Return-oriented programming detection

Information

  • Patent Grant
  • 9594912
  • Patent Number
    9,594,912
  • Date Filed
    Friday, June 20, 2014
    10 years ago
  • Date Issued
    Tuesday, March 14, 2017
    7 years ago
Abstract
According to one embodiment, a threat detection system is integrated with at least a dynamic analysis engine. The dynamic analysis engine is configured to automatically detect a function call by an application, responsive to detecting the function call, analyze contents located at one or more addresses located within a portion of memory allocated for the application, and, based on the analysis, determine whether one or more objects included in received network traffic is associated with a return-oriented programming (ROP) exploit.
Description
FIELD

Embodiments of the disclosure relate to the field of cyber security. More specifically, one embodiment of the disclosure relates to a system, apparatus and method for detecting a return-oriented programming (ROP) exploit based, at least in part, on instruction sequences stored at valid addresses located within a portion of memory allocated for an instance of an application; the application attempting to execute one or more objects contained within received network traffic.


GENERAL BACKGROUND

Over the last decade, malicious software has become a pervasive problem for Internet users as many networked resources include vulnerabilities that are subject to attack. For instance, over the past few years, more and more vulnerabilities are being discovered in software that is loaded onto network devices, such as vulnerabilities within operating systems for example. While some vulnerabilities continue to be addressed through software patches, prior to the release of such software patches, network devices will continue to be targeted for attack by exploits, namely malicious computer code that attempts to take advantage of a vulnerability in computer software by acquiring sensitive information or adversely influencing or attacking normal operations of the network device or the entire enterprise network.


In particular, a malware writing technique known as ROP has become fairly widespread recently. ROP is an exploit that allows a writer of malware to chain together sequences of instructions through return instructions thereby accomplishing one or more tasks via the execution of the chain of sequences of instructions. ROP techniques were developed as a way to circumvent data execution prevention (DEP) techniques, which have been recently implemented in many operating systems to thwart unauthorized activities including malicious attacks.


A “DEP system” prevents the execution of portions of memory allocated by an application marked as “non-executable.” For instance, areas of allocated memory that contain data as opposed to executable code may be marked as “non-executable.” In particular, the stack and “virtual” heap of memory allocated by an application are typically marked as non-executable by default. Therefore, malware writers that previously inserted shellcode into the stack or virtual heap and executed an instruction to direct the execution flow to the inserted shellcode are not able to execute the inserted shellcode. A DEP system typically prevents malware writers from executing the inserted shellcode by causing the application to terminate.


In order to circumvent the protections established by a DEP system, malware writers turned to return-oriented programming Malware writers may accomplish tasks they would have inserted into the stack and/or virtual heap using shellcode by executing sequences of instructions already appearing in executable code, such as a dynamically-loaded library (DLL), loaded by the application. Using the ROP technique, malware writers search the areas of the allocated memory marked as “executable” (such as DLLs) for sequences of instructions that, chained together, accomplish any desired tasks. The sequences of instructions are chained together through the use of return instructions following the sequence of instructions. For example, the return instruction following sequence_1 will point to sequence_2. Therefore, merely performing a search of the stack or virtual heap for shellcode may not be sufficient to detect such exploits.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1 is an exemplary block diagram of an operational flow for ROP exploit detection by a network device 100 (e.g., a TDP system).



FIG. 2A is an exemplary block diagram of a ROP exploit detection environment deploying a plurality of threat detection and prevention (TDP) systems communicatively coupled to a management system via a network.



FIG. 2B is a second exemplary block diagram of a ROP exploit detection environment deploying a plurality of threat detection and prevention (TDP) systems communicatively coupled to a management system via a network.



FIG. 3 is an exemplary block diagram of a monitoring logic and a ROP detection module to analyze the contents of a portion of the memory allocated by an application within a virtual machine (VM).



FIG. 4 is a flowchart illustrating an exemplary method for detecting a ROP exploit.



FIG. 5 is an exemplary block diagram of a portion of the stack allocated by an application of which a snapshot has been taken.



FIG. 6 is a flowchart illustrating an in-depth exemplary method for detecting a ROP exploit.



FIG. 7 is an exemplary block diagram of logic associated with the TDP system 2101 of FIGS. 2A-2B.



FIG. 8 is an exemplary illustration of a network device configured with a ROP exploit detection logic.





DETAILED DESCRIPTION

Various embodiments of the disclosure determine whether an object of network content or other digital content is attempting to utilize a particular type of programming technique, return-oriented programming (ROP), to circumvent any malware detection or protection procedures employed by the network device, including data execution prevention (DEP) systems. This determination entails an analysis of an application's allocated memory and its contents to ascertain whether the contents correspond to a ROP exploit and the object should be classified as suspicious or even malware.


Specifically, in one embodiment, this determination explores the contents stored at addresses surrounding (within a predetermined address range of) a predetermined location (select address value) within the stack at a particular point in time. The contents stored on the stack within a particular distance from the predetermined location are analyzed to determine whether each is stored at a valid address in memory allocated to one of certain software modules (e.g., of the application being executed). If an address within the predetermined address range is not a valid address in memory allocated to one of the modules, its contents are disregarded for purposes of ROP detection. However, if an address within the predetermined address range is a valid address in memory allocated to one of the modules, the contents located at that address, and, in some embodiments, the next valid address or addresses in the stack, are further analyzed to determine if the address or addresses contain a gadget (i.e., computer code with less than a predefined number of instructions that are chained together followed by a “return” instruction). If they do contain one or more gadgets, a ROP exploit may have been uncovered. In some embodiments, depending on factors such as the number of detected gadgets, the object may be classified as “suspicious,” that is, associated with a probable ROP exploit or malware or as “malicious,” that is, associated with a high probability that the object is malware. In some embodiments, a correlation engine may associate the object with a score, weight or threat level corresponding to a probability that the object is associated with a ROP exploit, and may also classify the object as suspicious if the score exceeds a threshold, or even malicious if the score exceeds a higher threshold. In some embodiments, if a ROP exploit is detected, the object is always classified as malware.


Embodiments of the invention may be employed by or take the form of a network device or apparatus implementing a threat detection and prevention (TDP) system, where the network device has a dynamic analysis engine for monitoring and analyzing behavior of objects during processing in a virtual runtime environment. In some embodiments, the TDP system may be implemented or executed by a server or client device or other system (called an “endpoint”) connectable to a network. In other embodiments, the TDP system may be a dedicated cyber-security appliance or general purpose computer system. The TDP system may include an optional static analysis engine as well as the dynamic analysis engine. According to one embodiment of the disclosure, the static analysis engine operates as a filter that analyzes information associated with characteristics of one or more objects extracted from monitored network traffic in efforts to determine if the characteristics are anomalous and thus indicative of an exploit. If so, the object(s) are labeled “suspicious”. The dynamic analysis engine may include virtual execution logic to automatically process and analyze, without user assistance, content within object(s) of the received network traffic. Furthermore, the dynamic analysis engine may include monitoring logic to automatically instantiate and execute an application to execute or otherwise process an object within received network traffic and analyze the memory allocation for the application and patterns of instructions stored therein in order to detect a heap spray attack and/or an ROP exploit, in accordance with any of the techniques and embodiments described herein.


I. TERMINOLOGY

In the following description, certain terminology is used to describe features of the invention. For example, in certain situations, both terms “logic” and “engine” are representative of hardware, firmware and/or software that is configured to perform one or more functions. As hardware, logic (or engine) may include circuitry having data processing or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a microprocessor, one or more processor cores, a programmable gate array, a microcontroller, an application specific integrated circuit, wireless receiver, transmitter and/or transceiver circuitry, semiconductor memory, or combinatorial logic.


Logic (or engine) may be software in the form of one or more software modules, such as executable code in the form of an executable application, an application programming interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, object code, a shared library/dynamic load library, or one or more instructions. These software modules may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; a semiconductor memory; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the executable code is stored in persistent storage.


The term “object” generally refers to a collection of data (e.g., digital values, which may include instructions, commands, statements, and other data), whether in transit (e.g., over a network) or at rest (e.g., stored), often having a logical structure or organization that enables the object to be classified for purposes of analysis. During analysis, for example, the object may exhibit a set of expected characteristics and, during processing, a set of expected behaviors. The object may also exhibit a set of unexpected characteristics and a set of unexpected behaviors that may evidence an exploit and potentially allow the object to be classified as an exploit.


Examples of objects may include one or more flows or a self-contained element within a flow itself. A “flow” generally refers to related packets that are received, transmitted, or exchanged within a communication session. For convenience, a packet is broadly referred to as a series of bits or bytes of data having a prescribed format, which may include packets, frames, or cells, and, within each, header, payload, etc.


As an illustrative example, an object may include a set of flows such as (1) a sequence of transmissions in accordance with a particular communication protocol (e.g., User Datagram Protocol (UDP); Transmission Control Protocol (TCP); or Hypertext Transfer Protocol (HTTP); etc.), or (2) inter-process communications (e.g., Remote Procedure Call “RPC” or analogous processes, etc.). Similar, as another illustrative example, the object may be a self-contained element, where different types of such objects may include an executable file, non-executable file, a document (for example, a Microsoft Office® document), a dynamically linked library (DLL), a Portable Document Format (PDF) file, a JavaScript file, Zip file, a Flash file, an electronic mail (email), downloaded web page, an instant messaging element in accordance with Session Initiation Protocol (SIP) or another messaging protocol, or the like.


An “exploit” may be construed broadly as information (e.g., executable code, data, command(s), etc.) that attempts to take advantage of a vulnerability. Typically, a “vulnerability” is a coding error or artifact of software (e.g., computer program) that allows an attacker to alter legitimate control flow during processing of the software (computer program) by a network device, and thus, causes the network device to experience undesirable or unexpected behaviors. The undesired or unexpected behaviors may include a communication-based anomaly or an execution-based anomaly, which, for example, could (1) alter the functionality of an network device executing application software in a malicious manner; (2) alter the functionality of the network device executing that application software without any malicious intent; and/or (3) provide unwanted functionality which may be generally acceptable in another context. To illustrate, a computer program may be considered as a state machine, where all valid states (and transitions between states) are managed and defined by the program, in which case an exploit may be viewed as seeking to alter one or more of the states (or transitions) from those defined by the program.


