. The new virus of the present invention may be an excellent vector for gene therapy and for vaccination purposes. Additionally, the antibodies or other detection methods for detecting the new virus may be important in detecting the presence of this and related viruses for xenotransplantation. In addition, the novel spumavirus of the present invention can be used as a reagent in pathogenicity studies of these and related viruses. Moreover, the sequences of the novel spumavirus of the present invention can be used as probes to detect virus in biological samples. Vectors include but are not limited to prokaryotic, eucaryotic and viral vectors.




Many new and potentially useful technologies are being developed which use viral vectors and may form the basis of future medical cures and therapies. Examples of such technologies include, but are not limited to, gene replacement, antisense gene therapy, in situ drug delivery, treatment of cancer or infectious agents, and vaccine therapy. However, to be successful, these technologies require an effective means for the delivery of the genetic information across cellular membranes.




The recent advent of technology, and advances in the understanding of the structure and function of many genes makes it possible to selectively turn off or modify the activity of a given gene. Alteration of gene activity can be accomplished many ways. For example, oligonucleotides that are complementary to certain gene messages or viral sequences, known as “antisense” compounds, have been shown to have an inhibitory effect against viruses. By creating an antisense compound that hybridizes with the targeted RNA message of cells or viruses the translation of the message into protein can be interrupted or prevented. In this fashion gene activity can be modulated.




The ability to deactivate specific genes provides great therapeutic benefits. For example, it is theoretically possible to fight viral diseases with antisense molecules that seek out and destroy viral gene products. In tissue culture, antisense oligonucleotides have inhibited infections by herpes-viruses, influenza viruses and the human immunodeficiency virus that causes AIDS. It may also be possible to target antisense oligonucleotides against mutated oncogenes. Antisense technology also holds the potential for regulating growth and development. However, in order for the gene therapy to work, antisense sequences must be delivered across cellular plasma membranes to the cytosol.




Gene activity is also modified using sense DNA in a technique known as gene therapy. Defective genes are replaced or supplemented by the administration of “good” or normal genes that are not subject to the defect. Instead of being defective, the gene have been deleted, thus replacement therapy would provide a copy of the gene for use by the cell. The administered normal genes can either insert into a chromosome or may be present as extracellular DNA and can be used to produce normal RNA, leading to production of the normal gene product. In this fashion gene defects and deficiencies in the production of a gene product may be corrected. Still further gene therapy has the potential to augment the normal genetic complement of a cell. For example, it has been proposed that one way to combat HIV is to introduce into an infected person's T cells a gene that makes the cells resistant to HIV infection. This form of gene therapy is sometimes called “intracellular immunization.” Genetic material such as a polynucleotide sequence may be administered to a mammal in a viral vector to elicit an immune response against the gene product of the administered nucleic acid sequence. Such gene vaccines elicit an immune response in the following manner. First, the viral vector containing the nucleic acid sequence is administered to a human or animal. Next, the administered sequence is expressed to form a gene product within the human or animal. The gene product inside the human or animal is recognized as foreign material and the immune system of the human or animal mounts an immunological response against the gene product. The virus of the present invention may be used as a viral vector to provide the foreign nucleic acid sequences to the intracellular metabolic processes.




Additionally, gene therapy may be used as a method of delivering drugs in vivo. For example, if genes that code for therapeutic compounds can be delivered to endothelial cells, the gene products would have facilitated access to the blood stream. Additionally, cells could be infected with a retroviral vector such as the present invention carrying nucleic acid sequences coding for pharmaceutical agents that prevent infection from occurring in the retrovirally infected cells.




The novel spumavirus of the present invention can also be used a safe and effective vaccine agent. Genetic sequences for immunogenic proteins from a variety of infectious agents can be incorporated into the foamy virus RNA. Once inside a cell, the gene product is expressed and releases the immunizing peptide to the body's immune system. In another method, the virus of the present invention can be used to immunize the body against cell markers found on cancer or tumor cells. The genetic sequence of the cancer cell marker is incorporated into the foamy virus RNA and after infection with the virus, the expressed gene product stimulates the immune system. The patient's immune system is used to remove the cancerous cells, obviating the need for chemotherapeutic methods.




The antibodies of the present invention can be used to detect the presence of the virus or viral particles of the present invention. These antibodies can be used in diagnostic or screening kits to assess the present of the virus. Additionally, the antibodies can be used to screen organs from nonhuman primates that may be used in humans. Detection of the presence of a virus that is transmitted from nonhuman primates to humans would be crucial in providing virus-free organs for transplantation.




The virus of the present invention can be used for the treatment of conditions due to the presence of rapidly dividing cells. In a host, the ability of SFVHu-1 to productively infect dividing cells provides an excellent treatment for conditions due to the presence of rapidly dividing cells. For example, a person with disease due to rapidly dividing cells, including but limited to cancer or any known angiogenic condition, could be infected with SFVHu-1. Such virus may or may not carry other, exogenous genes for other effects in the host. Because SFVHu-1 does not cause disease in the host and there is no transmission of the virus to contacts with the host, only the person with the condition due to rapidly dividing cells will be treated. In addition, only the rapidly dividing cells of that host person will be productively infected by SFVHu-1. Other cells in the body may be infected but will not be killed because the infection in nondividing cells is not productive. The virus will productively infect the rapidly dividing cells and kill them. For example, a person with a fast growing tumor would be infected with SFVHu-1 and the cells of the tumor would be destroyed by the virus. Additionally, the virus may be given to a person prior to the person developing a condition caused by dividing cells, and when the cells begin dividing, the virus would then undergo a productive infection and kill the cells. This therapy may halt or inhibit such conditions as leukemia or angiogenesis dependent diseases such as macular degeneration.




Such treatment with SFVHu-1 could be used for any condition in which rapidly dividing cells provide an aspect of the pathology of the condition. One such condition is the presence of uncontrolled angiogenesis within the body. Angiogenesis dependent diseases are well known in the art and are caused in part by the rapid growth of blood vessels. Another such condition is cancer or tumor growth. Cancer or tumors include both solid tumors and other types. Infection with the virus of the present invention, which causes no disease and does not effect the host systemically, is an improvement over currently known treatments that involved systemically administered agents. Such chemotherapeutic agents kill rapidly dividing cells but also cause trauma to the entire person. The dosages of such chemotherapeutic agents must be titered between killing the cancer and killing the patient.




In contrast, treatments of cancer with the present invention are not as harmful to the patient. The virus can either be administered systemically or injected in situ into the tumor. The virus will only replicate in rapidly dividing cells and will not effect cells that are not dividing. The infected cells are killed and tumor growth is stopped. The virus may be administered in one treatment or in a series of treatments.




The SFVHu-1 of the present invention can be recombinantly modified to be selective for cellular receptors on the tumor to make the virus even more specifically targeted to just those cells. Additionally, the virus may have altered promoter regions that can be selectively activated to cause a productive infection. The combination of different levels of control of the virus, both natural and recombinantly produced, are contemplated in the present invention. A virus could be made specific for attachment to only certain types of cellular receptors, for those cells that are dividing, and will only undergo replication if another exogenous promoter factor is present. Viral infection by two or more individually defective viruses, that require factors or promoters supplied by other foamy viruses or any type of virus, could provide for many levels of control of infection or treatment of specific conditions.




The virus may be administered to the host, for cancer treatment, gene therapy or vaccination by any methods known to those skilled in the art. Such methods include but are not limited to injection, inhalation, ingestion, topical administration and implantation. The virus may be killed or live, depending on the treatment considered.




