This application claims priority under 35 U.S.C. §119(e) of Provisional Application No. 60/969,137, filed Aug. 30, 2007, which application is hereby incorporated herein by reference in its entirety. This application is related in subject matter to application Ser. No. 10/167,052, filed Jun. 10, 2002, now U.S. Pat. No. 6,645,075, and three patent applications filed on even date herewith and identified as application Ser. Nos. 12/110,112, 12/110,125, and 12/110,140 (issued as U.S. Pat. No. 8,360,854 on Jan. 29, 2013), which applications are hereby incorporated herein by reference in their entireties.
1. Field of the Invention
The present inventions relate generally to the field of regulated pay computer-controlled games, either games of skills or games of chance.
2. Description of the Prior Art and Related Information
Electronic games of chance of the present day rely heavily on gambling's inherent tension to entertain players. This is to say that, other than the uncertainty surrounding whether a wager will result in the winning or losing of funds, such games offer the player little in the way of entertainment. Most slot machines, for example, feature repetitive wagering sequences in which there is no significant decision-making, no skill exhibited, and no building sense of purpose from one action to the next.
Casino video poker games have an advantage over video slot machines in that they allow the player to make real decisions with real consequences. These decisions, however, have fairly clear-cut solutions and are repetitive in nature—limitations that undercut much of the entertainment value they provide. It should also be noted that while the graphics and effects used within video slot machines have improved sharply within the past decade and thus contributed to those games' entertainment value, the visual effects used in video poker games have remained primitive.
Electronic games released for the home video game market feature elements of skill-based play that have long proved entertaining to players but that have not been widely used within the casino environment. These video games accurately measure and reward skills like rapid decision making, good hand-eye coordination, and manual dexterity such that players feel a correlation between their performance within the game and the results achieved. These games also allow players to experience a rising sense of excitement by providing them with goals and objectives within the game—such as completing tasks and advancing through “levels”—that give the gaming experience a greater feeling of purpose and meaning.
With the advent of the 21st century, slot machine manufacturers have come to realize the value of creating games that are attractive to an emerging generation of video-game savvy players. Bally Technologies has recently appealed to the home video gamers' sense of nostalgia by incorporating themes and icons from classic video games like Atari's Pong® into video slot machines. The Pong® game is essentially a traditional video slot machine that uses symbols taken from the classic Pong® arcade game, although players who randomly win a trip into the game's bonus round do get to demonstrate their skill in a 45 second bonus video game.
Pong® and other such slot-based games are unlikely to capture the attention of the home video game player for one key reason: a standard slot machine dressed up with video game themes and icons and an interactive bonus round is still, at its core, a slot machine. A generation of players who grew up fighting aliens, driving race cars, rescuing princesses and slaying dragons, all in brilliant graphics and sounds, is never going to be fully engaged by a game that derives its primary excitement from the player passively watching spinning reels.
Instead, this newer generation of player will demand casino games that measure real skill and that reward fast reflexes and good decision making. Players will not be satisfied with snippets of simulated video game play that occur only in secondary bonus games; they will demand arcade-style excitement from the moment their game begins until the moment it ends.
The challenge of developing an electronic casino game that rewards true skill from start to finish and yet returns a reliable yield to the game operator has, thus far, been unsolved by casino game manufacturers. From the foregoing, it may be appreciated that there has been a long felt need for games, gaming methods and gaming machines that offer both rewarding continuous arcade-style game play to the player and predictable profits to the game operator.
Games in which the return to player (RTP) is static cannot reward true skill, while games that are purely skill-driven cannot guarantee the operator profitability. The Return Driven Casino Game Outcome Generator according to embodiments of the present invention allows for the creation of the first class of true casino video games, meaning regulated games that both measure and reward the player's true skill and that hold a consistent and reliable percentage of funds wagered for the house. The present Return Driven Casino Game Outcome Generator is configured to deliver an authentic video game experience where other casino video game paradigms have failed because: 1) it makes skill-based, arcade-style play possible from the start of a game to its finish; 2) it may leverage Cyberview Technology, Inc.'s “Cashless Time Gaming” U.S. Pat. No. 6,645,075, to naturally and seamlessly transition scoring events that occur within a video game into opportunities for players to win funds; and 3) it turns the existing paradigm of casino game returns upside down, allowing the game to unfold in such a manner that is both truly random and governed by the game's predetermined RTP range.
Players wagering within a regulated game environment of a gaming machine featuring an embodiment of the present the Return Driven Outcome Generator may purchase the opportunity to compete in arcade-style play via a time-based contract. As the player initiates game play, each or selected “key event” within the game (i.e., positive events that would typically lead to the player scoring points in a non-wagering version of the game) may cause the game to reference a specific reward table associated with that event in a process that may lead, through calling the game's random number generator, to the player winning funds. Different classes of reward-triggering events within a game may or may not be associated with different reward tables. Players may be graded based upon the skill level they exhibit during game play within the regulated gaming environment such that players with above average skill may earn, on average, higher rewards. Skilled players may also positively affect their destiny by causing the Outcome Generator to create more favorable future in-game scenarios that reward their skill.