Malware may be construed broadly as computer code that executes an exploit to take advantage of a vulnerability, for example, to harm or co-opt operation of a network device or misappropriate, modify or delete data. Conventionally, malware is often said to be designed with malicious intent. An object may constitute or contain malware.


The term “transmission medium” is a physical or logical communication path between two or more network devices (e.g., any devices with data processing and network connectivity such as, for example, a security appliance, a server, a mainframe, a computer such as a desktop or laptop, netbook, tablet, firewall, smart phone, router, switch, bridge, etc.). For instance, the communication path may include wired and/or wireless segments. Examples of wired and/or wireless segments include electrical wiring, optical fiber, cable, bus trace, or a wireless channel using infrared, radio frequency (RF), or any other wired/wireless signaling mechanism.


In certain instances, the term “detected” is used herein to represent that there is a prescribed level of confidence (or probability) in the presence of an exploit or, in particular, a ROP exploit, within an object under analysis. For instance, the virtual execution logic may detect the presence of a ROP exploit by monitoring or observing unexpected or anomalous behaviors or activities, and, in response, determining that the object includes a ROP exploit.


The term “network device” should be construed as any electronic device with the capability of connecting to a network. Such a network may be a public network such as the Internet or a private network such as a wireless data telecommunication network, wide area network, a type of local area network (LAN), or a combination of networks. Examples of a network device may include, but are not limited or restricted to, a laptop, a mobile phone, a tablet, a computer, etc.


The term “gadget” may be construed as a sequence of computer instructions not including a “return” instruction (hereinafter referred to as “instructions”) followed by a “return” instruction, where the sequence of instructions prior to the return instruction is less than a predefined threshold. A gadget may also consist solely of a return instruction. As an illustrative example, a gadget may be defined as any instruction sequence having less than ten instructions followed by a return instruction. Therefore, any instruction sequence consisting of more than one but less than a predetermined amount of instructions followed by a return instruction will be considered a gadget.


The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware. Also, the terms “compare” or “comparison” generally mean determining if a match (e.g., a certain level of correlation) is achieved between two items where one of the items may include a particular signature pattern.


The term “signature” designates an indicator of a set of characteristics and/or behaviors exhibited by one or more exploits that may not be unique to those exploit(s). Thus, a match of the signature may indicate to some level of probability, often well less than 100%, that an object constitutes an exploit. In some contexts, those of skill in the art have used the term “signature” as a unique identifier or “fingerprint,” for example of a specific virus or virus family (or other exploit), which is generated for instance as a hash of its machine code, and that is a special sub-case for purposes of this disclosure.


Lastly, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.


The invention may be utilized for detection, verification and/or prioritization of malicious content such as exploits, in particular, ROP exploits. As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.


II. FIRST EMBODIMENT
ROP Exploit Detection within a TDP System

A. Operational Flow for ROP Exploit Detection


Referring to FIG. 1, an exemplary block diagram of an operational flow for ROP exploit detection by a network device 100 (e.g., a TDP system) is shown. Herein, some or all of the incoming objects 110 associated with monitored network traffic are received by virtual execution logic 270, which is part of a dynamic analysis engine 130 (see FIGS. 2A-2B), either directly or via an optional static analysis engine 120. According to one embodiment of the disclosure, when deployed in the network device 100, the static analysis engine 120 is configured as a capture and filter device that receives the incoming objects 110 and conducts heuristics (e.g., rules check), exploit signature checks and/or vulnerability signature checks on some or all of the objects 110, as described below.


The virtual execution logic 270 conducts an in-depth analysis of at least one object of the incoming objects 110 by instantiating a computer application to virtually process the object and analyze the contents within a portion of the stack of memory allocated by the application. Specifically, the virtual execution logic 270 determines whether the contents at each address of the stack represents a valid address located within a portion of memory allocated to a module of the application, such as a dynamically loaded library (DLL) or other module loaded by the application. If the address value represents a valid address located within a portion of memory allocated to the module, a portion of the virtual execution logic 270 may inspect the instruction sequence for a gadget, the instruction sequence located at that address and in valid addresses following that address.


Upon conducting at least an analysis of the addresses stored within a portion of the stack of an application used to execute at least one object of the incoming objects 110, the dynamic analysis engine 130 provides the results 150 of its analysis (referred to herein as “VM-based results”), including information regarding any uncovered gadgets, to reporting logic 160 for storage in database 255 and subsequent access. If implemented as part of the network device 100, the static analysis engine 120 may also provide results 140 of its analysis (referred to herein as “static-based results”) in some embodiments to reporting logic 160 for storage in database 255 and subsequent access.


Thereafter, at least portions of the static-based results 140 and the VM-based results 150 for the incoming objects 110 may be combined by the reporting logic 160. The reporting logic 160 may issue an alert or report 170 (e.g., an email message, text message, display screen image, etc.) to security administrators to, for example, communicate the urgency in handling an uncovered ROP exploit or other exploit within the object of the incoming objects 110.


According to one embodiment of the disclosure, the communicative coupling between the static analysis engine 120 and the dynamic analysis engine 130 is provided in a serial configuration, where the incoming object(s) 110 (or a copy thereof) may be processed in the virtual execution logic 270 after analysis by the static analysis engine 120. However, the static analysis engine 120 and the dynamic analysis engine 130 may be provided in a parallel configuration, where the incoming object(s) 110 (or copy thereof) may be processed in the virtual execution logic 270 concurrently with analysis of objects by the static analysis engine 120.


B. General Architecture of Network Device Deploying a ROP Exploit Detection Logic


Referring to FIG. 2A, an exemplary block diagram of a ROP exploit detection environment 200 deploying a plurality of threat detection and prevention (TDP) systems 2101-210N (N>1, e.g., N=3) communicatively coupled to a management system 220 via a network 225 is shown. The ROP exploit detection environment 200 comprises a server device 232, an optional firewall 236, a client device 234 and a TDP system 2101 communicatively coupled to the network 230 via a network interface 238. The TDP system 2101 is further communicatively coupled to the management system 220 and one or more TDP systems 2102-2103 via the network 225. In general, management system 220 is adapted to manage TDP systems 2101-2103. For instance, management system 220 is responsible for automatically updating a list of function calls to be observed by a portion of the virtual execution logic 270 and trigger the ROP exploit detection within some or all of TDP systems 2101-210N.


Herein, according to the embodiment illustrated in FIG. 2A, a first TDP system 2101 is a network device that is adapted to analyze information associated with network traffic routed over a communication network 230 between at least one server device 232 and at least one client device 234. The communication network 230 may include a public network such as the Internet, in which case an optional firewall 236 (represented by dashed lines) may be interposed prior to accessing client device 234. Alternatively, the communication network 230 may be a private network such as a wireless data telecommunication network, wide area network, a type of local area network (LAN), or a combination of networks.


As shown, the first TDP system 2101 may be communicatively coupled with the communication network 230 via a network interface 238. In general, the network interface 238 operates as a data capturing device (sometimes referred to as a “tap” or “network tap”) that is configured to receive data propagating to/from the client device 234 and provide at least some of this data to the first TDP system 2101. Alternatively, as shown in FIG. 2B, the first TDP system 2101 may be positioned behind the firewall 236 and in-line with client device 234.


According to one embodiment of the disclosure, the network interface 238 is capable of receiving and routing objects associated with network traffic to the first TDP system 2101. The network interface 238 may provide the entire object or certain content within the object, for example, one or more files that are part of a set of flows, packet payloads, or the like. In some embodiments, although not shown, network interface 238 may be contained within the first TDP system 2101.


It is contemplated that, for any embodiments where the first TDP system 2101 is implemented as a dedicated appliance or a dedicated computer system, the network interface 238 may include an assembly integrated into the appliance or computer system that includes a network interface card and related logic (not shown) for connecting to the communication network 230 to non-disruptively “tap” network traffic propagating through firewall 236 and provide either a duplicate copy of at least a portion of the network traffic or at least a portion the network traffic itself to the dynamic analysis engine 130 and the optional static analysis engine 120, if included within the TDP system 2101. In other embodiments, the network interface 238 can be integrated into an intermediary device in the communication path (e.g., firewall 236, router, switch or other networked network device, which in some embodiments may be equipped with Switched Port Analyzer “SPAN” ports) or can be a standalone component, such as an appropriate commercially available network tap. In virtual environments, a virtual tap (vTAP) can be used to duplicate files from virtual networks.


As further shown in FIG. 2A, the first TDP system 2101 comprises the optional static analysis engine 120, a scheduler 260, a storage device 265, the dynamic analysis engine 130, a classification engine 280 and the reporting logic 160.


In some embodiments, as shown in FIGS. 2A-2B, the static analysis engine 120 may include one or more software modules that, when executed by one or more processors, performs static scanning on a particular object, namely heuristics, exploit signature checks and/or vulnerability signature checks for example. The static analysis engine 120 and the dynamic analysis engine 130 may be one or more software modules executed by the same processor or different processors, where these different processors may be located within the same processor package (e.g., different processor cores) and/or located at remote or even geographically remote locations that are communicatively coupled (e.g., by a dedicated communication link) or a network.