The inventors of the present invention believe that the viruses of the present invention, comprising the isolates from Cases A, B, and C, and particularly Case A, are the first definitive isolation of an SFV-3-like spumavirus from persons exposed to nonhuman primates. The virus does not appear to cause disease and does not appear to be transmitted to close household contacts or sexual contacts. This belief is supported by the epidemiology data, the PCR and sequencing data and the serology data.




The isolate from Case A, SFVHu-1, was deposited with the ATCC under the Budapest Treaty on Feb. 5, 1998, and was assigned ATCC no. VR-2596.




The present invention is further described by the examples which follow. Such examples, however, are not to be construed as limiting in any way either the spirit or scope of the present invention. In the examples, all parts are parts by weight unless stated otherwise.




EXAMPLE 1




Case A




Case A has intermittently been employed as a caretaker for non-human primates for twenty years between 1961 and 1997. Case A recalled multiple minor injuries and mucocutaneous exposures to non-human primate blood, body fluids, or fresh tissue. In addition, Case A was twice bitten by African green monkeys in the 1960s or early 70s. These injuries were severe enough to require 7-10 stitches each. Case A is single and in good health. No sera collected from Case A prior to 1995 or from sexual partners are currently available for testing. Retrospective analysis of sera archived from Case A in 1995 showed the sera to have antibodies to SFV. (See

FIG. 3

, lane 2).




The western blot of

FIG. 3

shows whole cell lysate from Cf2Th cells infected with the spumavirus of the present invention tested in each individual lane with different antisera. In

FIG. 3

, particular viral proteins that show infection are the proteins with molecular weight of approximately 70-80 Daltons (p70 gag protein) and the proteins at approximately 130-140 Daltons (an envelope protein). The western blot of

FIG. 3

shows whole cell lysate from Cf2Th cells infected with the spumavirus of the present invention. These proteins are not detectable in the western blot of

FIG. 3

by normal sera, (lane 1) but are detectable by antisera from Case A.




EXAMPLE 2




Case B




Case B is a research scientist employed for three decades working with biologic specimens from non-human primates. Case B rarely reported injuries involving non-human primate blood, body fluids, or unfixed tissue, but did report an injury in 1970 when an unused needle was stuck through a glove that was potentially contaminated with baboon body fluids; and a 1972 cut inflicted by a broken capillary tube containing chimpanzee blood. Case B is in good health. Case B has been in a monogamous sexual relationship without use of barrier contraceptives or spermicides for over 20 years. Case B's spouse is negative for SFV-like infection by both serologic and PCR testing. Analysis of two serum specimens from Case B archived serially in 1967 were negative; sera archived in 1978 and subsequently were consistently seropositive. See

FIG. 3

, lanes 3 and 4 are the 1967 sera, lane 5 is sera from 1978, lane 6 is sera from 1980, lane 7 is sera from 1981. The sera of Case B's spouse is shown in lane 10.




EXAMPLE 3




Case C




Case C is an animal care supervisor who has worked with non-human primates for more than 3 decades. Case C recalls multiple minor injuries and mucocutaneous exposures to non-human primate blood, body fluids, or unfixed tissues. Case C reported a severe baboon bite around 1980 that required multiple stitches of an arm and hand. Case C is in good health except for type II diabetes mellitus. Case C has been in a monogamous sexual relationship for nearly three decades, during which barrier methods of contraception have not been employed and spermicides were used for no more than a 6 month period. Case C's spouse is negative for SFV-like infection by both serologic and PCR testing. Retrospective analysis of sera archived from Case C in 1988 showed the sera to have antibodies to SFV. See

FIG. 3

, lane 8 is Case C's sera from 1988, and lane 11 is sera from the spouse of Case C.




EXAMPLE 4




Western Blot Analysis




The sera from the three cases were analyzed by western blot analysis against whole cell lysates from Ct2Th cells infected by cell free supernatants from Ct2Th cells infected by a Case's PBLs. As shown in

FIG. 3

, Case A, Case B and Case C all show the characteristic gag proteins associated with the spumavirus. It is interesting to note that in Case B, Case B converted from negative to positive between 1967 and 1978. In addition, spouses of two of the Cases were negative.




EXAMPLE 5




Simian Foamy Virus Isolation




Peripheral blood lymphocytes (PBLs) were isolated from Cases A, B and C and were cultured with IL-2 for 48 hours, in RPI media with 10% fetal Calf serum, and penn-strep antibiotics. After 48 hours, the PBLs were added to the Cf2Th cells and co-cultured for 2-4 weeks. The cells were in DMEM supplemented with 2% nonessential amino acids, 20% fetal calf serum, and pen-strep antibiotics. 1 mL supernatants were collected from the cell cultures every 3 to 4 days and tested for amp-reverse transcriptase. Procedures for PBL treatment, culturing of Cf2Th cells and amp reverse transcriptase activity were procedures known to those in the art. For example, see Heneine, W., et al. “Detection of reverse transcriptase by a highly sensitive assay in sera from persons infected with HIV-1.” (1995). J. Infectious Diseases, 171:1201-6.




EXAMPLE 6




Because of the positive amp-reverse transcriptase activity from cells from Case A, peripheral blood lymphocytes from Case A were cultured with IL-2 for 48 hours prior to addition to canine thymocytes (Cf2Th), human lung fibroblasts, and normal human peripheral blood lymphocytes. Supernatants were collected every 3 to 4 days and tested for amp-reverse transcriptase activity. Each time the 1 mL sample of supernatant was taken for amp-reverse transcriptase activity, a 5 mL sample of supernatant was taken and frozen at −80° C. in order to preserve a sample of the virus producing the amp-reverse transcriptase activity.




At day 5, amp-reverse transcriptase testing showed a slightly positive signal in the canine thymocyte culture. The amp-reverse transcriptase activity increased over time. (See FIG.


2


).




The activity in control Cf2Th cells that were treated as above, except for exposure to normal PBLs instead of infected PBLs, was shown by the lower line that overlaps the baseline. There was no amp-reverse transcriptase activity inherently in these Cf2Th cells, providing evidence that there was no contamination by a retrovirus or spumavirus by the tissue culture cells.




EXAMPLE 7




At the peak of amp-reverse transcriptase activity as described in Example 5, cell-free supernatants were transferred to fresh Cf2Th growing at 2×10


5


cells/mL. At day 4 in the new culture, cytopathic effects and syncytia were observed. Transmission electron microscopy showed viral particles in and around the cells (See FIG.


1


). Viral particles were isolated from these cultures and were stored at the Centers for Disease Control and were deposited at the ATCC.




The Cf2Th cells were obtained from the in-house cell culture facility of the Centers for Disease Control, but these cells can also be obtained from the American Type Culture Collection (Rockville, Md.). See Mergia et al., et al., “Cell tropism of the simian foamy virus type 1 (SFV-1),” J. Med. Primatol. 1996:25:2-7, for use of these cells.




Having thus described the invention, numerous changes and modifications thereof will be readily apparent to those having ordinary skill in the art, without departing from the spirit or scope of the invention.

