Accordingly, an embodiment of the present invention is a method of determining a reward due to a player of a regulated game. Such a method may include steps of enabling the player to interact with at least one reward generating asset within the regulated game; measuring a level of skill of the player in interacting with the at least one reward generating asset, and determining the reward due to the player for each successful interaction with the at least one reward generating asset, the reward being determined according to the measured skill level, a random number and a time elapsed since a last successful interaction with any one of the at least one reward generating asset.
According to further embodiments, the determining step may be carried out with the reward being comparatively smaller on average when the time elapsed is smaller than when the time elapsed is larger. The determining step may be carried out with the measured skill level determining an average RTP percentage of the regulated game. The determining step may be carried out with higher measured skill levels being associated with comparatively higher average RTP percentages than lower measured skill levels. The method may further include steps of selling to the player a contract of play time of a predetermined duration in the regulated game for a predetermined cost, and at least the enabling and determining steps may be carried out as long as the predetermined duration has not elapsed. The method may further include a step of computing a cost per unit of time of the contract by dividing the cost of the contract by the duration of the contract. The determining step may be carried out with the reward due to the player for each successful interaction with the at least one reward generating asset also being determined according to the cost per unit of time of the contract.
According to another embodiment thereof, the present invention is also a regulated gaming machine. The regulated gaming machine may include a display; a source of random numbers; at least one reward generating asset shown on the display, the at least one reward generating asset being configured to enable a player of the regulated gaming machine to interact therewith, the regulated gaming machine may be configured to measure a level of skill of the player in interacting with the at least one reward generating asset, the regulated gaming being further configured to determine the reward due to the player for each successful interaction with the at least one reward generating asset, the reward being determined according to the measured skill level, a random number obtained from the source of random numbers and a time elapsed since a last successful interaction with any one of the at least one reward generating asset.
The regulated gaming machine may be further configured such that the reward may be comparatively smaller on average when the time elapsed is smaller than when the time elapsed is larger. The measured skill level may determine an average RTP percentage of the regulated gaming machine. According to some embodiments, higher measured skill levels may be associated with comparatively higher average RTP percentages than lower measured skill levels. The regulated gaming machine may be further configured to sell to the player a contract of play time of a predetermined duration for a predetermined cost, and at least the enabling and determining steps may be carried out as long as the predetermined duration has not elapsed. The regulated gaming machine may be further configured to compute a cost per unit of time of the contract by dividing the cost of the contract by the duration of the contract. The regulated gaming machine may be further configured to also determine the reward due to the player for each successful interaction with the at least one reward generating asset according to the cost per unit of time of the contract.
According to yet another embodiment thereof, the present invention is a regulated multi-level game of chance. The regulated multi-level game of chance may include a source of random numbers; a first game level, the first game level including a plurality of first reward generating assets, a successful interaction with any one of the first reward generating assets generating a first reward, the first reward being dependent upon a first random number obtained from the source of random numbers and a time elapsed since a last successful interaction with any one of the first reward generating assets, and a second game level, the second game level including a plurality of second reward generating assets, a successful interaction with any one of the second reward generating assets generating a second reward, the second reward being dependent upon a second random number obtained from the source of random numbers and a time elapsed since a last successful interaction with any one of the second reward generating assets, a second average RTP percentage of the second level may be comparatively higher than a first average RTP percentage of the first level.
The game may be configured to determine a level of skill of a player of the game in the first game level, and the game may be further configured to allow the player to play the second level only when the determined level of skill reaches a predetermined threshold. The game may also include successively higher numbered game levels, each having with progressively higher average RTP percentages, and each accessible to the player upon being determined to have reached progressively higher levels of skill. For example, the regulated game may be configured as a first person shooter. Alternatively, the game levels may include a scripted narrative. The first reward generating assets of the first game level may be configured to return, on average, lower rewards upon successful player interaction therewith than may be returned upon successful player interaction with the second reward generating assets of the second game level.
The regulated game may further include a first reward table associated with the first reward generating assets, the first reward table including a first reward multiplier probability distribution and a corresponding range of first reward multipliers, the first reward generating assets being configured such that, upon successful player interaction therewith, the first random number may be used as a first index into the first reward multiplier probability distribution to obtain a corresponding first reward multiplier within the range of first reward multipliers and the first reward due may be a product of the first reward multiplier and a first collision wager that may be dependent upon the time elapsed since the last successful interaction with any of the first reward generating assets.
