The present invention relates to colored and white light-emitting diode (LED) modules, among other things. In particular, the present invention relates to high-power LED modules that are substantially reusable and configured for tool-less field replacement of one or more components, such as an LED chip.
Conventional filament bulbs are becoming increasingly obsolete, at least within some lighting applications. Nowadays, the efficiency of filament bulbs is relatively low, in the order of about 15 lumens per Watt. High intensity discharge (HID) bulbs offer better efficiencies at roughly 75-80 lumens per Watt as a system. Yet these conventional light sources may operate at high temperatures, may have limited lifespan, and may require high starting voltages, which can in turn present safety concerns. Moreover, both of these conventional light sources emit light spherically, meaning light is distributed in all directions. Although this characteristic may be advantageous in some environments, it may be inefficient in other environments where a spherical light distribution is unnecessary or even undesirable.
Due to recent advancements in the field of semiconductor technology, lamps utilizing light-emitting diodes (LEDs) now offer advantages over conventional light sources. Such advantages include, for example, enhanced diversity of luminescent color, luminance, durability, and power consumption. Further, LEDs are being used in an increasing number of applications, such as in vehicle instrument panels, televisions, and mobile telephones. LEDs may also be used in outdoor applications, such as in traffic lights and external vehicle lights. LEDs intended for outdoor applications are often designed to emit Type IV and Type V lighting distribution patterns, even though outdoor LEDs may generate all types of lighting distribution patterns.
Type IV lighting distributions are used near a side of an area-to-be-lit because of their characteristic asymmetrical distributions with respect to a center of a light fixture. Such distributions provide even candlepower at the perimeter of an oval-like pattern on a surface-to-be-lit, and the oval-like pattern projected onto the surface-to-be-lit has a center that is offset from the light fixture. Moreover, the shape and skew of the oval-like pattern may be altered to achieve other types of distribution patterns. By contrast, Type V lighting typically casts a generally-circular distribution of candlepower onto a surface-to-be-lit, which is often a horizontal surface such as, for example, a parking lot or a roadway. Because the generally-circular distribution is essentially the same at all lateral angles around the luminary, a light causing a Type V distribution is usually placed near the center of an area-to-be-lit.
To generate sufficient luminosity, many LED-based lamps must use clusters of individual LEDs housed together as a single lamp module, which can be costly. Recently, the lighting industry has started using high-power, single-chip LED lamp modules, although such lamp modules have lagged in generating sufficient luminance. Moreover, single-chip LEDs require a relatively high amount of electricity and generate a significant amount of heat as a byproduct of operation. Dissipating this heat can present safety concerns. A still further drawback to single-chip LED lamp modules is the cost and inconvenience of replacing an entire lamp module each time a single-chip LED approaches the end of its useful life, as is typical in the field. In some instances, the useful life of an LED may be said to expire when the LED can only produce 70% of the lumens at which the LED is initially rated (L70). Yet another disadvantage is that most if not all existing LED modules require tooling for assembly and disassembly such that the LED chip may not be replaced in the field.
There is currently no apparatus, system, or method that teaches a reusable high power LED module that generates sufficient luminance and dissipates heat sufficiently. The present invention satisfies these and other needs.
The present disclosure concerns a largely-reusable high power LED module that can be utilized as a light source in a variety of types of light fixtures. The LED module may be used, for example and without limitation, with LED area lights, LED Wallpacks, LED Highbay lights, and the like. Even though the LED module can be replaced quickly in the field, the LED module is capable of routinely generating over 6,000 lumens of light.
In general, the LED module may include a platform, a semiconductor LED chip, a first collar, and a second collar. More specifically, the platfotin may have an open end and a closed end. The LED chip may be affixed to the closed end of the platform such that a light-emitting surface of the LED chip faces the open end of the platform. Further, the first collar may have a rim disposed near a top edge of the first collar and a first set of threads disposed near a bottom portion of the first collar. The rim may be provided for attaching the LED module to another object, surface, heat sink, or other location where the LED module will be stationed. The first set of threads may be engageable with a second set of threads on the second collar.