More specifically, as shown, static analysis engine 120 may be configured with heuristics logic 250, exploit matching logic 252, and/or vulnerability matching logic 253. Heuristics logic 250 is adapted for analysis of certain portions of an object under analysis to determine whether any portion corresponds to either (i) a statically determined communication protocol anomaly (e.g., HTTP, TCP, etc.) or other deviation from a predetermined rule or policy; (ii) a “suspicious” identifier such as either a particular Uniform Resource Locator “URL” that has previously been determined as being associated with known exploits or a particular source or destination (IP or MAC) address that has previously been determined as being associated with known exploits); (iii) a particular exploit pattern; or (iv) a particular shellcode pattern. When deployed, the exploit matching logic 252 may be adapted to perform exploit signature checks, which may involve a comparison of an object under analysis against one or more pre-stored exploit signatures (e.g., pre-configured and predetermined attack patterns) from signatures database 251. Additionally or in the alternative, the static analysis engine 120 may be configured with vulnerability matching logic 253 that is adapted to perform vulnerability signature checks, namely, detect identifiers within the object that correspond to an exploit directed to a known vulnerability in a computer application, for instance, a process of uncovering deviations in messaging practices set forth in applicable communication protocols (e.g., HTTP, TCP, etc.).


The static analysis engine 120 may route suspicious objects to the virtual execution logic 270 within dynamic analysis engine 130, and filter other “non-suspicious” objects from further analysis. In one embodiment, if the object is not suspected of being an exploit, the static analysis engine 120 may simply denote that the object is non-malicious. The dynamic analysis engine 130 is configured to provide an in-depth analysis of objects included in the received network traffic and/or suspicious object(s) from the static analysis engine 120. The analysis may include inspecting instruction sequences stored at particular addresses located within a portion of the memory allocated by application executed by one or more objects.


More specifically, if the optional static scanning is conducted, upon its completion, the static analysis engine 120 may provide a suspicious object to the dynamic analysis engine 130 for in-depth dynamic analysis using virtual machines (VMs) 2751-275M (M≧1). For instance, the dynamic analysis engine 130 may simulate transmission and/or receipt by a destination device comprising the virtual machine.


According to one embodiment, one or more VMs 2751-275M within the virtual execution environment 272 may be configured with one or more of the software profiles corresponding to the software images stored within storage device 265. Alternatively, the VMs 2751-275M may be configured according to a prevalent software configuration, software configuration used by a network device within a particular enterprise network (e.g., client device 234), or an environment that is associated with the object to be processed, including software such as a web browser application, PDF™ reader application, or the like. However, for a known vulnerability which occurs after a successful match during a vulnerability signature check for example, the VMs 2751-275M may be more narrowly configured to software profiles associated with vulnerable software. For example, a particular version of an application may be used by the VMs 2751-275M.


The scheduler 260 may be adapted to configure the multiple VMs 2751-275M for concurrent (e.g., overlapping or simultaneous) virtual execution of a variety of different versions of the software, such as various operating systems, in efforts to detect whether an object included within the received network traffic is attempting to utilize a ROP exploit. Of course, the VM configuration described above may be handled by logic other than the scheduler 260. For instance, although not shown, the static analysis engine 120 and/or dynamic analysis engine 130 may include configuration logic to handle VM configuration as well.


The dynamic analysis engine 130 is adapted to execute one or more VMs 2751-275M to detect an attempt to utilize a ROP exploit by simulating the execution of an object under analysis within a run-time environment as expected by the type of object. The dynamic analysis engine 130 analyzes the received network traffic and determines which application is suitable for executing an object of the received network traffic within one or more VMs 2751, . . . , and/or 275M. The monitoring logic 276 instantiates an instance of the application within the virtual execution environment 272 to open/execute the object. The monitoring logic 276 has a ROP detection module 321 (as seen in FIG. 3) that operates in association with the instantiated application in the VM(s) 2751-275M to monitor behaviors (e.g., activities) of the running application as it processes the object. The ROP detection module 321 analyzes addresses stored on a portion of the allocated memory, in particular, a portion of the stack allocated to the application, and determines whether a threshold number of gadgets have been chained together to conclude that the object contains, or is associated with, a ROP exploit. Alternatively, a weight may be attached to each instruction sequence, and the monitoring logic 321 may determine whether a ROP exploit is present based on a combined total of the weights given to the instruction sequences at the addresses within the portion of the stack.


The score determination logic 278 (which will be discussed in further detail below) may also be implemented within the virtual execution logic 270 to generate a score that represents a probability (or level of confidence) that the object under analysis is associated with a malicious attack. For instance, the score may be based, at least in part, on the VM-based results and, in some embodiments, on a combination of the static-based results and VM-based results.


The classification engine 280 may be configured to receive the static-based results 140 (e.g., results from static analysis, metadata associated with the incoming network traffic, etc.) and/or the VM-based results 150. According to one embodiment of the disclosure, the classification engine 280 comprises prioritization logic 282 and score determination logic 284. The prioritization logic 282 may be configured to apply weighting to results provided from dynamic analysis engine 130 and/or static analysis engine 250. Thereafter, the classification engine 280 may route the classification results 281 comprising the weighting and/or prioritization applied to the static-based results 140 and/or the VM-based results 150 to the reporting logic 160. The classification results 281 may, among others, classify the object as malware, classify the object as a member of a family of malware and/or exploits, describe the malware and/or exploits and provide the metadata associated with any object(s) within which the malware and/or exploits were detected. The alert generation logic 256 of the reporting logic 160 may generate an alert for the client device 234 and/or route the alert to the management system 220 via the network 225 for further analysis by a network administrator. In addition, the reporting logic 160 may store the classification results 281 (including the static-based results 140 and the VM-based results 150) in the database 255 for future reference. Finally, a signature for the malware or exploit may be generated and provided to one or more other systems to enable them to detect or classify objects matching the signature as malware in a more efficient manner.


Referring to FIG. 3, an exemplary block diagram of a monitoring logic and a ROP detection module to analyze the contents of a portion of the memory allocated for an application within a VM is shown. In the embodiment as shown, the virtual execution logic 270 comprises the monitoring logic 276, a score determination logic 278 and virtual execution environment 272 including one or more VMs, such as VM 2751. In the illustration, the monitoring logic 276 opens an instance of an application 310 (for example, a browser such as Internet Explorer®) through an open process operation 300.


The monitoring logic 276 observes the application 310 as it is allocated memory including a “virtual” heap 320 and a stack 322 within the VM 2751. The monitoring logic 276 is equipped with a ROP detection module 321, e.g., located within the virtual environment, which operates in conjunction with the application instance 310 (i.e., process) to obtain information and perform various tasks for the monitoring logic 276 such as, among others, detecting activities initiated by the application 310 and obtaining information required in detecting shellcode and/or a ROP exploit (to be discussed below). An operating system 312 may also be present within the VM 2751. The application 310 and the ROP detection module 321 may communicate with the operating system 312. For example, the ROP detection module 321 may observe function calls made by the application 310 and/or querying the operating system 312 to determine what memory has been allocated to the application 310. Furthermore, the ROP detection module 321 may query the application 310 directly to determine what memory has been allocated to the application 310.


In particular, a portion of the monitoring logic 276 observes (i.e., performs an operation referred to as “hooking” or “intercepting”) function calls initiated by the application 310. For example, if the VM 2751 is executing a Microsoft® operating system, the ROP detection module 321 may observe function calls such as application programming interface (API) calls. In a second example, if the VM 2751 is executing an Apple® operating system, such as OS X®, the ROP detection module 321 may observe function calls such as system calls. The observing of a function call by the ROP detection module 321 may trigger a ROP exploit detection process, as described below. The portion of the monitoring logic 276 performing functionalities described above and/or below may be referred to “ROP exploit detection logic.”


Referring to FIG. 4, a flowchart illustrating an exemplary method for detecting a ROP exploit is shown. In block 401, after the monitoring logic 276 has instantiated an instance of application 310 and the instance is executing in the VM, the ROP detection module 321 observes a function call made by the application 310.


In block 402, the ROP detection module 321 takes a snapshot of a portion of the stack surrounding the location of the current position of the stack pointer (the portion of the stack of which the snapshot was taken will be referred to as “snapshot 500” as is seen in FIG. 5) at the point in time the function call is observed. The snapshot 500 captures the current content on the stack at addresses surrounding the stack pointer. The snapshot is captured so that the contents may be preserved for analysis, otherwise, for example, the contents might have been over-written and thus made not available. The range addresses (e.g., a number of addresses) included in the snapshot 500 may be predetermined number, and may be set or modified by, for example, a configuration file that is uploaded to the TDP system 2101 by the management system 220. The snapshot may capture contents from a number of addresses prior to and a number of addresses following the current position of the stack pointer, which may be numerically the same or different.


Referring to FIGS. 3-5, in block 403, the ROP detection module 321 analyzes the addresses of all contents stored within the snapshot 500 to determine whether the address values represent “valid” addresses, that is, addresses of memory locations allocated to the application 310. The ROP detection module 321 will compare the address represented by each address value in the snapshot 500 against a list of allocated memory for the application obtained by querying the application 310 (or, in some embodiments, the operating system 312 as illustrated in FIG. 3) for metadata regarding the allocation.


In block 404 of FIG. 4, the ROP detection module 321 determines whether a ROP exploit is present in the contents based on the analysis of instruction sequences within the snapshot 500. In some embodiments, for each valid address, the ROP detection module 321 may analyze the contents of that address and, as appropriate, of one or more “next” address values for locations so long as they too have valid addresses. The ROP detection module 321 will examine the contents at that address or those addresses for an instruction sequence that represents a gadget. Thereafter, an alert may be generated by the ROP detection module 321 notifying the monitoring logic 276 of the presence of a ROP exploit.


Referring now to FIG. 5, an exemplary block diagram of a portion of the stack allocated by application 310 of which a snapshot has been taken is shown. Among the contents included in the snapshot 500, FIG. 5 shows the contents 501-506 as an illustrative example. The contents 502 and 504-506 are seen to represent memory addresses and will be compared to a list addresses allocated to application 310, as identified by metadata obtainable from the application 310. In contrast, the contents 501 and 503 represent addresses that are not valid for the application 310, and will be disregarded for purposes of analysis by the ROP detection module 321. The ROP detection module 321 inspects the contents of valid addresses for gadgets. For illustrative purposes, four gadgets are illustrated in FIG. 5 by the groupings of the instructions 511-514.