Similarly, the regulated game may further include a second reward table associated with the second reward generating assets, the second reward table including a second reward multiplier probability distribution and a corresponding range of second reward multipliers, the second reward generating assets being configured such that, upon successful player interaction therewith, the second random number may be used as a second index into the second reward multiplier probability distribution to obtain a corresponding second reward multiplier within the range of second reward multipliers and the second reward due may be a product of the second reward multiplier and a second collision wager that may be dependent upon the time elapsed since the last successful interaction with any of the second reward generating assets.
Another embodiment of the present invention is a regulated gaming method that includes steps of providing a source of random numbers; providing a first level of a regulated game, the first level including a plurality of first reward generating assets; setting a first average RTP percentage for the provided first level; generating a first reward upon a successful player interaction with any one of the first reward generating assets generating a first reward, the first reward being dependent upon the first average RTP percentage, a first random number obtained from the source of random numbers and a time elapsed since a last successful interaction with any one of the first reward generating assets; providing a second level of the regulated game, the second game level including a plurality of second reward generating assets; setting a second average RTP percentage for the provided second level, the second average RTP being comparatively higher than the first average RTP percentage, and generating a second reward upon a successful player interaction with any one of the second reward generating assets, the second reward being dependent upon the second average RTP percentage, a second random number obtained from the source of random numbers and a time elapsed since a last successful interaction with any one of the second reward generating assets.
The method may further include steps of determining a level of skill of a player in the first level of the regulated game, and enabling the player to play the second level of the regulated game only when the determined level of skill reaches a predetermined threshold. The method may further include steps of providing successively higher numbered levels of the regulated game, each having with progressively higher average RTP percentages, and each accessible to the player upon being determined to have reached progressively higher levels of skill.
The method may include a step of configuring the regulated game and/or the levels as a first person shooter and/or as a scripted narrative (for example).
The method may further include configuring the first reward generating assets of the first level to return, on average, lower rewards upon successful player interaction therewith than are returned upon successful player interaction with the second reward generating assets of the second game level.
The method may also include providing a first reward table associated with the first reward generating assets, the first reward table including a first reward multiplier probability distribution and a corresponding range of first reward multipliers and, upon a successful player interaction with any one of the first reward generating assets: using the first random number as a first index into the first reward multiplier probability distribution to obtain a corresponding first reward multiplier within the range of first reward multipliers, and calculating the first reward due as a product of the first reward multiplier and a first collision wager that is dependent upon the time elapsed since the last successful interaction with any of the first reward generating assets.
Similarly, the method may also include steps of providing a second reward table associated with the second reward generating assets, the second reward table including a second reward multiplier probability distribution and a corresponding range of second reward multipliers and, upon a successful player interaction with any one of the second reward generating assets: using the second random number as a second index into the second reward multiplier probability distribution to obtain a corresponding second reward multiplier within the range of second reward multipliers, and calculating the second reward due as a product of the second reward multiplier and a second collision wager that is dependent upon the time elapsed since the last successful interaction with any of the second reward generating assets.
In the following detailed description of exemplary embodiments of the invention, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific exemplary embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that logical, mechanical, electrical and other changes may be made without departing from the spirit or scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
RDOG configured games, according to embodiments of the present invention, may feature skill-based grading 104, such that players are graded on how they perform various tasks within the game, with the game using those player grades to determine where its actual average RTP percentage will fall within its preset average RTP percentage range 102. For example, in a game with a preset average RTP percentage range of 98-92%, a player exhibiting no or minimal skill may cause the game to payout at the game's minimum 92% average RTP percentage, while a player exhibiting superior skill may cause the game to payout at the game's maximum payout percentage of 98%. It is important to note that, while lower-skilled players are assigned a lower average RTP percentage in this model, they still have an opportunity to win in a particular gaming session because of the game's inherent randomness.