To assemble the LED module, the platform may be positioned within the first collar. Thereafter, the second collar may be secured to the first collar such that the platform is retained largely within the first collar. To secure the second collar to the first collar, the second set of threads of the second collar may be engaged with the first set of threads of the first collar. To supply electricity to the LED chip, a power cord may be provided that extends through both a hollow boss in the platform and a slot in the first collar.
In one embodiment, when the useful life of the LED chip of the LED module expires, one may simply unthread the second collar from the first collar to remove the platform with the attached LED chip. A new LED chip attached to a different platform may be inserted into the first collar and retained by threading the second collar onto the first collar. Reusing the collars and any attached lamp fixture cuts down on replacement costs. By leaving the first collar attached to the location where the light is stationed and by merely having to unthread the first and second collars to replace the LED chip, one may replace the LED chip in the field without needing tools.
In some embodiments, it may be advantageous to use the LED module in lamp fixtures that are designed to distribute the light emitted from the LED module in certain patterns. Once the inner collar of the LED module is affixed to such lamp fixtures, the LED chip and the platform may likewise be replaced without tools in the field. Besides using different lamp fixtures, the distribution of light from the LED module may be further controlled by varying optical lenses, drive currents, color temperatures, LED bin codes, and the like.
These and other aspects, features, and advantages of the present invention will become more readily apparent from the attached drawings and the detailed description of the preferred embodiments, which follow.
The preferred embodiments of the invention will be described in conjunction with the appended drawings provided to illustrate and not to the limit the invention, where like designations denote like elements, and in which:
Replacing an entire LED module, as is typical in the lighting industry, is not only costly, but wasteful too.
In other embodiments, the present disclosure contemplates that just the LED chip 108, the cord 110, and the power plug 112 may be replaced. In those embodiments, the platform 102 may be reused along with the rest of the LED module 100.
With reference to
In a preferred embodiment, the inner collar 104 may be generally circular with an internal diameter of about 123-125 millimeters. The external diameter of the inner collar 104, including the rim 120, may be 149 millimeters, while the thickness of the rim 120 may be just over 2 millimeters. The height of the inner collar 104 in the preferred embodiment may be about 34 millimeters. And further, the width of the open-ended slot 124 may be about 16 millimeters, with the open-ended slot 124 extending substantially up to the top portion 122 of the inner collar 104 where the rim 120 may be disposed. Also, the external threads 126 may be occupy approximately 20 millimeters near the bottom portion 128 of the inner collar 104. As with several of the other components of the LED module 100, the platform may be formed of die-cast aluminum and have a natural anodized satin finish.
The platform 102 of the LED module 100 is shown in a perspective view in
In a preferred embodiment, the platform 102 may be formed from die-cast aluminum and have a natural anodized satin finish. Also, the platform may be about 35 millimeters high and 121-122 millimeters in external diameter. The hollow boss 140 may be about 15 millimeters in external diameter and about 11 millimeters in internal diameter, with the hollow boss 140 being offset just a few millimeters below the top surface 146 of the platform 102. Additionally, the thickness of material between the surface 142 for receiving the LED chip 108 and the top surface 146 may be about 8 millimeters.
One skilled in the art will recognize that many types and brands of LED chips may be used with the LED module 100.
A photometric testing report of the LED module 100 with the PhlatLight® LED package is shown below:
Integrating sphere: Labsphere LMS-760
AC power supply: Extech 6610
Drive condition: 6A
Testing time: 2 seconds
The testing report shows that the LED module 100 is capable of routinely generating over 6,000 lumens.