                  






#             SEQUENCE LISTING




















<160> NUMBER OF SEQ ID NOS: 5













<210> SEQ ID NO 1






<211> LENGTH: 423






<212> TYPE: DNA






<213> ORGANISM: Human foamy virus













<400> SEQUENCE: 1













ttactacaag gacaatatcc aaaaggtttt ccaaaacaat atcaatatga ac






#ttaatgaa     60













ggacaagtta tagtaactcg tcctaatgga caaagaatta ttcctccaaa at






#cagacagg    120













cctcaaatta ttttgcaagc acataatatt gcacatacag gaagagattc aa






#cctttctt    180













aaggtctctt ccaagtattg gtggccaaat cttagaaagg atgtggttaa ag






#ttatcaga    240













caatgtaagc aatgtctggt cacaaatgca gctaccttag ctgcgcctcc aa






#tactgagg    300













cctgaaagac ctgtaaagcc ttttgataaa ttttttgttg actatattgg cc






#ctttaccc    360













ccttctaatg ggtacttaca tgtccttgta gtagtcgatg gtatgactgg at






#ttgtatgg    420













tta                  






#                  






#                  






#            423




















<210> SEQ ID NO 2






<211> LENGTH: 423






<212> TYPE: DNA






<213> ORGANISM: Human foamy virus













<400> SEQUENCE: 2













ttactacaag gacaatatcc aaaaggtttt ccaaaacaat atcaatatga ac






#ttaatgaa     60













ggacaagtta tagtaactcg tcctaatgga caaagaatta ttcctccaaa at






#cagacagg    120













cctcaaatta ttttgcaagc acataatatt gcacatacag gaagagattc aa






#cctttctt    180













aaggtctctt ccaagtattg gtggccaaat cttagaaagg atgtggttaa ag






#ttatcaga    240













caatgtaagc aatgtctggt cacaaatgca gctaccttag ctgcgcctcc aa






#tactgagg    300













cctgaaagac ctgtaaagcc ttttgataaa ttttttgttg actatattgg cc






#ctttaccc    360













ccttctaata ggtacttaca tgtccttgta gtagtcgatg gtatgactgg at






#ttgtatgg    420













tta                  






#                  






#                  






#            423




















<210> SEQ ID NO 3






<211> LENGTH: 1567






<212> TYPE: DNA






<213> ORGANISM: Human foamy virus













<400> SEQUENCE: 3













ttcccaataa acatcatcct gggtggacta gacatcttac taaattcaag at






#atctagat     60













tctccactcc tgctgatgtc cagaaaattg tggatgagct tctccctaga gg






#agcaagca    120













ttgtaatgcc tgatggaaca aagtatccaa gtaccagaaa agtgcactta gt






#caatgaag    180













gaacccttgt agaataccaa gccaaatgta aggagataga ggaaaagtac gg






#aggatgct    240













tttctacaga tagtgatgat gacagtgatg attactctga ggatactcca ga






#aactgaaa    300













ccactgatgt ggaatagagt acagtgttaa ggattcacat aatctgccta gc






#aactgctt    360













atgcttaaga atgaatcagt atattgttta ggaataagtt atagtttata ag






#aagttaat    420













ccttagggag tatttggtgg aaatgactga gtgacatgaa gtttattcac ca






#tactctca    480













ataggagcca ctagttgagc ctgtgcgttc aaatccatgc tcagcttaag tg






#actccctt    540













ttagtttcac tttaagttaa gttaggaata agttccatat aatcctaagg ga






#gtatgtgg    600













accttcttgt taggaaatag tttaagatag tccacagctc ccttcttttt ga






#gttctagt    660













ctttgttaag tttgttggct catacagata aagtgctcat taaacaggaa ac






#cgcaaccg    720













ggtaaaggtt agcacagtaa attaagctag cagttactca agagcccggt aa






#gcattcaa    780













gtagttcgaa tccctttaat gctgacggat tgctctttag tgaggtgatg ta






#atctgttt    840













ttgcaatctg aaatgtgtgt ttgcacagga agttgtacaa gaaagggaat gg






#ctaaactt    900













gttacagttc gaacaaacat ttagcaattt cctttgcttt tggagttcga gc






#cttgtact    960













tatactttga gcatatgtat tgtaacacct aagtatggaa aaatctccaa gt






#atgagtca   1020













cgagatgctt ggctcactgc gttggacgac tggaaagaag cttcaacagt cg






#ggacagca   1080













tctcgaagaa ggcctccgga atgaaagagt gaaaaatgaa gtctcctcat tc






#agagagcc   1140













ttcttttaga atttcaggca gaatagagtt tccaatagaa taaacttttg ta






#ttagcaga   1200













tagataggat atataatctc tgctttagat tgtacgggag ctcaccacta ct






#cgctgcgt   1260













cgagagtgtt cgagtctctc caggcttggt aagatataaa ctttggtatt ct






#ctgtattc   1320













ttatgatcca atattactct gcttatagat tgtaatgggc aatggcaatg ct






#ttatcaat   1380













gaatgatttt atggtgaatt aagttcatat atgttttaag aagtttaaca at






#aaaccgac   1440













ttaattcgag aaccagattt attagtattg tctctttcta tactttaagt aa






#agtgaaag   1500













gagttgtata ttagccttgc ttataagagc catctagtgg tataagtgtg ta






#ctacactt   1560













atctaaa                 






#                  






#                  






#        1567




















<210> SEQ ID NO 4






<211> LENGTH: 2408






<212> TYPE: DNA






<213> ORGANISM: Human foamy virus






<220> FEATURE:






<221> NAME/KEY: misc_feature






<222> LOCATION: (763)..(763)






<223> OTHER INFORMATION: “n” = unknown






<220> FEATURE:






<221> NAME/KEY: misc_feature






<222> LOCATION: (782)..(782)