Referring to FIG. 6, a flowchart illustrating a more detailed in-depth exemplary method for detecting a ROP exploit in shown. As primarily shown in FIGS. 3 and 6, in block 601, the ROP detection module 321 begins to perform function call observing (“hooking”) on the application 310, e.g., from within the VM 275 of FIG. 3. In block 602, the ROP detection module 321 observes a function call made by the application 310 and takes a snapshot 500 of the stack 322. In block 603, the ROP detection module 321 analyzes the contents within the snapshot 500. In block 604, the ROP detection module 321 determines whether a first content in the snapshot 500 represents a valid address of a location allocated to the application 310. If the content does not represent a valid address (block at block 604), the ROP detection module 321 checks whether the content being analyzed is the last content within the snapshot 500 (block 605). If the content currently being analyzed is the last content within the snapshot 500 (yes at block 605), the ROP detection module 321 disregards the function call made by the application 310 and returns to await a next function call, if any (block 606). However, if the content being analyzed is not the last content within the snapshot 500 (no at block 605), the ROP detection module 321 moves to the next content (block 607) and begins to analyze the next content as discussed above.


If the content being analyzed does represent a valid address for the application 310 (yes at block 604), the ROP detection module 321 inspects the instruction sequence located at the address (block 608). At block 609, the ROP detection module 321 inspects the sequence of instructions at valid addresses within the stack to determine whether the sequence of instructions is a gadget. The inspection of the sequence of instructions entails, at least, counting the number of instructions prior to a “return” instruction. If the number of instructions prior to a “return” instruction is below a first predetermined threshold, the sequence of instructions is considered a gadget.


If the instruction sequence is not determined to be a gadget (no at block 609), the ROP detection module 321 returns to block 605 and determines whether the content being analyzed is the last content within the snapshot 500. If the instruction sequence is determined to be a gadget (yes at block 609), the ROP detection module 321 may assign a weight to the instruction sequence based on the contents of the instruction sequence (block 610). For example, an instruction sequence comprised of more than one but less than nine instructions followed by a “return” instruction may be given a first weight whereas an instruction sequence comprising only a “return” instruction may be given a second, lower weight. The assigned weights may be based on experiential knowledge acquired through analysis of and, in some embodiments, machine learning from known malicious and non-malicious objects. Thereafter, in block 611, the ROP detection module 321 determines whether the combined total weight of all previously inspected instructions identified as gadgets exceeds a predetermined threshold weight. If the combined total weight does not exceed a predetermined threshold weight (no at block 611), the ROP detection module 321 returns to block 605 and checks whether the content being analyzed in the last content within the snapshot 500. However, if the combined total weight does exceed a predetermined threshold weight (yes at block 611), the ROP detection module 321 reports the presence of a ROP exploit (block 612).


In an alternative embodiment, the ROP detection module 321 may utilize a gadget counter instead of assigning weights to each identified gadget. In such an embodiment, when the ROP detection module 321 identifies an instruction sequence as a gadget, the ROP detection module 321 increments a gadget counter. If the gadget counter exceeds a predefined threshold defining the number of gadgets necessary to conclude a ROP exploit is present, the ROP detection module 321 may report the presence of a ROP exploit. However, if the gadget counter does not exceed the threshold defining the number of gadgets necessary to conclude a ROP exploit is present, the ROP detection module 321 returns to block 605 and determines whether the content being analyzed in the last content within the snapshot 500.


Although the ROP detection module 321 may perform ROP exploit detection logic (as described above) when a function call executed by the application 310 is observed, the ROP exploit detection logic may be triggered in some embodiments as a result of the ROP detection module 321 performing a stack discrepancy check. A stack discrepancy check involves analyzing a Thread Information Block (TIB). The TIB is a data structure that contains information regarding a currently running thread. The contents of the TIB include, among other things, an address representing the base of the stack of the application from which the thread was started and an address representing the limit of the stack. The base and stack addresses represent the range of the stack. During a stack discrepancy check, the ROP detection module 321 determines whether the current stack pointer is pointing to an address within the range represented by the base and stack addresses extracted from the TIB. If the current stack pointer is pointing to an address located within the range, no stack discrepancy is reported. However, if the current stack pointer is found to be pointing to a location outside of the range, a stack discrepancy is reported.


Therefore, in one embodiment of the disclosure, a stack discrepancy check may be performed by the ROP detection module 321 and, if a stack discrepancy is reported for a given application running, for example within the VM 2751, the ROP exploit detection logic may be triggered.


Referring back to FIG. 2A, the score determination logic 278 within the dynamic analysis engine 130 may be configured to compute a score based on analysis of monitored behavior during execution of the application within the one or more VMs 2751, . . . , and/or 275M. According to one embodiment of the disclosure, the score determination logic 278 has one or more software modules that are used to determine a probability (or level of confidence) that the object contains a ROP exploit. As discussed above, the score determination logic 278 may assign a score based on one or more of (i) the static-based results 140, and/or (ii) VM-based results 150 which may include, among other things, an alert of a ROP exploit (or lack thereof) and/or the individual weights assigned to each gadget identified within a snapshot 500.


The scores may be given equal weighting or the weighting for one the static-based results 140 may differ from that given to the VM-based results 150 due to the accuracy of a set of results in detecting the presence of a ROP exploit and the likelihood of the detection resulting in a false positive.


C. Exemplary Logic Layout of TDP System


Referring now to FIG. 7, an exemplary block diagram of logic associated with the TDP system 2101 of FIGS. 2A-2B is shown. The TDP system 2101 comprises one or more processors 700 that are coupled to the communication interface logic 710 via a first transmission medium 720. Communication interface logic 710 enables communication with other TDP systems 2102-2103 and management system 220 of FIG. 2A-2B. According to one embodiment of the disclosure, the communication interface logic 710 may be implemented as a physical interface including one or more ports for wired connectors. Additionally, or in the alternative, communication interface logic 710 may be implemented with one or more radio units for supporting wireless communications with other network devices.


The processor(s) 700 is further coupled to the persistent storage 730 via the transmission medium 725. According to one embodiment of the disclosure, the persistent storage 730 may include (i) the static analysis engine 120 including the signatures database 254, the vulnerability matching logic 253, the exploit matching logic 252 and the heuristics logic 250; (ii) the dynamic analysis engine 130 including the virtual execution logic 272, the monitoring logic 276 and the score determination logic 278; and (iv) the reporting logic 160. Of course, when implemented as hardware, one or more of these logic units could be implemented separately from each other.


The static analysis engine 120, if included, comprises one or more software modules that conduct a first static analysis on one or more incoming objects. As described above, this analysis may involve performing at least exploit signature checks and vulnerability signature checks on each incoming object to determine whether characteristics of any of these objects are indicative of an exploit, and in particular, a ROP exploit. Upon detection that one or more suspicious objects have characteristics of an exploit, the static analysis engine 120 provides the suspicious object(s) to the virtual execution logic 270.


The virtual execution environment 272 comprises one or more software modules that are used for performing an in-depth, dynamic and real-time analysis of one or more objects included in the received network traffic using one or more VMs. More specifically, the virtual execution environment 272 is adapted to run one or more of the VM(s) 2751-275M, which each virtually processes the content associated with the one or more objects within a computer application 310 in order to determine the presence of one or more exploits, and in particular, a ROP exploit. Furthermore, the monitoring logic 276 monitors in real-time during run-time, and may also log, at least the instruction sequences located at valid addresses allocated to the application 310 when the valid addresses correspond to contents within the snapshot 500. The monitoring logic 276 analyzes contents within the snapshot 500 of the stack and inspects the instruction sequence(s) located at one or more of the addresses to identify one or more gadgets.


Thereafter, according to the observed behavior of the virtually processed content, the monitoring logic 276 may determine that the content is associated with one or more exploits, and in particular, one or more ROP exploits, where the severity of the observed anomalous behavior and/or the likelihood of the anomalous behavior resulting from an exploit, is evaluated and reflected in a “score” assigned by the score determination logic 278. Processor(s) 700 may invoke the reporting logic 160, which produces an alert for conveying information regarding the detected ROP exploit by the TDP system 2101.


III. ALTERNATIVE EMBODIMENT
ROP Exploit Detection within a Network Device

According to an alternative embodiment of the disclosure, a network device may be configured to implement at least a monitoring logic which may be communicatively coupled with a ROP exploit detection logic. In some embodiments, the ROP exploit detection logic may be co-located with the monitoring logic within the network device and in other embodiments may be located remotely with respect to the device. In other words, a network device may be equipped with integrated or embedded the monitoring logic, which performs its functions within the network device and communicates its results, e.g., over a dedicated communication link or network, to the ROP exploit detection logic.


Referring to FIG. 8, a network device may be configured with a ROP exploit detection logic. In FIG. 8, the network device is represented by, as an illustrative example, a tablet 800. The tablet 800 includes a display screen 801, an antenna 802 and a ROP exploit detection logic 810. The ROP exploit detection logic 810 includes a monitoring logic 276 which may be equipped with a ROP detection module 321 for monitoring operations and other behavior of an application 310 from within the tablet 800.


In one embodiment, the ROP exploit detection logic 810 may be implemented as a software service within the tablet 800. In such an embodiment, the ROP detection module 321 performs function call observing (“hooking”). When a function call is observed, the ROP detection module 321 analyzes the actions taken by the tablet 800 as a result of the function call or system call to determine whether the object that made the call, contains, or is associated with, a ROP exploit. In one embodiment, the ROP exploit detection logic 810 may operate as a daemon such that the ROP exploit detection logic 810 runs as a background process on the tablet 800. In yet another embodiment, the ROP exploit detection logic 810 may be implemented as a software application on the tablet 800.


The ROP detection module 321 may capture and analyze the contents of a snapshot 500 of the memory allocated for the application 310 instantiated as a result of the function call. The ROP exploit detection logic 810 may analyze, as reported by the ROP detection module 321, information such as (i) the instruction sequences located at addresses included in the snapshot 500, (ii) the number of gadgets (i.e., instruction sequences containing certain characteristics such as less than a predetermined number of instructions prior to a return instruction), and/or (iii) a weight of each gadget assigned by the ROP detection module 321 during the execution of the application 310 in the VM 2751.