According to embodiments of the present invention, once a RDOG game is assigned a preset average RTP percentage range and has determined which player skill grade is applicable (some games, according to further embodiments, may not use skill based grading while others, according to further embodiments, may default to an average player skill grade until the player has played long enough to earn his or her individual skill grade), this data is input into the Outcome Generator 106. The Outcome Generator 106 performs at least two functions: the generation of Dynamic Reward Tables 108 and random number generation through a Random Number Generator (RNG) 110. Dynamic Reward Tables 108 assign specific wagering properties to game reward generating assets appearing within a RDOG game. Note that not all game assets within a RDOG game may be configured as being reward generating. Whenever the player encounters, collides or otherwise interacts with those assets (i.e., when the player's Pac-man eats a bonus cherry (an example of a reward generating asset) or the player's pinball hits a bumper (another example of a reward generating asset)), a reward table for the award generating asset with which the player has collided may be referenced by a random number output from a Random Number Generator (RNG) and a corresponding reward multiplier 109 is output. That is, the RNG 110 generates a random number between 0 and 1 and that randomly generated number is used as a reference or index into the dynamic reward table for that reward generating asset and the corresponding reward multiplier 109 is read from the table. Note that the dynamic reward table 108 may be configured to assign a predetermined reward multiplier 109 for specific ranges between 0 and 1. As shown in
Several key factors may determine the size of the player's wager and, by extension, his reward when he collides with a reward-generating asset within an RDOG game. According to embodiments of the present invention, players may initiate a game by purchasing a time-based contract. Each second of that contract has a value that may be expressed by dividing the contract cost 112 by the contract duration 114. For example, a 60 second contract that costs $6.00 has a contract value of 10 cents per second. According to embodiments of the present invention, once the value of time within the contract has been internally calculated, the size of a collision wager may be calculated by multiplying the value of time within the contract by how much time has elapsed since the last collision (a concept referred to hereafter as the “Collision Interval” 116). Therefore, the formula for determining a collision wager in a RDOG game may be expressed, according to one embodiment of the present invention, as (Contract Cost/Contract Duration)×(Collision Interval)=Collision Wager 118. The Collision Reward Size 120 may then be determined by multiplying the collision wager 118 by the reward multiplier 109 output by the Outcome Generator 106.
As is the case with all electronic games of chance, RDOG games derive their randomness from a random number generator 110. It should be noted that while RDOG games according to embodiments of the present invention offer the player a radically different gaming experience than that of traditional slot machines, they require no changes or customizations to the standard slot machine RNG.
The most significant function of the Outcome Generator 110 is the generation of Dynamic Reward Tables such as shown at 108 in
To understand the full functionality of the Outcome Generator, it is necessary to understand the two key classes of casino video games that it helps to create. The RDOG wagering system facilitates the creation of: 1) casino video games in which the full playing landscape is visible to the player at all times (referred to here as “single-screen” games) and 2) casino video games in which the playing landscape is revealed to the player on a gradual, screen-by-screen basis (referred to here as “multi-screen” games). The properties of reward-triggering game assets used in both the single-screen and multi-screen models are created by the Outcome Generator 106.
In multi-screen games, according to embodiments of the present invention, future obstacles and reward triggers (assets within the gaming environment, a collision with which triggers an award) in the game may be generated randomly as the player encounters them. For example, in a car racing game in which the player can only see a small section of road in front of him, reward-triggering bonus flags (examples of reward generating assets) of different colors and reward levels may randomly appear in the driver's path as he races towards the finish line. This is the first key role of the Outcome Generator 106, as it must assign the asset class and wagering properties/probabilities of future symbols as the player encounters them. This symbol assignment process may be accomplished, according to embodiments of the present invention, through calling an Asset Creation Reward Table 208 (a type of Dynamic Reward Table) that associates the probability that each symbol within the game's universe will appear before the player, shown on the X axis 212 with the reward multiplier associated with each different class of symbol, shown on the Y axis 212. Based on this random call to these Asset Creation Reward Tables 208, the game is able to randomly determine the appearance of a future symbol appearing within the game 216 and to determine the symbol's reward multiplier 109 (the quantity with which the collision wager 118 will be multiplied when the player collides with the newly generated reward generating asset to determine the collision reward size 120).
According to embodiments of the present invention, multi-screen games like the driving game described earlier may grade the player on skill as play unfolds—by measuring, for example, how long it takes a driver to reach certain predetermined milestones—and then use the stored grades to affect how the game generates future scenarios. For instance, if within a car racing game there are reward generating assets embodied as yellow bonus flags that return small rewards, blue bonus flags that return average sized reward, and green bonus flags that return large rewards, a particularly skilled player will encounter more green flags in his path based on his previously demonstrated skill level. This increased frequency of appearance of comparatively higher-valued reward generating assets occurs because the player's skill increases the game's average RTP percentage, which in turn may correspondingly increase the probability that higher-valued reward generating assets will appear as the game unfolds; that is, in the game's future. It should be noted that such skill-based changes to a game's future outcome generation do not compromise the randomness of the game; they affect only the probabilities of various future game scenarios occurring. Therefore, no new regulatory issues are raised by such skill-based games according to embodiments of the present invention.