<223> OTHER INFORMATION: “n” = unknown













<400> SEQUENCE: 4













aaggggatgt tgagcaatcc aacatgtgca tacccacttg aatcatctta aa






#accatgtt     60













actaatgagg aagattgact ggacttttat taagagtgat tggattaaag aa






#caacttca    120













gaaaactgaa gatgaaatga agattattag aagaacagct aaaagtttag ta






#tattatgt    180













gactcaaaca tcatcttcca ctacagcaac atcatgggaa attggaattt at






#tatgaaat    240













aactatacca aaacatattt atttgaataa ttggcaagtt gttaacatag gt






#catctgat    300













tgagtcagct ggtcatttga ccttaataag ggttaaacat ccttatgaag ac






#tttaataa    360













agaatgcaca tatgaacaat atttacatct tgaagactgc atatctcagg at






#tatgtgat    420













ttgtgacacg gtacaaatat tgtcaccatg tggaaactca acagtaacca gt






#gactgccc    480













tgtcactgct gaaaaggtaa aggaaccata tattcaagtg tcagctttaa aa






#aatggaag    540













ctatttggtt ctaaccagta gaacagattg ctcaatacca gcatatgttc cc






#agcattgt    600













aactgtgaac gaaacagtta agtgttttgg ggttgagttt cataaaccac ta






#tactcaga    660













aagtaaagtc agctttgaac cacaagttcc acatctgaaa ctacgcttgc ca






#catctggt    720













tgggattatt gcaagtcttc aaaatttgga aattgaagta acnagcaccc aa






#gagagtat    780













anaagatcag attgaaagag ttcaatcaca gcttcttcgg ctggacattc ac






#gagggaga    840













ctttcctgct tggattcaac aacttgcttc tgcaaccaag gacgtctggc ct






#gcagctgc    900













taaagctctt caaggcatag gtaacttttt atctaatact gcccagggaa ta






#tttggaac    960













tgctgtaagt attctatcct atgccaagcc tattcttata ggaataggtg tt






#atactttt   1020













gattgcattc ttgtttaaga ttgtatcatg gcttcctggg aagaagaaaa ag






#aactagga   1080













catctgcatc ttccagaaga cgatcctctg cccaatttag atgtgctcct gg






#gtcttgat   1140













catatggaat ccaatgaagg acctgatcaa aatccaggag ctgaaaagat ct






#acattcaa   1200













ctccaagcag tcccagggga agcctcagag aaaacttaca aatttggata tg






#aagacaaa   1260













gaggcacaaa atcctgactt aaaaatgaga aattgggttc ctaaccccga ca






#aaatgagt   1320













aagtgggcct gtgcaaggct tattctttgt ggactttata atgcaaaaaa gg






#ctggagaa   1380













ctcttggcta tggactataa tgttcaatgg gaacaatcaa aagaagaccc ag






#gatacttt   1440













gaagtggaat atcactgtaa aatgtgcatg actgttattc atgaacctat gc






#ctatccaa   1500













tatgatgaaa aaactggatt atggctaaaa atgggtcccc ttaggggaga ta






#taggatct   1560













gtagtacata cttgtagaag gcattacatg agatgtttgt ctgcccttcc ta






#gcaatgga   1620













gaacctctca aacctagagt ccgggctaat cctgtccgaa gatatcgaga ga






#agcaagag   1680













ttcgttgcga ctaggcctaa acgctccaga tggggtgtgg cccctagcgc ag






#actcccat   1740













acttccagtg gtgacgccat ggcccttatg ccaggaccat gcggcccctt cg






#gtatggac   1800













actcctggtt gcttactgga agggatacaa ggatcagggc ctggaacctc cg






#aaatggct   1860













gtggcaatgt caggaggacc tttctgggaa gaagtgtacc gggactcaat tc






#ctggtgcc   1920













cccactgggt ctagtgaaaa ttaggcttta tcaaaatcta actgttgtaa at






#gtttgtgg   1980













atctgttgac ccatgggaaa atgagaatcc cactagaggt cgcagagggc ct






#atgcatag   2040













atatgattgt agaattgctt gtgatccaag ctattgcttt aaggctattt gg






#gaaggaaa   2100













cttttgggac aaaaaaaaaa ggatcaggca tgctggctag ttcatctgaa ag






#aaggacat   2160













aaatttggtg cagatgagtt atcttctggg gatcttaaaa tattagcaga at






#ctagacct   2220













tatccatatg gatctattgg tcattgtgct atgcttcaat atgcagtaca ag






#ttaaaatg   2280













agagttgata gagctccttt gacctcaaag gtgagagcta ttaaagcttt gc






#actatcat   2340













cgctggaata tttgtcagct ggaaaatcct ggcataggag aaggattcag tc






#cctctggt   2400













aatacaca                






#                  






#                  






#        2408




















<210> SEQ ID NO 5






<211> LENGTH: 13067






<212> TYPE: DNA






<213> ORGANISM: Human foamy virus






<220> FEATURE:






<221> NAME/KEY: misc_feature






<222> LOCATION: (6670)..(6670)






<223> OTHER INFORMATION: “n” = unknown






<220> FEATURE:






<221> NAME/KEY: misc_feature






<222> LOCATION: (7803)..(7803)