One or more alerts generated by either, or both, the ROP detection module 321 and/or the ROP exploit detection logic 810 may be displayed to a user on the display screen 801. For example, when the combined total weight for all identified gadgets exceeds a predetermined threshold, an alert may be displayed on the display screen 801. Such alerts may present the user with the option to remediate the detected ROP exploit locally, i.e., on the tablet 800, or the option to store the information associated with the detected ROP exploit for remediation by the appropriate network administrator. One example of remediation that may occur locally is a system restore of the tablet 800 to system defaults. Furthermore, the information associated with the detected ROP exploit may be transmitted via the antenna 802 to the appropriate network administrator.


In addition to the generation of an alert, the ROP exploit detection logic 810 may prevent the application from executing on the tablet 800, outside of the confines of the VM 2751. For instance, upon determination of the presence of a ROP exploit associated with application 310, the ROP exploit detection logic 810 may prevent the tablet 800 from executing an actual instance of the application outside of the virtual environment.


In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.

Claims
  • 1. A computerized method, comprising: detecting a function call by an application;responsive to detecting the function call, capturing and preserving contents in a range of a stack of memory addresses surrounding a current stack pointer;analyzing contents located at a first valid address within the preserved contents to detect a first gadget and contents located at a second valid address within the preserved contents to detect a second gadget, the first valid address and the second valid address being located within a portion of a region of memory allocated for the application, wherein the first gadget comprises a first sequence of a first number of instructions less than a predetermined number of instructions followed by a return instruction, and the second gadget comprises a second sequence of a second number of instructions less than the predetermined number of instructions followed by a return instruction;assigning a first weight to the first gadget based on the first number of instructions and a second weight to the second gadget based on the second number of instructions, wherein the first weight is different than the second weight; anddetermining that a return-oriented programming (ROP) exploit is present within the portion of the region of allocated memory within the preserved contents based on at least whether a combination of at least the first weight and the second weight exceeds a predetermined weight threshold.
  • 2. The computerized method of claim 1, wherein the first gadget includes (1) a sequence of one or more computer instructions other than a return instruction and (2) the return instruction following the sequence of one or more computer instructions, where a number of instructions forming the sequence of one or more computer instructions is less than a predefined threshold.
  • 3. The computerized method of claim 2, wherein the function call is a system call.
  • 4. The computerized method of claim 2, wherein the function call is an application programming interface (API) call.
  • 5. The computerized method of claim 2, wherein the first gadget includes a first sequence of computer instructions and the second gadget includes a second sequence of computer instructions.
  • 6. The computerized method of claim 2, further comprising: determining whether any valid addresses are present within the portion of the region of allocated memory.
  • 7. The computerized method of claim 2, wherein a valid address is an address in memory of a software component loaded by the application.
  • 8. The computerized method of claim 7, wherein the software component loaded by the application is a dynamically-loaded library (DLL).
  • 9. The computerized method of claim 1, wherein the content of the first gadget is a length of the sequence of one or more computer instructions preceding the return instruction.
  • 10. The computerized method of claim 1, wherein the first gadget includes at least one instruction but less than a threshold number of instructions preceding the return instruction.
  • 11. The computerized method of claim 1, wherein the second gadget includes only Rap the return instruction.
  • 12. The computerized method of claim 2, further comprising: prior to detecting the function call by the application, detecting a stack discrepancy.
  • 13. The computerized method of claim 12, wherein the detection of the stack discrepancy is accomplished by analyzing a Thread Information Block of the application.
  • 14. The computerized method of claim 2, further comprising: dynamically configuring a virtual machine with a software image representing a current operating state of a targeted client device, the software image representing content and structure of a storage volume for the targeted client device at a time of configuring the virtual machine; anddetecting the function call, responsive to detecting the function call, analyzing the contents located at one or more of the valid addresses, and determining that the ROP exploit is present within the portion of the region of allocated memory within the virtual machine.
  • 15. The computerized method of claim 14, wherein the virtual machine includes a module, the application and an operating system of the targeted client device.
  • 16. The computerized method of claim 15, wherein the module queries one or more of the application or the operating system to determine what memory has been allocated to the application.
  • 17. A system comprising: one or more processors;a storage module communicatively coupled to the one or more processors, the storage module includes logic to:detect a function call by an application;responsive to detecting the function call, capture and preserve contents in a range of a stack of memory addresses surrounding a current stack pointer;analyze contents located at a first valid address within the preserved contents to detect a first gadget and contents located at a second valid address within the preserved contents to detect a second gadget, the first valid address and the second valid address being located within a portion of a region of memory allocated for the application, wherein the first gadget comprises a first sequence of a first number of instructions less than a predetermined number of instructions followed by a return instruction, and the second gadget comprises a second sequence of a second number of instructions less than the predetermined number of instructions followed by a return instruction;assign a first weight to the first gadget based on the first number of instructions and a second weight to the second gadget based on the second number of instructions, wherein the first weight is different than the second weight; anddetermine that a return-oriented programming (ROP) exploit is present within the portion of the region of allocated memory within the preserved contents based on at least whether a combination of at least the first weight and the second weight exceeds a predetermined weight threshold.
  • 18. The system of claim 17, wherein the first gadget includes (1) a sequence of one or more computer instructions other than a return instruction and (2) the return instruction following the sequence of one or more computer instructions, where a number of instructions forming the sequence of one or more computer instructions is less than a predefined threshold.
  • 19. The system of claim 18, wherein the function call is a system call.
  • 20. The system of claim 18, wherein the function call is an application programming interface (API) call.
  • 21. The system of claim 18, wherein a valid address is an address in memory of a software component loaded by the application.
  • 22. The system of claim 21, wherein the software component loaded by the application is a dynamically-loaded library (DLL).
  • 23. The system of claim 18, wherein presence of the ROP exploit is based on a combined weight of all detected gadgets present within the portion of the region of allocated memory.
  • 24. The computerized method of claim 1, wherein the preserved contents includes a copy of the range of the stack of memory addresses surrounding the current stack pointer when the function call is detected.
  • 25. The system of claim 17, wherein the preserved contents includes a copy of the range of the stack of memory addresses surrounding the current stack pointer when the function call is detected.
  • 26. The computerized method of claim 1, wherein the first gadget includes (1) a sequence of one or more computer instructions other than a return instruction and (2) a return instruction following the sequence of one or more computer instructions, where a number of instructions forming the sequence of one or more computer instructions is less than a predefined threshold, and the second gadget includes only a return instruction.
  • 27. The system of claim 17, wherein the first gadget includes (1) a sequence of one or more computer instructions other than a return instruction and (2) a return instruction following the sequence of one or more computer instructions, where a number of instructions forming the sequence of one or more computer instructions is less than a predefined threshold, and the second gadget includes only a return instruction.
  • 28. The method of claim 1, wherein determining the ROP exploit is present is based on at least a combination of the first weight, the second weight and weights of one or more additional gadgets, each detected at valid addresses located within the portion of the region of memory allocated for the application within the preserved contents.
  • 29. The system of claim 18, wherein determining the ROP exploit is present is based on at least a combination of the first weight, the second weight and weights of one or more additional gadgets, each detected at valid addresses located within the portion of the region of memory allocated for the application within the preserved contents.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority on U.S. Provisional Application No. 62/009,128, filed Jun. 6, 2014, the entire contents of which are incorporated by reference herein.