The role of the Outcome Generator 106 in single-screen games according to embodiments of the present invention is different. In single screen games, the appearance/class of most game assets are known to the player at all times since the full gaming screen is always visible. In these scenarios, the player's reward multiplier when colliding with a given class of reward generating asset may not be fixed like in the multi-screen model, but rather may be determined randomly at the moment of collision. This reward multiplier generation is accomplished by referencing a different type of Dynamic Reward Table that is specific to the reward generating asset with whom the player has collided, shown in
On the timeline depicted in
The following illustrates how RDOG games may dynamically self-adjust to reward skilled players. For example, player A may purchase a 1 minute contract to play an auto racing game for $6. In this example, player A is an unskilled player and is, therefore, assigned an average RTP percentage of 92, which is the lowest possible average RTP percentage within the game's preset average RTP percentage range. If player A's first collision with a reward generating asset within the game occurs 30 seconds into game play, his collision wager may be calculated as follows: ($6/60 seconds)×(30 seconds)=a $3 wager. Given that the player's average RTP percentage=92, the casino can expect to keep, on average, 24 cents for wagers such as this one ($3 wager×8% casino hold=24 cents lost), although the actual result of the single wager in question will be governed by the game's RNG and the specific dynamic reward paytable associated with the reward generating asset with which the player has collided.
Continuing with this example and within the same game, player B purchases a 3 minute contract to play for $18. Player B is known to be or is determined to be a highly skilled player and is, therefore, assigned an average RTP percentage of 98, the highest possible average RTP percentage with the game preset average RTP percentage range. If player B's first collision within the game occurs 10 seconds into game play, his collision wager may be calculated as follows: ($18/180 seconds)×(10 seconds)=a $1 wager. Given that this player's average RTP percentage=98, the casino can expects to hold only 2 cents of Player B's wager long term, which represents a reward for his skilled play. Notice, then, that such a system provides both a reward to the player for good performance and a guaranteed positive return for the casino.
The auto racing track featured in
As the farmer 502 travels along the game's landscape, the game dynamically generates the animals he will encounter at symbol creation intervals 510 that may be either random or predetermined. The determination of a new symbol's identity 512 occurs at random, based on a dynamic reward table 514 created by a Return Driven Outcome Generator such as shown at 106 in
In this example, the size of a player's reward when encountering an animal in this game may be captured in the following formula: (Contract Amount/Contract Duration)×Collision Interval×Reward Multiplier. For example, a player having purchased a 1 minute contract for $6 who collides with a dog in after 10 seconds of collision-free game play would earn: ($6/60 seconds)×10 seconds×1.1 reward multiplier=$1.10 reward.
The game may be configured such that, should the player deliberately avoid capturing an animal in this scenario—by, for example, jumping over it—the player would surrender his collision reward and a new collision interval would begin. This scenario is equivalent to a video poker player deliberately discarding a reward generating hand like a straight flush that has been dealt to him pat. In the manner that some video poker machines force players to hold reward-generating hands (like a royal flush), embodiments of RDOG game may be configured to force players to accept wagering opportunities presented to them.
2D horizontal scrolling games such as the farm game of
It should be noted that while the foregoing demonstrates how RDOG-enabled games according to the present invention may create reward generating assets not yet encountered by the player in a 2D horizontal scrolling game, the same concept can easily be applied to a 3D maze style game like Doom® or Halo® in which players enter new rooms or segments of a maze and encounter reward generating that had previously been outside of their field of vision.
As is indicated in
Maze-style games like Pac-Man® may also employ skill-based grading. This concept is demonstrated in table 618, which makes a version of casino Pac-Man® possible in which players who average a greater number of pellets eaten per collision with a non-blue ghost within the game earn a higher average RTP percentage than lesser skilled players.
It should also be noted that single-screen arcade games like Space Invaders® or Pac-Man® often progress to new and more difficult screens/levels when an existing screen is “conquered” or completed. For example, in Pac-Man® when all of the pellets within a maze are eaten, a new and more difficult maze appears on screen in which the ghosts move faster, the power pellets result in a shorter window to eat the ghosts, etc. In Space Invaders®, when a player destroys all of the aliens on the gaming screen, a new fleet of aliens appears that advances downward toward the player's cannon at a greater rate of speed. Casino RDOG adaptations of these games (or games specifically designed for RDOG casino video game play) may also feature levels of escalating difficulty. In such scenarios, game play may continue without any changes, or the player may be rewarded for reaching a higher game difficulty level by encountering more generous asset reward tables, a greater frequency of reward generating assets, more lenient skill-based grading, or by any other measure game designers wish to implement that does not compromise the game's predetermined average RTP percentage or average RTP percentage range or affect the RNG.