<223> OTHER INFORMATION: “n” = unknown













<400> SEQUENCE: 5













tgtggctgac agctactaaa atgattggca cccaggaatc agactattgg ca






#tgagtaca     60













aaagatgggg atatttccct ttgattccaa ataaacatca tcctgggtgg ac






#tagacatc    120













ttactaaatt caagatatct agattctcca ctcctgctga tgtccagaaa at






#tgtggatg    180













agcttctccc tagaggagca agcattgtaa tgccagatgg aacaaagtat cc






#aagtacca    240













gaaaagtgca cttagtcaat gaaggaaccc ttgtagaata ccaagccaaa tg






#taaggaga    300













tagaggaaaa gtacggagga tgcttttcta cagatagtga tgatgacagt ga






#tgattact    360













ctgaggatac tccagaaact gaaaccactg atgtggaata gagtacagtg tt






#aaggattt    420













acataatctg cctagcaact gcttatgctt aagaatgaat cagtatattg tt






#taggaata    480













agccttagtt tataagtagt taatccttag ggagtatttg gtggaaatga ct






#gagtgaca    540













tgaagtttat tcaccatact ctcaatagga gccactagtt gagcctgtgc gt






#tcaaatcc    600













atgctcagct taagtgactc ccttttagtt tcactttaag ttaagttagg aa






#taagttcc    660













atataatcct aagggagtat gtggaccttc ttgttaggaa atagtttaag at






#agtccaca    720













gctcccttct ttttgagttc tagtctttgt taagtttgtt ggctcataca ga






#taaagtgc    780













tcattaaaca ggaaaccgca accgggtaaa ggttagcaca gtaaattaag ct






#agcagtta    840













ctcaagagcc cggtaagcat tcaagtagtt cgaatccctt taatgctgac gg






#attgctct    900













ttagtgaggt gatgtaatct gtttttgcaa tctgaaatgt gtgtttgcac ag






#gaagttgt    960













acaagaaagg gaatggctaa acttgttaca gttcgaacaa acatttagca at






#ttcctttg   1020













cttttggagt tcgagccttg tacttatact ttgagcatat gtattgtaac ac






#ctaagtat   1080













ggaaaaatct ccaagtatga gtcacgagat gcttggctca ctgcgttgga cg






#actggaaa   1140













gaagcttcaa cagtcgggac agcatctcga agaaggcctc cggaatgaaa ga






#gtgaaaaa   1200













tgaagtctcc tcattcagag agccttcttt tagaatttca ggcagaatag ag






#tttccaat   1260













agaataaact tttgtattag cagatagata ggatatataa tctctgcttt ag






#attgtacg   1320













ggagctcacc actactcgct gcgtcgagag tgttcgagtc tctccaggct tg






#gtaagata   1380













taaactttgg tattctctgt attcttatga tccaatatta ctctgcttat ag






#attgtaat   1440













gggcaatggc aatgctttat caatgaatga ttttatggtg aattaagttc at






#atatgttt   1500













taagaagttt aacaataaac cgacttaatt cgagaaccag atttattagt at






#tgtctctt   1560













tctatacttt aagtaaagtg aaaggagttg tatattagcc ttgcttataa ga






#gccatcta   1620













gtggtataag tgtgtactta cacttatcta aagaggtgga attctttaag ga






#taaccaat   1680













atacaaaatt ccacgacaat tggcgcccaa cgtggggctc gaatataagt cg






#ggttttat   1740













tataaagact tgtttaagtc ttagaattat ccctagggac cttcacgcac tg






#cggaaggt   1800













ataagtactc aaagatgggt gatcataatt tgaatgttca agaactcttg aa






#cctttttc   1860













agaatctagg tatttccaga caaccaaatc atagagaagt crtaggactt cg






#tatgacag   1920













gaggctggtg gggtccaggg acccgctata atctagtttc aatcttttta ca






#agatgatt   1980













ctggacaacc tttacaacaa cccaggtgga gacctgaagg tagaccagtt aa






#tcctttgg   2040













ttcataatac tatagaagcc ccttggggag acttaaggtt agcttttgaa ga






#cttggatg   2100













tagcagaagg tactttgagg tttggtcctt tagctaatgg aaattggatt cc






#tggagatg   2160













aatactccat ggaattccag cctccactag cacaagaaat agctcaatta ca






#aagagacg   2220













aaatggaaga aatattggat ataacaggac aaatatgtgc acaagttata ga






#tttagtag   2280













atatgcaaga tgctcaaatt agaggccytg aaagacgttt acaagataga cc






#aggtttaa   2340













gggataactt accagttgct ggtatacaag caccaccatc tagtccaatt gg






#gcagccta   2400













ttgcatcatc ttcacttcaa cctgttcctg gatccagcca atcctctgct ga






#tcttggtt   2460













gggaatcagg agcgcctggg caaatagatc ctagattgtc cagggtggcc ta






#taacccat   2520













ttttaccagg accaagtgat gggtctgggg gatcaatccc agtccagcct ag






#tgctcctc   2580













cagcggttct tccatcctta ccctcacttc ctgcacctgt tgctcaacct gt






#tgttcagt   2640













atgttgttcc acctgcccct gctccacaag ctattccaat tcaacacatt cg






#agcagtga   2700













caggaaatac acctactaat ccaagagata ttcctatgtg gcttggaaga ca






#ttcagctg   2760













ctatagaagg agtatttcct atgactacgc ctgatcttcg ctgtcgagtt gt






#taatgctc   2820













ttataggagg aagtcttgga ctttctttgg agcctataca ttgtgtaaat tg






#ggctgctg   2880













ttgtagctgc tctatatgtg agaacacatg gatcatatcc catacatgaa ct






#agctaatg   2940













tactccgagc agttgttaat caagagggag tagcaacagg ttttcaactt gg






#aattatgc   3000













tgtccaatca agattttaat cttgtttggg gaattctacg tcccctattg cc






#tggacaag   3060













ctgtagtcac agctatgcag caaaracttg atcaagaagt cagtgacgct gc






#taggattg   3120













cctcctttaa tggacattta aatgatatat atcaacttct aggactgaat gc






#ccgaggtc   3180













aaagcattac tagaactcag ggtagttcaa tctctggaac ctctacttct ac






#aggcagag   3240













gaaggagagg acaaagaaac cagcaacagt ctggtcaaca gcaacaacaa ca






#ggcaagaa   3300













gaagtaatca gggaaaccag agacagagaa ataataatca gagacaatcc tc






#tggtaata   3360













atcagggaca aggaggccaa ggaggatata atttgagacc cagaacttat ca






#gccgcagc   3420













gctacggagg aggacgtgga agaagatgga acgataatca acaacagcaa ca






#agcacagc   3480













caggcagatc agctgatcaa cctcgttccc agagtcagca accacaaaca ga






#ggctcgtg   3540













gcgatcagtc acgaacatct ggtgctgggc gcggacaaca aggargaggg aa






#ccaaaacc   3600













gaaatcaacg ccgggctgat gctaacaata ctcggaatgt ggatactgtg ac






#agtaacca   3660













caacttcctc ctccacaact ggttcgggtc aaaatggatc ctctacagct cc






#tccagccc   3720













ctggaagcag aaatcaaggg gactaaatta aaggctcatt gggacagtgg ag






#ctacagta   3780













acatgtgttc cacaagcctt tctagaagat gaagtaccaa ttaaaaatat tt






#ggatcaag   3840













acaattcatg gtgaaaaaga acagcctgtc tattatttaa cctttaaaat mc






#aaggaaga   3900













aaagtagaag cagaagtaat ctcttcccct tatgactaca tattagtcag tc






#catctgac   3960













atcccctggc taatgaagaa acctctccaa ttgacaactt tagttcctct tc






#aagaatac   4020













aaagaaagac ttttaaagca aactatttta actgaaaaat ataaagatag at






#tacaatct   4080













ttatttttga aatatgatgc attatggcaa cattgggaaa atcaagtggg cc






#ataggcgt   4140













attaagcctc atcatatagc aactggtaca gttaacccta gaccacaaaa gc






#aatatcca   4200













attaatccaa aagcaaagcc aagtatacaa gttgtaatta atgatttatt aa






#aacaaggt   4260













gtgctaatac agcaaaatag tgtgatgaat actcctgtat atcctgtacc aa






#aaccagat   4320













ggaaaatgga gaatggtttt agattataga gaagtcaata agaccatccc tt






#taattgca   4380













gctcaaaatc aacattctgc agggattcta tcatccatat ttagaggcaa at






#ataaaacc   4440













actttagatt tatctaatgg tttttgggct cattctatta caccagaatc tt






#attggtta   4500













actgctttta cttggcttgg acaacaatat tgttggacaa gattacctca ag






#gatttctc   4560













aatagtcctg ctttatttac agcagatgtt gttgatttat taaaagaagt ac






#caaatgta   4620













caagtttatg tggatgatat ttatattagt catgatgacc ctgaagaaca tt






#tggaccaa   4680













cttgagaaag tgttttcgct attgctcaaa tgcggttatg gggtttctct ta






#aaaaatct   4740













gaaattgctc aacatgaagt tgaattcctt gggtttaata ttacaaaaga ag






#gtcgaggc   4800













ctaacagaaa cttttaaaca aaaactctta aatataactc caccaaaaga tc






#tgaaacag   4860













ttacaaagta ttttaggcct tctaaatttt gcaaggaact ttgttcctaa tt






#tttctgaa   4920













ttagttaaac ccttatataa tatcattgct aatgccaatg agaaatatat ta






#catggact   4980