US Referenced Citations (506)
Number Name Date Kind
4292580 Ott et al. Sep 1981 A
5175732 Hendel et al. Dec 1992 A
5440723 Arnold et al. Aug 1995 A
5490249 Miller Feb 1996 A
5657473 Killean et al. Aug 1997 A
5842002 Schnurer et al. Nov 1998 A
5978917 Chi Nov 1999 A
6088803 Tso et al. Jul 2000 A
6094677 Capek et al. Jul 2000 A
6108799 Boulay et al. Aug 2000 A
6118382 Hibbs et al. Sep 2000 A
6269330 Cidon et al. Jul 2001 B1
6272641 Ji Aug 2001 B1
6279113 Vaidya Aug 2001 B1
6298445 Shostack et al. Oct 2001 B1
6357008 Nachenberg Mar 2002 B1
6417774 Hibbs et al. Jul 2002 B1
6424627 Sorhaug et al. Jul 2002 B1
6442696 Wray et al. Aug 2002 B1
6484315 Ziese Nov 2002 B1
6487666 Shanklin et al. Nov 2002 B1
6493756 O'Brien et al. Dec 2002 B1
6550012 Villa et al. Apr 2003 B1
6700497 Hibbs et al. Mar 2004 B2
6775657 Baker Aug 2004 B1
6831893 Ben Nun et al. Dec 2004 B1
6832367 Choi et al. Dec 2004 B1
6895550 Kanchirayappa et al. May 2005 B2
6898632 Gordy et al. May 2005 B2
6907396 Muttik et al. Jun 2005 B1
6941348 Petry et al. Sep 2005 B2
6971097 Wallman Nov 2005 B1
6981279 Arnold et al. Dec 2005 B1
6995665 Appelt et al. Feb 2006 B2
7007107 Ivchenko et al. Feb 2006 B1
7028179 Anderson et al. Apr 2006 B2
7043757 Hoefelmeyer et al. May 2006 B2
7069316 Gryaznov Jun 2006 B1
7080407 Zhao et al. Jul 2006 B1
7080408 Pak et al. Jul 2006 B1
7093002 Wolff et al. Aug 2006 B2
7093239 van der Made Aug 2006 B1
7096498 Judge Aug 2006 B2
7100201 Izatt Aug 2006 B2
7107617 Hursey et al. Sep 2006 B2
7159149 Spiegel et al. Jan 2007 B2
7213260 Judge May 2007 B2
7231667 Jordan Jun 2007 B2
7240364 Branscomb et al. Jul 2007 B1
7240368 Roesch et al. Jul 2007 B1
7243371 Kasper et al. Jul 2007 B1
7249175 Donaldson Jul 2007 B1
7287278 Liang Oct 2007 B2
7308716 Danford et al. Dec 2007 B2
7328453 Merkle, Jr. et al. Feb 2008 B2
7346486 Ivancic et al. Mar 2008 B2
7356736 Natvig Apr 2008 B2
7386888 Liang et al. Jun 2008 B2
7392542 Bucher Jun 2008 B2
7418729 Szor Aug 2008 B2
7428300 Drew et al. Sep 2008 B1
7441272 Durham et al. Oct 2008 B2
7448084 Apap et al. Nov 2008 B1
7458098 Judge et al. Nov 2008 B2
7464404 Carpenter et al. Dec 2008 B2
7464407 Nakae et al. Dec 2008 B2
7467408 O'Toole, Jr. Dec 2008 B1
7478428 Thomlinson Jan 2009 B1
7480773 Reed Jan 2009 B1
7487543 Arnold et al. Feb 2009 B2
7496960 Chen et al. Feb 2009 B1
7496961 Zimmer et al. Feb 2009 B2
7519990 Xie Apr 2009 B1
7523493 Liang et al. Apr 2009 B2
7530104 Thrower et al. May 2009 B1
7540025 Tzadikario May 2009 B2
7565550 Liang et al. Jul 2009 B2
7568233 Szor et al. Jul 2009 B1
7584455 Ball Sep 2009 B2
7603715 Costa et al. Oct 2009 B2
7607171 Marsden et al. Oct 2009 B1
7639714 Stolfo et al. Dec 2009 B2
7644441 Schmid et al. Jan 2010 B2
7657419 van der Made Feb 2010 B2
7676841 Sobchuk et al. Mar 2010 B2
7698548 Shelest et al. Apr 2010 B2
7707633 Danford et al. Apr 2010 B2
7712136 Sprosts et al. May 2010 B2
7730011 Deninger et al. Jun 2010 B1
7739740 Nachenberg et al. Jun 2010 B1
7779463 Stolfo et al. Aug 2010 B2
7784097 Stolfo et al. Aug 2010 B1
7832008 Kraemer Nov 2010 B1
7836502 Zhao et al. Nov 2010 B1
7849506 Dansey et al. Dec 2010 B1
7854007 Sprosts et al. Dec 2010 B2
7869073 Oshima Jan 2011 B2
7877803 Enstone et al. Jan 2011 B2
7904959 Sidiroglou et al. Mar 2011 B2
7908660 Bahl Mar 2011 B2
7930738 Petersen Apr 2011 B1
7937761 Benett May 2011 B1
7949849 Lowe et al. May 2011 B2
7996556 Raghavan et al. Aug 2011 B2
7996836 McCorkendale et al. Aug 2011 B1
7996904 Chiueh et al. Aug 2011 B1
7996905 Arnold et al. Aug 2011 B2
8006305 Aziz Aug 2011 B2
8010667 Zhang et al. Aug 2011 B2
8020206 Hubbard et al. Sep 2011 B2
8028338 Schneider et al. Sep 2011 B1
8042184 Batenin Oct 2011 B1
8045094 Teragawa Oct 2011 B2
8045458 Alperovitch et al. Oct 2011 B2
8069484 McMillan et al. Nov 2011 B2
8087086 Lai et al. Dec 2011 B1
8171553 Aziz et al. May 2012 B2
8176049 Deninger et al. May 2012 B2
8176480 Spertus May 2012 B1
8201246 Wu et al. Jun 2012 B1
8204984 Aziz et al. Jun 2012 B1
8214905 Doukhvalov et al. Jul 2012 B1
8220055 Kennedy Jul 2012 B1
8225288 Miller et al. Jul 2012 B2
8225373 Kraemer Jul 2012 B2
8233882 Rogel Jul 2012 B2
8234640 Fitzgerald et al. Jul 2012 B1
8234709 Viljoen et al. Jul 2012 B2
8239944 Nachenberg et al. Aug 2012 B1
8260914 Ranjan Sep 2012 B1
8266091 Gubin et al. Sep 2012 B1
8286251 Eker et al. Oct 2012 B2
8291499 Aziz et al. Oct 2012 B2
8307435 Mann et al. Nov 2012 B1
8307443 Wang et al. Nov 2012 B2
8312545 Tuvell et al. Nov 2012 B2
8321936 Green et al. Nov 2012 B1
8321941 Tuvell et al. Nov 2012 B2
8332571 Edwards, Sr. Dec 2012 B1
8365286 Poston Jan 2013 B2
8365297 Parshin et al. Jan 2013 B1
8370938 Daswani et al. Feb 2013 B1
8370939 Zaitsev et al. Feb 2013 B2
8375444 Aziz et al. Feb 2013 B2
8381299 Stolfo et al. Feb 2013 B2
8402529 Green et al. Mar 2013 B1
8464340 Ahn et al. Jun 2013 B2
8479174 Chiriac Jul 2013 B2
8479276 Vaystikh et al. Jul 2013 B1
8479291 Bodke Jul 2013 B1
8510827 Leake et al. Aug 2013 B1
8510828 Guo et al. Aug 2013 B1
8510842 Amit et al. Aug 2013 B2
8516478 Edwards et al. Aug 2013 B1
8516590 Ranadive et al. Aug 2013 B1
8516593 Aziz Aug 2013 B2
8522348 Chen et al. Aug 2013 B2
8528086 Aziz Sep 2013 B1
8533824 Hutton et al. Sep 2013 B2
8539582 Aziz et al. Sep 2013 B1
8549638 Aziz Oct 2013 B2
8555391 Demir et al. Oct 2013 B1
8561177 Aziz et al. Oct 2013 B1
8566946 Aziz et al. Oct 2013 B1
8584094 Dadhia et al. Nov 2013 B2
8584234 Sobel et al. Nov 2013 B1
8584239 Aziz et al. Nov 2013 B2
8595834 Xie et al. Nov 2013 B2
8627476 Satish et al. Jan 2014 B1
8635696 Aziz Jan 2014 B1
8682054 Xue et al. Mar 2014 B2
8682812 Ranjan Mar 2014 B1
8689333 Aziz Apr 2014 B2
8695096 Zhang Apr 2014 B1
8713631 Pavlyushchik Apr 2014 B1
8713681 Silberman et al. Apr 2014 B2
8726392 McCorkendale et al. May 2014 B1
8739280 Chess et al. May 2014 B2
8776229 Aziz Jul 2014 B1
8782792 Bodke Jul 2014 B1
8789172 Stolfo et al. Jul 2014 B2
8789178 Kejriwal et al. Jul 2014 B2
8793787 Ismael et al. Jul 2014 B2
8805947 Kuzkin et al. Aug 2014 B1
8806647 Daswani et al. Aug 2014 B1
8832829 Manni et al. Sep 2014 B2
8850570 Ramzan Sep 2014 B1
8850571 Staniford et al. Sep 2014 B2
8881234 Narasimhan et al. Nov 2014 B2
8881282 Aziz et al. Nov 2014 B1
8898788 Aziz et al. Nov 2014 B1
8935779 Manni et al. Jan 2015 B2
8984638 Aziz et al. Mar 2015 B1
8990939 Staniford et al. Mar 2015 B2
8990944 Singh et al. Mar 2015 B1
8997219 Staniford et al. Mar 2015 B2
9009822 Ismael et al. Apr 2015 B1
9009823 Ismael et al. Apr 2015 B1
9027135 Aziz May 2015 B1
9071638 Aziz et al. Jun 2015 B1
9104867 Thioux et al. Aug 2015 B1
9106694 Aziz et al. Aug 2015 B2
9118715 Staniford et al. Aug 2015 B2
20010005889 Albrecht Jun 2001 A1
20010047326 Broadbent et al. Nov 2001 A1
20020018903 Kokubo et al. Feb 2002 A1
20020038430 Edwards et al. Mar 2002 A1
20020091819 Melchione et al. Jul 2002 A1
20020095607 Lin-Hendel Jul 2002 A1
20020116627 Tarbotton et al. Aug 2002 A1
20020144156 Copeland, III Oct 2002 A1
20020162015 Tang Oct 2002 A1
20020166063 Lachman et al. Nov 2002 A1
20020169952 DiSanto et al. Nov 2002 A1
20020184528 Shevenell et al. Dec 2002 A1
20020188887 Largman et al. Dec 2002 A1
20020194490 Halperin et al. Dec 2002 A1
20030074578 Ford et al. Apr 2003 A1
20030084318 Schertz May 2003 A1
20030101381 Mateev et al. May 2003 A1
20030115483 Liang Jun 2003 A1
20030188190 Aaron et al. Oct 2003 A1
20030191957 Hypponen et al. Oct 2003 A1
20030200460 Morota et al. Oct 2003 A1
20030212902 van der Made Nov 2003 A1
20030229801 Kouznetsov et al. Dec 2003 A1
20030237000 Denton et al. Dec 2003 A1
20040003323 Bennett et al. Jan 2004 A1
20040015712 Szor Jan 2004 A1
20040019832 Arnold et al. Jan 2004 A1
20040047356 Bauer Mar 2004 A1
20040083408 Spiegel et al. Apr 2004 A1
20040088581 Brawn et al. May 2004 A1
20040093513 Cantrell et al. May 2004 A1
20040111531 Staniford et al. Jun 2004 A1
20040117478 Triulzi et al. Jun 2004 A1
20040117624 Brandt et al. Jun 2004 A1
20040128355 Chao et al. Jul 2004 A1
20040165588 Pandya Aug 2004 A1
20040236963 Danford et al. Nov 2004 A1
20040243349 Greifeneder et al. Dec 2004 A1
20040249911 Alkhatib et al. Dec 2004 A1
20040255161 Cavanaugh Dec 2004 A1
20040268147 Wiederin et al. Dec 2004 A1
20050005159 Oliphant Jan 2005 A1
20050021740 Bar et al. Jan 2005 A1
20050033960 Vialen et al. Feb 2005 A1
20050033989 Poletto et al. Feb 2005 A1
20050050148 Mohammadioun et al. Mar 2005 A1
20050086523 Zimmer et al. Apr 2005 A1
20050091513 Mitomo et al. Apr 2005 A1
20050091533 Omote et al. Apr 2005 A1
20050091652 Ross et al. Apr 2005 A1