According to an embodiment of the present invention, whenever the player's ball collides with reward generating assets (bumpers, rails, flippers, etc), the game references a specific reward table associated with the reward generating asset with which the ball has collided and provides the player the opportunity to receive a financial reward using the reward multiplier derived from the application of the output of the RNG to the specific reward table associated with the reward generating asset with which the ball has collided. For example, when the player's ball collides with the circular bumper 814, a reward table specific to that reward generating asset 816 referenced and the game's RNG determines the player's reward. Different reward generating assets within the game may be associated with different reward tables. Alternatively, several reward generating assets or several kinds of reward generating assets may be assigned a same reward table. The reward tables themselves may be configured as desired. For example, the triangular rail 808 is depicted in
To demonstrate this model, we will examine a scenario in which a player buys into a full-pay RDOG Pac-Man game by purchasing a 60 second contract for $6. When that player's Pac-Man® collides with a non-blue ghost, he loses a life and his game play is interrupted for a predetermined amount of time. For the purposes of this example, we will set that time penalty at 5 seconds. This period of time in which the player is penalized is not added to his next collision wager. Because every second of game play has a set value in the RDOG model (in this case each second is worth 10 cents), when the player forfeits time by making a mistake, he reduces his returns. By losing 5 seconds, the player has forfeited 50 cents of value from a $6 contract and effectively reduced the average RTP percentage of his game from 100 to 91.7%.
The full-pay model appeals to players because it gives them the opportunity to play a casino game optimally at no disadvantage since mistake-free play results in an average RTP percentage of 100. Rarely in the casino environment are games offered to the player that afford him the opportunity to play legally and face no built-in house advantage. Because players rarely actually play optimally—the casinos have loads of data confirming this reality for video poker—gaming operators have little to fear from putting a full pay machine on their gaming floor.
Regulatory restrictions in many gaming jurisdictions stipulate the minimum average RTP percentage that game operators may assign to a game. Because the full-pay model has no average RTP percentage “floor” and might punish terrible players with perpetual penalties that would slash their returns, a false average RTP percentage floor (i.e., a minimum average RTP percentage) may need to be built into full pay RDOG games, which may be accomplished by assigning to each gaming session a maximum time-based penalty. For example, the Pac-Man® game described earlier may institute a maximum 10 second penalty per 60 second contract, ensuring that the game's average RTP percentage never dips below 83.3% ($5 actually wagered at no disadvantage/$6 in wagers purchased=an average RTP percentage of 83.3%).
The full-pay RDOG model applies cleanly to a variety of arcade style games. Pinball players may face a time penalty when their ball goes into the gutter. Space Invaders players may be penalized when their cannon is hit by alien fire. Race car drivers may be penalized when they crash. Part of the appeal of the full-pay RDOG model according to embodiments of the present invention is that it ties in very naturally with existing arcade game paradigms. Aspects of the full-pay model may be used in conjunction with the embodiments shown and described above, such that the player may be rewarded for successfully colliding with reward generating assets and for successfully avoiding negative in-game events that interrupt game play.
It should also be noted that the time based penalties system demonstrated in
According to an embodiment thereof, a network of gaming machines may be configured to make one or more games available to a player. For example, each gaming machine may be dedicated to a single game implementing the RDOG functionality disclosed herein or may be configured to enable the player to select one of a plurality of RDOG-configured games (and optionally other non RDOG-enabled games as well) to play. Such games may be stored locally on each gaming machine and/or may be downloadable from one or more central server 1018 upon request, as disclosed in application Ser. No. 10/789,975, filed Feb. 27, 2004, which application is hereby incorporated herein by reference in its entirety.
While the foregoing detailed description has described several embodiments of this invention, it is to be understood that the above description is illustrative only and not limiting of the disclosed invention. For example, while several classic video games like Pac-Man® and Space Invaders® were described, the RDOG wagering system could just as easily be applied to any popular video game including new titles like RockStar Gaming's Grand Theft Auto®. Moreover, embodiments of the present invention are not limited to RDOG adaptations of existing video games. Instead, new skill-based games may be developed and provided with RDOG functionalities.
According to other embodiments, events other than player skill (whether under the player's control or not) may also influence the average RTP percentage of a given player game session. Indeed, the average RTP percentage may be increased or decreased depending upon the time of the day or the day of the week or depending upon the length of the contract purchased by the player. Moreover, in video games that are played cooperatively among several players on networked gaming machines, the team's success in attaining the game's objectives may influence the average RTP percentage that is applied to all members of the team. Alternatively, each member of the team may be assigned his or her own average RTP percentage, depending upon his or her skill and/or ability to meet sub-objectives within the game and/or in proportion to his or her contribution to the game mission's outcome.
According to other embodiments, a player's earned average RTP percentage may be saved within his or her saved profile. For instance, each player may be identified by a player loyalty card, and his or her earned average RTP percentage may be saved along with other player-specific data in the player profile stored on the loyalty card or on a central server to which the gaming machines in the casino are coupled. Thereafter, when the player returns to a previously played game, the player may be identified by means of the loyalty card, and that player's average RTP percentage may be retrieved and applied, in combination with the game's RNG to determine the value of the reward multiplier whenever the player collides with a reward generating asset within the game.