tctgacaata gtcaacagct acaatatata atttcattat taaattctgc ag






#aaaactta   5040













gaagaaagaa atccagaagt cagattaata atgaaagtaa atacctctcc tt






#cagcagga   5100













tatatacggt tttataatga atttgctaaa agacctatta tgtacttgaa tt






#atgtttat   5160













actaaggcag aagttaagtt cactaacact gaaaaattgc taactactat ac






#ataaaggg   5220













ttaattagag ccttagatct tgccatggga caagaaatct tagtatatag tc






#ctatcgta   5280













tccatgacca aaattcaaaa aacaccatta ccagaaagaa aagctctacc aa






#ttagatgg   5340













ataacctgga tgtcttattt agaagatccc agaatacaat ttcattatga ta






#agacatta   5400













cccgagctac aacaggttcc tactgtcact gatgatgtta tagctaagac ta






#aacatcct   5460













agtgaattta atatggtctt ctacactgat ggttctgcaa tcagacatcc aa






#atgttaat   5520













aagtcacata gtgctggaat gggtattgct caagtacagt ttaaacctga gt






#ttacagtt   5580













gttaatactt ggtctattcc tcttggagat catacggcac aacttgccga ag






#ttgcagct   5640













gtagaatttg catgtaaaaa ggccctcaaa atagatggac ctgttttaat ag






#taactgat   5700













agtttctatg ttgctgagag tgctaataag gaattaccyt attggcaatc aa






#atgggttc   5760













tttaataaca aaaagaaacc ccttaaacat gtctccaagt ggaagtcaat tg






#cagaatgt   5820













gtacaattaa agcctgacat tactattatt catgaaaaag gtcaccagcc ta






#ctgcttca   5880













acatttcata cagaaggtaa taatttagct gataagcttg ccacccaagg aa






#gttatgtg   5940













gtaaatacaa ataccactcc aagcctggat gcagagttgg atcaattact ac






#aaggacaa   6000













tatccaaaag gttttccaaa acaatatcaa tatgaactta atgaaggaca ag






#ttatagta   6060













actcgtccta atggacaaag aattattcct ccaaaatcag acaggcctca aa






#ttattttg   6120













caagcacata atattgcaca tacaggaaga gattcaacct ttcttaaggt ct






#cttccaag   6180













tattggtggc caaatcttag aaaggatgtg gttaaagtta tcagacaatg ta






#agcaatgt   6240













ctggtcacaa atgcagctac cttagctgcg cctccaatac tgaggcctga aa






#gacctgta   6300













aagccttttg ataaattttt tgttgactat attggccctt tacccccttc ta






#atrggtac   6360













ttacatgtcc ttgtagtagt cgatggtatg actggatttg tatggttata cc






#ccactaag   6420













gctccttcaa ctggcgcaac tgttaaagct ctcaatatgc tcactagtat tg






#cagttcca   6480













aaggtgatac actctgatca gggtacagca ttcacctctg caacttttgc tg






#attgggca   6540













aaagacaaag gtatacattt ggaattcagt actccttacc atccccaaag ta






#gtggcaag   6600













gtggaaagga aaaatagtga tataaaacga cttttaacta aactgcttgg tg






#ggagacct   6660













gctaagtggn atgaccttct ttcagttgtt caattggcat taaataattc at






#ataggcct   6720













ctttcttcta aatatactcc tcatcaactt ttgtttggta tagattcaaa ta






#caccattt   6780













gcaaactctg atacacttga tttatcaaga gaagaagaac tctctctttt ac






#aggaaatc   6840













agaacttctc tttgccatcc atcctcccct cctgcctccg ttcgtgtctg gt






#ctccttct   6900













gttggccaat tggtccagga gagggtagcc aggcctgcat ctttaagacc tc






#ggtggcat   6960













aaacctactc ctgttctgga agtcattaat ccacgaactg ttgtcatttt gg






#accatctt   7020













ggcaacagga gaactgtaag tgtggataat ttaaaattaa carcttatca ga






#aggatggc   7080













acctccaatg aatctgcagc aatggctatt gtggaaaaag atgaatgaag ca






#cattcagc   7140













gttagagaat atttcaaccc ttactgaaga acagaagcaa caagtgatta tt






#gagattca   7200













acaagaagaa gtaataccta ctaggatgga cagagtaaag tatctagcat at






#gcatgttg   7260













tgctaccagt acacgtgtca tgtgttggtt atttttgatt tgtgtgttgc ta






#attattgt   7320













atttgtatct tgttttgtca ctgttgctag gattcaatgg aataaggata tt






#actgtgtt   7380













tggaccagtc attgattgga atgttaccca tcaagcaaca tatcaacagc tt






#agagcttc   7440













cagaatagct agatctttaa gggtagaaca tcctcatata tcatatatat ca






#ataaatat   7500













gtctagtata ccacaaggtg ttatatatac acctcaccct gaacctataa tc






#ctcaagga   7560













gagggtttta gggatttctc aggtgttaat gataaattct gaaaatatag ct






#aatgtggc   7620













caatttgtct caagacacaa aagtattgtt gactgatatg ataaatgagg aa






#ttacaaga   7680













tttgtcaaac caaatgattg acttcgaatt acctctagga gatcctagag ac






#caaaatca   7740













atatgtacat cataagtgtt accaggagtt tgctcattgt tatttagtca aa






#tataaaac   7800













acntaaagaa tggccctctt cagctctgat tgctgatcag tgtcccctac ca






#ggagaaca   7860













tccaactgta cagtattcac atcaaaatat atgggactat tatgttcctt tt






#caacaaat   7920













acggccagag aaatggactt catccttagt atatgaagat gctagaatag gg






#agcttcta   7980













tataccaaaa aatatgagaa acaagaatgt tacacatgta atattttgtt ca






#gatcaatt   8040













atatggaaaa tggtataatt tgatgaatac tgtacaagaa aatgaacaaa tt






#caagtcat   8100













aaaattaaaa aatattacca aatcgggtac ctctcaagtt aaggatagag ga






#cttccgtc   8160













cgcttggcat aagaatggta aaagtacata ttttaggcct attaatactt tg






#gatatttg   8220













taatagacct gagttagtat tattactcaa tagtacttat tatactctct ct






#ctgtggga   8280













aggagattgt ggatatacta gggaaaatgc tactcaagct aatcctcttt gt






#aaaaactt   8340













ttataatgaa tctaaaaaac attggcaccc atacgcatgt aggttttgga ga






#tataaaaa   8400













tgataaagaa gaggttaagt gtagaaatga ggataaaaaa cactgtattt at






#tatcccct   8460













ttgggatacc ccggaagcct tatatgattt tggatttttg gcatatctta at






#gcattccc   8520













ttcaccactt tgtattacaa atcaaactgt tagggagcca gagtatgaag ta






#tattcctt   8580













atatatggaa tgtatgaatt ctgcggaaaa atatggaata gatagtgttt tg






#tttgcttt   8640













aaaaactttt ttaaatttta ctggaacacc agtgaatgaa atgccaacag cc






#agagcatt   8700













tgtaggcctg actgatccta aattccctcc agtatatcca aatattacta aa






#gaacgaag   8760













aggatgtgac aattcaagaa ggaaaagaag aagcactaat attgaaaaac tt






#aggtcaat   8820













gggatactca ttgactggag ctgtgcagac cctctcacaa atatcagata ta






#aatgatga   8880













aagacttcaa caaggagttt acttattgag agatcatgtt gtcaccttaa tg






#gaagccgc   8940













cttgcatgat attactatta tggaaggaat gttagcaatc ggtcatgtgc at






#acccactt   9000













gaatcatctt aaaaccatgt tactaatgag gaagattgac tggactttta tt






#aagagtga   9060













ttggattaaa gaacaacttc agaaaactga agatgaaatg aagattatta ga






#agaacagc   9120













taaaagttta gtatattatg tgactcaaac atcatcttcc actacagcaa ca






#tcatggga   9180













aattggaatt tattatgaaa taactatacc aaaacatatt tatttgaata at






#tggcaagt   9240













tgttaacata ggtcatctga ttgagtcagc tggtcatttg accttaataa gg






#gttaaaca   9300













tccttatgaa gactttaata aagaatgcac atatgaacaa tatttacatc tt






#gaagactg   9360













catatctcag gattatgtga tttgtgacac ggtacaaata gtgtcaccat gt






#ggaaactc   9420













aacagtaacc agtgactgcc ctgtcactgc tgaaaaggta aaggaaccat at






#attcaagt   9480













gtcagcttta aaaaatggaa gctatttggt tctaaccagt agaacagatt gc






#tcaatacc   9540













agcatatgtt cccagcattg taactgtgaa cgaaacagtt aagtgttttg gg






#gttgagtt   9600













tcataaacca ctatactcag aaagtaaagt cagctttgaa ccacaagttc ca






#catctgaa   9660













actacgcttg ccacatctgg ttgggattat tgcaagtctt caaaatttgg aa






#attgaagt   9720













aaccagcacc caagagagta taaaagatca gattgaaaga gttcaatcac ag






#cttcttcg   9780













gctggacatt cacgagggag actttcctgc ttggattcaa caacttgctt ct






#gcaaccaa   9840













ggacgtctgg cctgcagctg ctaaagctct tcaaggcata ggtaactttt ta






#tctaatac   9900













tgcccaggga atatttggaa ctgctgtaag tattctatcc tatgccaagc ct






#attcttat   9960













aggaataggt gttatacttt tgattgcatt cttgtttaag attgtatcat gg






#cttcctgg  10020













gaagaagaaa aagaactagg acatctgcat cttccagaag acgatcctct gc