20050108562 Khazan et al. May 2005 A1
20050114663 Cornell et al. May 2005 A1
20050125195 Brendel Jun 2005 A1
20050149726 Joshi et al. Jul 2005 A1
20050157662 Bingham et al. Jul 2005 A1
20050183143 Anderholm et al. Aug 2005 A1
20050201297 Peikari Sep 2005 A1
20050210533 Copeland et al. Sep 2005 A1
20050238005 Chen et al. Oct 2005 A1
20050240781 Gassoway Oct 2005 A1
20050262562 Gassoway Nov 2005 A1
20050265331 Stolfo Dec 2005 A1
20050283839 Cowburn Dec 2005 A1
20060010495 Cohen et al. Jan 2006 A1
20060015416 Hoffman et al. Jan 2006 A1
20060015715 Anderson Jan 2006 A1
20060015747 Van de Ven Jan 2006 A1
20060021029 Brickell et al. Jan 2006 A1
20060021054 Costa et al. Jan 2006 A1
20060031476 Mathes et al. Feb 2006 A1
20060047665 Neil Mar 2006 A1
20060070130 Costea et al. Mar 2006 A1
20060075496 Carpenter et al. Apr 2006 A1
20060095968 Portolani et al. May 2006 A1
20060101516 Sudaharan et al. May 2006 A1
20060101517 Banzhof et al. May 2006 A1
20060117385 Mester et al. Jun 2006 A1
20060123477 Raghavan et al. Jun 2006 A1
20060143709 Brooks et al. Jun 2006 A1
20060150249 Gassen et al. Jul 2006 A1
20060161983 Cothrell et al. Jul 2006 A1
20060161987 Levy-Yurista Jul 2006 A1
20060161989 Reshef et al. Jul 2006 A1
20060164199 Gilde et al. Jul 2006 A1
20060173992 Weber et al. Aug 2006 A1
20060179147 Tran et al. Aug 2006 A1
20060184632 Marino et al. Aug 2006 A1
20060191010 Benjamin Aug 2006 A1
20060221956 Narayan et al. Oct 2006 A1
20060236393 Kramer et al. Oct 2006 A1
20060242709 Seinfeld et al. Oct 2006 A1
20060248519 Jaeger et al. Nov 2006 A1
20060248582 Panjwani et al. Nov 2006 A1
20060251104 Koga Nov 2006 A1
20060288417 Bookbinder et al. Dec 2006 A1
20070006288 Mayfield et al. Jan 2007 A1
20070006313 Porras et al. Jan 2007 A1
20070011174 Takaragi et al. Jan 2007 A1
20070016951 Piccard et al. Jan 2007 A1
20070033645 Jones Feb 2007 A1
20070038943 FitzGerald et al. Feb 2007 A1
20070064689 Shin et al. Mar 2007 A1
20070074169 Chess et al. Mar 2007 A1
20070094730 Bhikkaji et al. Apr 2007 A1
20070101435 Konanka et al. May 2007 A1
20070128855 Cho et al. Jun 2007 A1
20070142030 Sinha et al. Jun 2007 A1
20070143827 Nicodemus et al. Jun 2007 A1
20070156895 Vuong Jul 2007 A1
20070157180 Tillmann et al. Jul 2007 A1
20070157306 Elrod et al. Jul 2007 A1
20070168988 Eisner et al. Jul 2007 A1
20070171824 Ruello et al. Jul 2007 A1
20070174915 Gribble et al. Jul 2007 A1
20070192500 Lum Aug 2007 A1
20070192858 Lum Aug 2007 A1
20070198275 Malden et al. Aug 2007 A1
20070208822 Wang et al. Sep 2007 A1
20070220607 Sprosts et al. Sep 2007 A1
20070240218 Tuvell et al. Oct 2007 A1
20070240219 Tuvell et al. Oct 2007 A1
20070240220 Tuvell et al. Oct 2007 A1
20070240222 Tuvell et al. Oct 2007 A1
20070250930 Aziz et al. Oct 2007 A1
20070256132 Oliphant Nov 2007 A2
20070271446 Nakamura Nov 2007 A1
20080005782 Aziz Jan 2008 A1
20080028463 Dagon et al. Jan 2008 A1
20080032556 Schreier Feb 2008 A1
20080040710 Chiriac Feb 2008 A1
20080046781 Childs et al. Feb 2008 A1
20080066179 Liu Mar 2008 A1
20080072326 Danford et al. Mar 2008 A1
20080077793 Tan et al. Mar 2008 A1
20080080518 Hoeflin et al. Apr 2008 A1
20080086720 Lekel Apr 2008 A1
20080098476 Syversen Apr 2008 A1
20080120722 Sima et al. May 2008 A1
20080134178 Fitzgerald et al. Jun 2008 A1
20080134334 Kim et al. Jun 2008 A1
20080141376 Clausen et al. Jun 2008 A1
20080181227 Todd Jul 2008 A1
20080184373 Traut et al. Jul 2008 A1
20080189787 Arnold et al. Aug 2008 A1
20080201778 Guo et al. Aug 2008 A1
20080209557 Herley et al. Aug 2008 A1
20080215742 Goldszmidt et al. Sep 2008 A1
20080222729 Chen et al. Sep 2008 A1
20080263665 Ma et al. Oct 2008 A1
20080295172 Bohacek Nov 2008 A1
20080301810 Lehane et al. Dec 2008 A1
20080307524 Singh et al. Dec 2008 A1
20080313738 Enderby Dec 2008 A1
20080320594 Jiang Dec 2008 A1
20090003317 Kasralikar et al. Jan 2009 A1
20090007100 Field et al. Jan 2009 A1
20090013408 Schipka Jan 2009 A1
20090031423 Liu et al. Jan 2009 A1
20090036111 Danford et al. Feb 2009 A1
20090037835 Goldman Feb 2009 A1
20090044024 Oberheide et al. Feb 2009 A1
20090044274 Budko et al. Feb 2009 A1
20090064332 Porras et al. Mar 2009 A1
20090077666 Chen et al. Mar 2009 A1
20090083369 Marmor Mar 2009 A1
20090083855 Apap et al. Mar 2009 A1
20090089879 Wang et al. Apr 2009 A1
20090094697 Provos et al. Apr 2009 A1
20090113425 Ports et al. Apr 2009 A1
20090125976 Wassermann et al. May 2009 A1
20090126015 Monastyrsky et al. May 2009 A1
20090126016 Sobko et al. May 2009 A1
20090133125 Choi et al. May 2009 A1
20090144823 Lamastra et al. Jun 2009 A1
20090158430 Borders Jun 2009 A1
20090172815 Gu et al. Jul 2009 A1
20090187992 Poston Jul 2009 A1
20090193293 Stolfo et al. Jul 2009 A1
20090199296 Xie et al. Aug 2009 A1
20090228233 Anderson et al. Sep 2009 A1
20090241187 Troyansky Sep 2009 A1
20090241190 Todd et al. Sep 2009 A1
20090265692 Godefroid et al. Oct 2009 A1
20090271867 Zhang Oct 2009 A1
20090300415 Zhang et al. Dec 2009 A1
20090300761 Park et al. Dec 2009 A1
20090328185 Berg et al. Dec 2009 A1
20090328221 Blumfield et al. Dec 2009 A1
20100005146 Drako et al. Jan 2010 A1
20100011205 McKenna Jan 2010 A1
20100017546 Poo et al. Jan 2010 A1
20100031353 Thomas et al. Feb 2010 A1
20100037314 Perdisci et al. Feb 2010 A1
20100043073 Kuwamura Feb 2010 A1
20100054278 Stolfo et al. Mar 2010 A1
20100058474 Hicks Mar 2010 A1
20100064044 Nonoyama Mar 2010 A1
20100077481 Polyakov et al. Mar 2010 A1
20100083376 Pereira et al. Apr 2010 A1
20100115621 Staniford et al. May 2010 A1
20100132038 Zaitsev May 2010 A1
20100154056 Smith et al. Jun 2010 A1
20100180344 Malyshev et al. Jul 2010 A1
20100192223 Ismael et al. Jul 2010 A1
20100220863 Dupaquis et al. Sep 2010 A1
20100235831 Dittmer Sep 2010 A1
20100251104 Massand Sep 2010 A1
20100281102 Chinta et al. Nov 2010 A1
20100281541 Stolfo et al. Nov 2010 A1
20100281542 Stolfo et al. Nov 2010 A1
20100287260 Peterson et al. Nov 2010 A1
20100299754 Amit et al. Nov 2010 A1
20100306173 Frank Dec 2010 A1
20110004737 Greenebaum Jan 2011 A1
20110025504 Lyon et al. Feb 2011 A1
20110041179 Stahlberg Feb 2011 A1
20110047594 Mahaffey et al. Feb 2011 A1
20110047620 Mahaffey et al. Feb 2011 A1
20110055907 Narasimhan et al. Mar 2011 A1
20110078794 Manni et al. Mar 2011 A1
20110093951 Aziz Apr 2011 A1
20110099620 Stavrou et al. Apr 2011 A1
20110099633 Aziz Apr 2011 A1
20110113231 Kaminsky May 2011 A1
20110145918 Jung et al. Jun 2011 A1
20110145920 Mahaffey et al. Jun 2011 A1
20110145934 Abramovici et al. Jun 2011 A1
20110167493 Song et al. Jul 2011 A1
20110167494 Bowen et al. Jul 2011 A1
20110173460 Ito et al. Jul 2011 A1
20110219449 St. Neitzel et al. Sep 2011 A1
20110219450 McDougal et al. Sep 2011 A1
20110225624 Sawhney et al. Sep 2011 A1
20110225655 Niemel et al. Sep 2011 A1
20110247072 Staniford et al. Oct 2011 A1
20110265182 Peinado et al. Oct 2011 A1
20110289582 Kejriwal et al. Nov 2011 A1
20110302587 Nishikawa et al. Dec 2011 A1
20110307954 Melnik et al. Dec 2011 A1
20110307955 Kaplan et al. Dec 2011 A1
20110307956 Yermakov et al. Dec 2011 A1
20110314546 Aziz et al. Dec 2011 A1
20120023593 Puder et al. Jan 2012 A1
20120054869 Yen et al. Mar 2012 A1
20120066698 Yanoo Mar 2012 A1
20120079596 Thomas et al. Mar 2012 A1
20120084859 Radinsky et al. Apr 2012 A1
20120110667 Zubrilin et al. May 2012 A1
20120117652 Manni et al. May 2012 A1
20120121154 Xue et al. May 2012 A1
20120124426 Maybee et al. May 2012 A1
20120174186 Aziz et al. Jul 2012 A1
20120174196 Bhogavilli et al. Jul 2012 A1
20120174218 McCoy et al. Jul 2012 A1
20120198279 Schroeder Aug 2012 A1
20120210423 Friedrichs et al. Aug 2012 A1
20120222121 Staniford et al. Aug 2012 A1
20120255015 Sahita et al. Oct 2012 A1
20120255017 Sallam Oct 2012 A1
20120260342 Dube et al. Oct 2012 A1
20120266244 Green et al. Oct 2012 A1
20120278886 Luna Nov 2012 A1
20120297489 Dequevy Nov 2012 A1
20120330801 McDougal et al. Dec 2012 A1
20130014259 Gribble et al. Jan 2013 A1
20130036472 Aziz Feb 2013 A1
20130047257 Aziz Feb 2013 A1
20130074185 McDougal et al. Mar 2013 A1
20130086684 Mohler Apr 2013 A1
20130097699 Balupari et al. Apr 2013 A1
20130097706 Titonis et al. Apr 2013 A1
20130111587 Goel et al. May 2013 A1
20130117852 Stute May 2013 A1
20130117855 Kim et al. May 2013 A1
20130139264 Brinkley et al. May 2013 A1
20130160125 Likhachev et al. Jun 2013 A1
20130160127 Jeong et al. Jun 2013 A1
20130160130 Mendelev et al. Jun 2013 A1
20130160131 Madou et al. Jun 2013 A1
20130167236 Sick Jun 2013 A1
20130174214 Duncan Jul 2013 A1