According to further embodiments, player characteristics or actions other than skill may influence the average RTP percentage. For example, in the game Bioshock®, published by 2K Games, the player collects weapons, health packs, and Plasmids that give him special powers such as telekinesis or electro-shock, while fighting off the deranged population of the underwater city of Rapture. At times, the player is called on to make quasi-ethical decisions to save or kill (harvest) characters called “Little Sisters” (who resemble lost and frightened little girls) that collect a substance called “Adam” from the dead. The “Adam” collected by a killed Little Sister helps the player survive the toxic game environment. In such a case, the average RTP percentage may be decreased (or increased, for that matter) each time a player makes a decision that, albeit useful in achieving the game's objectives, is ethically questionable or outright wrong. In this regard, it may be seen that embodiments of the present invention may leverage the player's internal conflict of conscience (earn a high average RTP percentage or behave unethically) to great advantage to create compelling escapist game play, while insuring a predictable revenue stream for casino operators. A number of other modifications will no doubt occur to persons of skill in this art. All such modifications, however, should be deemed to fall within the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
4593904 | Graves | Jun 1986 | A |
4618150 | Kimura | Oct 1986 | A |
4695053 | Vazquez, Jr. et al. | Sep 1987 | A |
5271628 | Okada | Dec 1993 | A |
5342049 | Wichinsky et al. | Aug 1994 | A |
5823873 | Moody | Oct 1998 | A |
5882261 | Adams | Mar 1999 | A |
6012983 | Walker et al. | Jan 2000 | A |
6019374 | Breeding | Feb 2000 | A |
6050895 | Luciano et al. | Apr 2000 | A |
6077163 | Walker et al. | Jun 2000 | A |
6244957 | Walker et al. | Jun 2001 | B1 |
6248016 | Walker et al. | Jun 2001 | B1 |
6267669 | Luciano et al. | Jul 2001 | B1 |
6283474 | de Keller | Sep 2001 | B1 |
6319127 | Walker et al. | Nov 2001 | B1 |
6409597 | Mizumoto | Jun 2002 | B1 |
6413160 | Vancura | Jul 2002 | B1 |
6503146 | Walker et al. | Jan 2003 | B2 |
6517433 | Loose et al. | Feb 2003 | B2 |
6522312 | Ohshima et al. | Feb 2003 | B2 |
6572473 | Baerlocher | Jun 2003 | B1 |
6599192 | Baerlocher et al. | Jul 2003 | B1 |
6645075 | Gatto et al. | Nov 2003 | B1 |
6666765 | Vancura | Dec 2003 | B2 |
6719631 | Tulley et al. | Apr 2004 | B1 |
6746016 | Perrie et al. | Jun 2004 | B2 |
6752717 | Vancura | Jun 2004 | B2 |
6758750 | Baerlocher et al. | Jul 2004 | B2 |
6761632 | Bansemer et al. | Jul 2004 | B2 |
6780103 | Bansemer et al. | Aug 2004 | B2 |
6811482 | Letovsky | Nov 2004 | B2 |
6852027 | Kaminkow et al. | Feb 2005 | B2 |
6852030 | Baerlocher et al. | Feb 2005 | B2 |
6863606 | Berg et al. | Mar 2005 | B1 |
6884167 | Walker et al. | Apr 2005 | B2 |
6918830 | Baerlocher | Jul 2005 | B2 |
6942568 | Baerlocher | Sep 2005 | B2 |
6984174 | Cannon et al. | Jan 2006 | B2 |
6988732 | Vancura | Jan 2006 | B2 |
7056210 | Bansemer et al. | Jun 2006 | B2 |
7073793 | Vancura | Jul 2006 | B2 |
7077744 | Cannon | Jul 2006 | B2 |
7140964 | Walker et al. | Nov 2006 | B2 |
7175521 | McClintic | Feb 2007 | B2 |
7175524 | Bansemer et al. | Feb 2007 | B2 |
7192346 | Mathis | Mar 2007 | B2 |
7217187 | Vancura | May 2007 | B2 |
7234700 | Vancura | Jun 2007 | B2 |
7326115 | Baerlocher | Feb 2008 | B2 |
7572182 | Vancura | Aug 2009 | B2 |
7658673 | Baerlocher et al. | Feb 2010 | B2 |
7682239 | Friedman et al. | Mar 2010 | B2 |
7686303 | Kaminkow et al. | Mar 2010 | B2 |
7722461 | Gatto et al. | May 2010 | B2 |