#ccaattta  10080













gatgtgctcc tgggtcttga tcatatggaa tccaatgaag gacctgatca aa






#atccagga  10140













gctgaaaaga tctacattca actccaagca gtcccagggg aagcctcaga ga






#aaacttac  10200













aaatttggat atgaagacaa agaggcacaa aatcctgact taaaaatgag aa






#attgggtt  10260













cctaaccccg acaaaatgag taagtgggcc tgtgcaaggc ttattctttg tg






#gactttat  10320













aatgcaaaaa aggctggaga actcttggct atggactata atgttcaatg gg






#aacaatca  10380













aaagaagacc caggatactt tgaagtggaa tatcactgta aaatgtgcat ga






#ctgttatt  10440













catgaaccta tgcctatcca atatgatgaa aaaactggat tatggctaaa aa






#tgggtccc  10500













cttaggggag atataggatc tgtagtacat acttgtagaa ggcattacat ga






#gatgtttg  10560













tctgcccttc ctagcaatgg agaacctctc aaacctagag tccgggctaa tc






#ctgtccga  10620













agatatcgag agaagcaaga gttcgttgcg actaggccta aacgctccag at






#ggggtgtg  10680













gcccctagcg cagactccca tacttccagt ggtgacgcca tggcccttat gc






#caggacca  10740













tgcggccccc tcggtatgga cactcctggt tgcttactgg aagggataca ag






#gatcaggg  10800













cctggaacct ccgaaatggc tgtggcaatg tcaggaggac ctttctggga ag






#aagtgtat  10860













cgagactcaa ttcttggtgc ccccactggg tctagtgaaa attaggcttt at






#caaaatct  10920













aactgttgta aatgtttgtg gatctgttga cccatgggaa aatgagaatc cc






#actagagg  10980













tcgcagaggg cctatgcata gatatgattg tagaattgct tgtgatccaa gc






#tattgctt  11040













taaggctatt tgggaaggaa acttttggga caaaaaaaaa aggatcaggc at






#gctggcta  11100













gttcatctga aagaaggaca taaatttggt gcagatgagt tatcttctgg gg






#atcttaaa  11160













atattagcag aatctagacc ttatccatat ggatctattg gtcattgtgc ta






#tgcttcaa  11220













tatgcagtac aagttaaaat gagagttgat agagctcctt tgacctcaaa gg






#tgagagct  11280













attaaagctt tgcactatca tcgctggaat atttgtcagc tggaaaatcc tg






#gcatagga  11340













gagggattca gtccctctgg taatacacaa gctcttaaag cctatggacc tc






#agcatgga  11400













agtgaagagg agagggtgtg gctgacagct actaaaatga ttggcaccca gg






#aatcagac  11460













tattggcatg agtacaaaag atggggatat ttccctttga ttccaaataa ac






#atcatcct  11520













gggtggacta gacatcttac taaattcaag atatctagat tctccactcc tg






#ctgatgtc  11580













cagaaaattg tggatgagct tctccctaga ggagcaagca ttgtaatgcc ag






#atggaaca  11640













aagtatccaa gtaccagaaa agtgcactta gtcaatgaag gaacccttgt ag






#aataccaa  11700













gccaaatgta aggagataga ggaaaagtac ggaggatgct tttctacaga ta






#gtgatgat  11760













gacagtgatg attactctga ggatactcca gaaactgaaa ccactgatgt gg






#aatagagt  11820













acagtgttaa ggatttacat aatctgccta gcaactgctt atgcttaaga at






#gaatcagt  11880













atattgttta ggaataagcc ttagtttata agtagttaat ccttagggag ta






#tttggtgg  11940













aaatgactga gtgacatgaa gtttattcac catactctca ataggagcca ct






#agttgagc  12000













ctgtgcgttc aaatccatgc tcagcttaag tgactccctt ttagtttcac tt






#taagttaa  12060













gttaggaata agttccatat aatcctaagg gagtatgtgg accttcttgt ta






#ggaaatag  12120













tttaagatag tccacagctc ccttcttttt gagttctagt ctttgttaag tt






#tgttggct  12180













catacagata aagtgctcat taaacaggaa accgcaaccg ggtaaaggtt ag






#cacagtaa  12240













attaagctag cagttactca agagcccggt aagcattcaa gtagttcgaa tc






#cctttaat  12300













gctgacggat tgctctttag tgaggtgatg taatctgttt ttgcaatctg aa






#atgtgtgt  12360













ttgcacagga agttgtacaa gaaagggaat ggctaaactt gttacagttc ga






#acaaacat  12420













ttagcaattt cctttgcttt tggagttcga gccttgtact tatactttga gc






#atatgtat  12480













tgtaacacct aagtatggaa aaatctccaa gtatgagtca cgagatgctt gg






#ctcactgc  12540













gttggacgac tggaaagaag cttcaacagt cgggacagca tctcgaagaa gg






#cctccgga  12600













atgaaagagt gaaaaatgaa gtctcctcat tcagagagcc ttcttttaga at






#ttcaggca  12660













gaatagagtt tccaatagaa taaacttttg tattagcaga tagataggat at






#ataatctc  12720













tgctttagat tgtacgggag ctcaccacta ctcgctgcgt cgagagtgtt cg






#agtctctc  12780













caggcttggt aagatataaa ctttggtatt ctctgtattc ttatgatcca at






#attactct  12840













gcttatagat tgtaatgggc aatggcaatg ctttatcaat gaatgatttt at






#ggtgaatt  12900













aagttcatat atgttttaag aagtttaaca ataaaccgac ttaattcgag aa






#ccagattt  12960













attagtattg tctctttcta tactttaagt aaagtgaaag gagttgtata tt






#agccttgc  13020













ttataagagc catctagtgg tataagtgtg tactacactt atctaaa   






#             13067













Claims
  • 1. A method for detecting a spumavirus infection, comprising, contacting a sample of nucleic acids with a probe comprising a sequence specific for SFVHu-1.
  • 2. The method of claim 1, wherein the probe sequence comprises a fragment of SEQ ID NO. 1, wherein the fragment is specific for SEQ ID NO. 1.
  • 3. The method of claim 1, wherein the probe sequence comprises a fragment of SEQ ID NO. 2, wherein the fragment is specific for SEQ ID NO. 2.
  • 4. The method of claim 1, wherein the probe sequence comprises a fragment of SEQ ID NO. 3, wherein the fragment is specific for SEQ ID NO. 3.
  • 5. The method of claim 1, wherein the probe sequence comprises a fragment of SEQ ID NO. 4, wherein the fragment is specific for SEQ ID NO. 4.
  • 6. The method of claim 1, wherein the probe sequence comprises a fragment of SEQ ID NO. 5, wherein the fragment is specific for SEQ ID NO. 5.
  • 7. The method of claim 1, wherein the probe sequence consists of a fragment of SEQ ID NO. 1, wherein the fragment is specific for SEQ ID NO. 1.
  • 8. The method of claim 1, wherein the probe sequence consists of a fragment of SEQ ID NO. 2, wherein the fragment is specific for SEQ ID NO. 2.
  • 9. The method of claim 1, wherein the probe sequence consists of a fragment of SEQ ID NO. 3, wherein the fragment is specific for SEQ ID NO. 3.
  • 10. The method of claim 1, wherein the probe sequence consists of a fragment of SEQ ID NO. 4, wherein the fragment is specific for SEQ ID NO. 4.
  • 11. The method of claim 1, wherein the probe sequence consists of a fragment of SEQ ID NO. 5, wherein the fragment is specific for SEQ ID NO. 5.
  • 12. A method for detecting a spumavirus infection, comprising, contacting a sample of nucleic acids with a probe comprising a sequence of SFVHu-1, wherein the sequence is specific for a virus which comprises a polymerase gene with greater than 87.5% sequence identity to the polymerase gene of SFVHu-1.
  • 13. A method for detecting a spumavirus infection, comprising, contacting a sample of nucleic acids with a probe comprising a sequence of SFVHu-1, wherein the probe does not consist of a sequence of SFV-3.
  • 14. The method of claim 1, wherein the probe sequence comprises SEQ ID NO. 1.
  • 15. The method of claim 1, wherein the probe sequence comprises SEQ ID NO. 2.
  • 16. The method of claim 1, wherein the probe sequence comprises SEQ ID NO. 3.
  • 17. The method of claim 1, wherein the probe sequence comprises SEQ ID NO. 4.
  • 18. The method of claim 1, wherein the probe sequence comprises SEQ ID NO. 5.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of and claims priority to Ser. No. 09/692,652 filed on Oct. 19, 2000, now U.S. Pat. No. 6,492,165, which is a continuation-in-part of and claims priority to U.S. patent application Ser. No. 09/367,213 filed on Dec. 8, 1999, (national phase application of PCT Application No. PCT/US98/02598, filed Feb. 12, 1998) which is abandoned, which is a continuation-in-part of and claims priority to U.S. patent application Ser. No. 08/798,071, filed Feb. 12, 1997, now U.S. Pat. No. 5,882,192, which applications are hereby incorporated herein in their entirety.