20130185789 Hagiwara et al. Jul 2013 A1
20130185795 Winn et al. Jul 2013 A1
20130185798 Saunders et al. Jul 2013 A1
20130191915 Antonakakis et al. Jul 2013 A1
20130196649 Paddon et al. Aug 2013 A1
20130227691 Aziz et al. Aug 2013 A1
20130246370 Bartram et al. Sep 2013 A1
20130263260 Mahaffey et al. Oct 2013 A1
20130291109 Staniford et al. Oct 2013 A1
20130298243 Kumar et al. Nov 2013 A1
20140053260 Gupta et al. Feb 2014 A1
20140053261 Gupta et al. Feb 2014 A1
20140130158 Wang et al. May 2014 A1
20140137180 Lukacs et al. May 2014 A1
20140169762 Ryu Jun 2014 A1
20140179360 Jackson et al. Jun 2014 A1
20140328204 Klotsche et al. Nov 2014 A1
20140337836 Ismael Nov 2014 A1
20140344932 Polychronakis Nov 2014 A1
20140351935 Shao et al. Nov 2014 A1
20150096025 Ismael Apr 2015 A1
20150128266 Tosa May 2015 A1
Foreign Referenced Citations (11)
Number Date Country
2439806 Jan 2008 GB
2490431 Oct 2012 GB
WO-0206928 Jan 2002 WO
WO-0223805 Mar 2002 WO
WO-2007-117636 Oct 2007 WO
WO-2008041950 Apr 2008 WO
WO-2011084431 Jul 2011 WO
2011112348 Sep 2011 WO
2012075336 Jun 2012 WO
WO-2012145066 Oct 2012 WO
2013067505 May 2013 WO
Non-Patent Literature Citations (75)
Entry
IEEE Xplore Digital Library Sear Results for “detection of unknown computer worms”. Http//ieeexplore.ieee.org/searchresult.jsp?SortField=Score&SortOrder=desc&ResultC . . . , (Accessed on Aug. 28, 2009).
AltaVista Advanced Search Results. “Event Orchestrator”. Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orchesrator . . . , (Accessed on Sep. 3, 2009).
AltaVista Advanced Search Results. “attack vector identifier”. Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orchestrator . . . , (Accessed on Sep. 15, 2009).
Cisco, Configuring the Catalyst Switched Port Analyzer (SPAN) (“Cisco”), (1992-2003).
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”).
Excerpt regarding First Printing Date for Merike Kaeo, Designing Network Security (“Kaeo”), (2005).
The Sniffers's Guide to Raw Traffic available at: yuba.stanford.edu/˜casado/pcap/section1.html, (Jan.6, 2014).
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987.
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003).
“Packet”, Microsoft Computer Dictionary, Microsoft Press, (Mar. 2002), 1 page.
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=990073, (Dec. 7, 2013).
Abdullah, at al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108.
Adetoye, Adedayo , at al., “Network Intrusion Detection & Response System”, (“Adetoye ”), (Sep. 2003).
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006.
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184.
Bayer, at al., “Dynamic Analysis of Malicious Code”, J Comput Virol. Springer-Verlag, France., (2006), pp. 67-77.
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003).
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices” International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82.
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5, ELSEVIER, (2008), pp. S112-S120.
Costa, M. , et al., “Vigilante: End-to-End Containment of Internet Worms” SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005).
Crandall, J.R. , et al., “Minos:Control Data Attack Prevention Orthogonal to Memory Model”, 37th International Symposium on Microarchitecture, Portland, Oregon, (Dec. 2004).
Deutsch, P. , ““Zlib compressed data format specification version 3.3” RFC 1950, (1996)”.
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007).
Dunlap, George W. et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002).
Filiol, Eric , et al., “Combinatorial Optimisation of Worm Propagation on an Unknown Network”, International Journal of Computer Science 2.2 (2007).
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS OPERATING Systems Review, vol. 42 Issue 3, pp. 21-28.
Hjelmvik, Erik , “Passive Network Security Analysis with NetworkMiner”, (IN)SECURE, Issue 18, (Oct. 2008), pp. 1-100.
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003).
Kim, H. , et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286.
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”).
Krasnyansky, Max , et al., Universal TUN/TAP driver, available at https://www.kernel.org/doc/Documentation/networking/tuntap.txt (2002) (“Krasnyansky”).
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003).
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages.
Liljenstam, Michael , et al., “Simulating Realistic Network Traffic for Worm Warning System Design and Testing”, Institute for Security Technology studies, Dartmouth College, (“Liljenstam”), (Oct. 27, 2003).
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001).
Margolis, P.E. , “Random House Webster's ‘Computer & Internet Dictionary 3rd Edition’”, ISBN 0375703519, (Dec. 1998).
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910.
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.”” Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34.
Natvig, Kurt , “SandboxII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002).
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005).
Newsome, J. , et al., “Polygraph: Automatically Generating Signatures for Polymorphic Worms” In Proceedings of the IEEE Symposium on Security and Privacy, (May 2005).
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302.
Peter M. Chen, and Brian D. Noble , “When Virtual Is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”).
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25.
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004).
Spitzner, Lance , “Honeypots: Tracking Hackers”, (“Spizner”), (Sep. 17, 2002).
Thomas H. Ptacek, and Timothy N. Newsham, “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998).
Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld Issue 27. (“Venezia”), (Jul. 14, 2003).
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages.
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9.
Adobe Systems Incorporated, “PDF 32000-1:2008, Document management—Portable document format—Part1:PDF 1.7”, First Edition, Jul. 1, 2008, 756 pages.
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126.
Baldi, Mario; Risso, Fulvio; “A Framework for Rapid Development and Portable Execution of Packet-Handling Applications”, 5th IEEE International Symposium Processing and Information Technology, Dec. 21, 2005, pp. 233-238.
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012).
Clark, John, Sylvian Leblanc,and Scott Knight. “Risks associated with usb hardware trojan devices used by insiders.” Systems Conference (SysCon), 2011 IEEE International. IEEE, 2011.
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010.
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010.
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011.
Gibler, Clint, et al. AndroidLeaks: automatically detecting potential privacy leaks in android applications on a large scale. Springer Berlin Heidelberg, 2012.
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:https://web.archive.org/web/20121022220617/http://www.informationweek- .com/microsofts-honeymonkeys-show-patching-wi/167600716 [retrieved on Sep. 29, 2014].
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase © CMU, Carnegie Mellon University, 2007.
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University.
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011.
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6.
Leading Colleges Select FireEye to Stop Malware-Related Data Breaches, FireEye Inc., 2009.
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711.
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011.
Lok Kwong et al: “DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis”, Aug. 10, 2012, XP055158513, Retrieved from the Internet: URL:https://www.usenix.org/system/files/conference/usenixsecurity12/sec12- -final107.pdf [retrieved on Dec. 15, 2014].
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg.
Oberheide et al., CloudAV.sub.—N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA.
U.S. Pat. No. 8,171,553 filed Apr. 20, 2006, Inter Parties Review Decision dated Jul. 10, 2015.
U.S. Pat. No. 8,291,499 filed Mar. 16, 2012, Inter Parties Review Decision dated Jul. 10, 2015.
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350.
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1.
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82.
Provisional Applications (1)
Number Date Country
62009128 Jun 2014 US