7749062 | Gatto et al. | Jul 2010 | B2 |
7789749 | Bansemer et al. | Sep 2010 | B2 |
7846015 | Bansemer et al. | Dec 2010 | B2 |
7905773 | Moffett et al. | Mar 2011 | B2 |
7914372 | Tessmer et al. | Mar 2011 | B2 |
7931531 | Oberberger | Apr 2011 | B2 |
7950993 | Oberberger | May 2011 | B2 |
7955169 | Walker et al. | Jun 2011 | B2 |
7963839 | Gatto et al. | Jun 2011 | B2 |
7963845 | Baerlocher | Jun 2011 | B2 |
7967674 | Baerlocher | Jun 2011 | B2 |
7980942 | Kane | Jul 2011 | B2 |
8007358 | Linard et al. | Aug 2011 | B2 |
8021222 | Walker et al. | Sep 2011 | B2 |
8033904 | Gatto et al. | Oct 2011 | B2 |
8038529 | Kane et al. | Oct 2011 | B2 |
8056900 | Bozeman | Nov 2011 | B2 |
8062127 | Filipour et al. | Nov 2011 | B2 |
8070581 | Linard et al. | Dec 2011 | B2 |
8075383 | Friedman et al. | Dec 2011 | B2 |
8113936 | Filipour et al. | Feb 2012 | B2 |
8113938 | Friedman et al. | Feb 2012 | B2 |
8235808 | Baerlocher et al. | Aug 2012 | B2 |
8308550 | Filipour et al. | Nov 2012 | B2 |
8337300 | Bowers et al. | Dec 2012 | B2 |
8360854 | Popovich et al. | Jan 2013 | B2 |
8398475 | De Waal et al. | Mar 2013 | B2 |
8430735 | Oberberger | Apr 2013 | B2 |
8435111 | Filipour et al. | May 2013 | B2 |
20020019253 | Reitzen et al. | Feb 2002 | A1 |
20020036380 | Perrie et al. | Mar 2002 | A1 |
20020037767 | Ebin | Mar 2002 | A1 |
20020123379 | Yamazaki et al. | Sep 2002 | A1 |
20020132660 | Taylor | Sep 2002 | A1 |
20020147040 | Walker et al. | Oct 2002 | A1 |
20030027617 | Vancura | Feb 2003 | A1 |
20030027619 | Nicastro, Sr. | Feb 2003 | A1 |
20030064794 | Mead et al. | Apr 2003 | A1 |
20030069053 | Dovgan | Apr 2003 | A1 |
20030171140 | Gatto et al. | Sep 2003 | A1 |
20030199294 | Walker et al. | Oct 2003 | A1 |
20030199305 | Mathis | Oct 2003 | A1 |
20030199314 | Baerlocher et al. | Oct 2003 | A1 |
20030211881 | Walker et al. | Nov 2003 | A1 |
20040009805 | Baerlocher et al. | Jan 2004 | A1 |
20040102238 | Taylor | May 2004 | A1 |
20040185929 | Walker et al. | Sep 2004 | A1 |
20040214644 | Emori et al. | Oct 2004 | A1 |
20040235551 | Walker et al. | Nov 2004 | A1 |
20040242319 | Walker et al. | Dec 2004 | A1 |
20050130729 | Baerlocher et al. | Jun 2005 | A1 |
20050181853 | Baerlocher | Aug 2005 | A1 |
20050192087 | Friedman et al. | Sep 2005 | A1 |
20050239538 | Dixon | Oct 2005 | A1 |
20060025207 | Walker et al. | Feb 2006 | A1 |
20070129128 | McClintic | Jun 2007 | A1 |
20080015004 | Gatto et al. | Jan 2008 | A1 |
20080108406 | Oberberger | May 2008 | A1 |
20080274798 | Walker et al. | Nov 2008 | A1 |
20080311980 | Cannon | Dec 2008 | A1 |
20090036199 | Myus et al. | Feb 2009 | A1 |
20090061991 | Popovich et al. | Mar 2009 | A1 |
20090061997 | Popovich et al. | Mar 2009 | A1 |
20090061998 | Popovich et al. | Mar 2009 | A1 |
20090061999 | Popovich et al. | Mar 2009 | A1 |
20090131158 | Brunet De Courssou et al. | May 2009 | A1 |
20090270163 | Mitelman | Oct 2009 | A1 |
20090280891 | Filipour et al. | Nov 2009 | A1 |
20100004060 | Filipour et al. | Jan 2010 | A1 |
20100009742 | Popovich et al. | Jan 2010 | A1 |
20100056243 | Czyzewski et al. | Mar 2010 | A1 |
20100160030 | Indrakumar | Jun 2010 | A1 |
20100184507 | Gatto et al. | Jul 2010 | A1 |
20100227662 | Speer et al. | Sep 2010 | A1 |
20110218024 | Baerlocher | Sep 2011 | A1 |
20110300949 | Filipour et al. | Dec 2011 | A1 |
Entry |
---|
Written Opinion and International Search Report of the International Searching Authority in corresponding PCT application PCT/US08/74256, mailed Nov. 19, 2008. |
Number | Date | Country | |
---|---|---|---|
20090061998 A1 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
60969137 | Aug 2007 | US |