Government Interests

This invention was made by the Centers for Disease Control and Prevention, an agency of the United States Government.

US Referenced Citations (5)
Number Name Date Kind
5108920 Ng et al. Apr 1992 A
5459056 Powell et al. Oct 1995 A
5597896 Montagnier et al. Jan 1997 A
5646032 Meulen et al. Jul 1997 A
5882912 Sandstrom et al. Mar 1999 A
Foreign Referenced Citations (3)
Number Date Country
43 18387 Dec 1994 DE
WO 9835024 Aug 1998 WO
WO 0077177 Dec 2000 WO
Non-Patent Literature Citations (35)
Entry
“Reactivity of primate sera to foamy virus Gag and Bet proteins”, Hahn et al., Journal of General Virology, (1994), 75, 2635-2644.
“Phylogenetic Analysis of Primate Foamy Viruses by Comparison of pol Sequences”, Schweizer and Neumann-Haefelin, Virology 207, 577-582, (1995).
“Genomic Organization and Expression of Simian Foamy Virus Type 3 (SFV-3)”, Renne et al., Virology 186, 597-608, (1992).
“Transduction of Hematopoietic Cells by Foamy Virus Vectors”, Hirata et al., Blood, vol. 88, No. 9, (Nov. 1), 1996, pp. 3654-3661.
“Foamy Virus Vectors”, Russell and Miller, Journal of Virology, vol. 70, No. 1, Jan. 1996, pp. 217-222.
“Detection of Reverse Transcriptase By A Highly Sensitive Assay In Sera From Persons Infected With Human Immunodeficiency Virus Type 1”, Walid Heneine, et al., The Journal of Infectious Diseases, May 1995, pp. 1210-1216.
“Spumaviruses”, Philip C. Loh, The Retroviridae. vol. 2, 1993, pp. 361-397.
“Cell tropism of the simian foamy virus type 1 (SFV-1)”, Ayalew Mergia et al., Journal of Medical Primatology. Jul. 21, 1995, pp. 2-7.
“Isolation of Novel Human Endogenous Retrovirus-Like Elements with Foamy Virus-Related pol Sequence”, Agnes Cordonnier et al., Journal of Virology, vol. 69, No. 9, Sep. 1995, pp. 5890-5897.
“Identification and Characterization of the Bel 3 Protein of Human Foamy Virus”, Jakob Weissenberger and Rolf M. Flugel, Aids Research and Human Retroviruses. vol. 10, No. 5, 1994.
“Human Foamy Virus Polypeptides: Identification of env and bel Gene Products”, Marie-Louise Giron et al., Journal of Virology, vol. 67, No. 6, Jun. 1993, pp. 3596-3600.
“Isolation, Cloning, and Sequencing of Simian Foamy Viruses from Chimpanzees (SFVcpz); High Homology to Human Foamy Virus (HFV)”, Ottmar Herchenroder et al., Virology 201, 1994, pp. 187-199.
“Isolation of a New Foamy Retrovirus from Orangutans”, Myra O. McClure et al., Journal of Virology, vol. 68, No. 11, Nov. 1994, pp. 7124-7130.
“Specific enzyme-linked immunosorbent assay for the detection of antibodies to the human spumavirus”, Christoph Mahnke et al., Journal of Virological Methods, 29, 1990, pp. 13-22.
“The Foamy Viruses,” John J. Hooks et al., Bacteriological Reviews. Sep. 1975, vol. 39, No. 3, pp. 169-185.
“Simian Foamy Virus Isolated from an Accidentally Infected Human Individual”, Matthias Schweizer et al., Journal of Virology, Jun. 1997, vol. 71, No. 6, pp. 4821-4824.
“No Evidence of Antibody to Human Foamy Virus in Widespread Human Populations”, Munaf Ali et al., Aids Research and Human Retroviruses, vol. 12, No. 15, 1996, pp. 1473-1483.
“Markers of Foamy Virus Infections in Monkeys, Apes, and Accidentally Infected Humans: Appropriate Testing Fails to Confirm Suspected Foamy Virus Prevalence in Humans”, Matthias Schweizer et al., Aids Research and Human Retroviruses, vol. 11, No. 1, 1995, pp. 161-170.
“Persistent Zoonotic Infection of a Human with Simian Foamy Virus in the Absence of an Intact orf-2 Accessory Gene”, Margaret E. Callahan et al., Journal of Virology, Nov. 1999, vol. 73, No. 11, pp. 9619-9624.
Anonymous Survey for Simian Immunodeficiency Virus (SIV) Seropositivity in SIV—Laboratory Researchers—United States, 1992. MMWR Morb. Wkly Rep. 41(43):814-815 (Oct. 30, 1992).
Chapman et al. Xenotransplantation and xenogeneic infections. N. Engl. J. Med. 333:1498-1501 (Nov. 30, 1995).
DHHS Docket No. 96M-0311. Draft Public Health Service (PHS) Guideline on Infectious Disease Issues in Xenotransplantation. Federal Register 61(185):49919-49932 (Sep. 23, 1996).
EMBL Database; EMVRL: AF049085; Accession No. AF049085 (Aug. 3, 1998).
EMBL Database; EMVRL; AF049084; Accession No. AF049084 (Aug. 3, 1998).
Heneine et al. Absence of evidence for human spumaretrovirus sequences in patients with Graves' disease [letter]. J. Acq. Immune Defic. Synd. & Human Retrov. 9(1):99-101 (1995).
Heneine et al. Identification of a human population infected with simian foamy viruses. Nat. Med. 4(4):403-407 (Apr. 1998).
Heneine et al. Lack of evidence for infection with known human and animal retroviruses in patients with chronic fatigue syndrome. Clin. Infec. Dis. 18(Suppl. 1):S121-125 (1994).
Neumann-Haefelin et al. Nonhuman Primate Spumavirus Infections Among Persons with Occupational Exposure—United States, 1996. MMWR Morb. Mort. Wkly Rep. 46(6):129-131 (Feb. 14, 1997).
Neumann-Haefelin et al. Foamy viruses. Intervirology 35:196-207 (1993).
Perspectives in Disease Prevention and Health Promotion Guidelines to Prevent Simian Immunodeficiency Virus Infection in Laboratory Workers and Animal Handlers. MMWR Morb. Mort. Wkly Rep. 37(45):693-694and 699-704 (Nov. 18, 1988).
Schweizer et al. Phylogenetic Analysis of Primate Foamy Viruses by Comparison of pol Sequences. Virology 207:577-582 (1995).
Schweizer et al. Absence of foamy virus DNA in Graves' disease. AIDS Res. & Human Retrov. 10(5):601-605 (1994).
Simonsen et al. Absence of evidence for infection with the human spuma retrovirus in an outbreak of Meniere-like vertiginous illness in Wyoming, USA [letter]. Acta Otolaryngol (Stockh) 114:223-224 (1994).
Khabbaz et al. Simian immunodeficiency virus needlestick accident in a laboratory worker. Lancet 340:271-273 (1992).
Khabbaz et al. Brief report: Infection of a laboratory worker with simian immunodeficiency virus. N. Eng. J. Med. 330:172-177 (1994).
Continuation in Parts (2)
Number Date Country
Parent 09/367213 US
Child 09/692652 US
Parent 08/798071 Feb 1997 US
Child 09/367213 US