Electrical testing reports of the LED module 100 with the PhlatLight® LED package is shown below as TEST Driver 1-4 and in
Chroma AC source 61503
Testing time: 30 seconds
An embodiment of the LED module 100 made in accordance with the present disclosure utilizes a cross-platform design for use in interior or exterior fixtures requiring high lumen output, high efficiency and long life. A single LED, such as the single Big Chip™ LED, can power the LED module 100 to eliminate multi-source shadowing, and provide ultra-bright output with fewer failure points and higher reliability. Further, as described herein, the LED module 100 is designed for easy replacement in the field without tools, and is ideal for high bay, security and/or area lighting applications. Some of the features and benefits of this embodiment includes, but are not limited to, the production of up to 6,500 lumens, with a performance of a 175 W HID lamp. The field replaceable module and power supply can generate over 100 lumens per watt at 3.15 A. The LED module 100 works with a variety of optics and has a quick connect module power plug, durable aluminum housing with a locking ring, and a 50,000 plus hour LED lifetime. The preferred embodiment also uses built-in die-cast aluminum heat sinks. There are numerous applications for this embodiment, including, but not limited to, working with a wide variety of reference designs, such as outdoor areas, parking lots, canopies, high bay, wall pack, pendant, and high-output decorative pendant lights.
The product performance for this embodiment is shown below:
Referring now to
In a preferred embodiment, the outer collar 106 may be about 22 millimeters high and have an external diameter of about 152 millimeters. The outer collar 106 may also be formed from die-cast aluminum and have a natural anodized satin finish. Additionally, the internal threads 170 may extend about 12 millimeters downward from a top 176 of the outer collar 106. In general, the internal diameter of the outer collar 106 may be about 132 millimeters.
To assemble the LED module 100, the replaceable unit 114 may next be slid into the inner collar 104. Specifically, the hollow boss 140 with the cord 110 and power plug 112 protruding may slide into the open-ended slot 124 of the inner collar 104. Once positioned, the hollow boss 140 may slide up to or almost up to the rim 120 of the inner collar 104.
Before retaining the replaceable unit 114 within the inner collar 104 via the outer collar 106, a washer 192 and a shim 194 may be located within the platform 102 and above the twist-lock studs 148. The washer 192 and the shim 194 may be helpful when securing an attachment of a larger lamp fixture to the LED module 100. The washer 192 and the shim 194 may help distribute load, may provide a level surface, or may provide a better fit, for example. In one embodiment, the washer 192 may be a rotor clip wave washer, which may act as a spring between the shim 194 and the inner collar 104. Further, a second shim 196 may be positioned within the recessed area 150 of the outer collar 104. The second shim 196, which may sit between a lower rim 198 of the outer collar 106 and the bottom portion 128 of the inner collar 104, may serve several purposes. For example, the second shim 196 may help distribute any load between the lower rim 198 and the bottom portion 128. The second shim 196 may also serve as a wear pad, a spacer, a locking device, or a vibration-dampening device between the lower rim 198 and the bottom portion 128 of the inner collar 104.
Once the washer 192 and shims 194, 196 are in place, the outer collar 106 may be threaded onto the inner collar 104. That is, the internal threads 170 of the outer collar 106 may engage with the external threads 126 of the inner collar 104. A person assembling the LED module 100 may use the ribs 172 of the outer collar 106 and the twist-lock studs 148 of the inner collar 104 to torque the outer collar 106 onto the inner collar 104. As the outer collar 106 is threaded onto the inner collar 104, the top 176 of the outer collar 106 may force the hollow boss 140 up into the open-ended slot 124 of the inner collar 104. The hollow boss 140 may be rigid such that one does not have to worry about compressing or kinking electrical wires within the cord 110 as the top 176 of the outer collar 106 forces the replaceable unit 114 up into the inner collar 104. As the outer collar 106 is secured around the inner collar 104, the lower rim 198 of the outer collar 106 and the bottom portion 128 of the inner collar 104 may come into contact with the second shim 196 disposed within the recessed area 150 of the outer collar 106.
Still another difference is that a second washer 214 may be used instead of the second shim 196. In applications where the LED module 100 may experience a considerable amount of vibration, a washer—and in particular a wave washer—may be particularly helpful in dampening vibrations between the bottom portion 128 of the inner collar 104 and the lower rim 198 of the outer collar 106.
A section view of an assembled LED module 100 is shown in
As can be understood from the aforementioned description and corresponding figures, the procedure for replacing the unit 114 when the LED chip 108 reaches its useable life is rather simple. Namely, the outer collar 106 may be unscrewed from the inner collar 104, and the unit 114 may be removed from within the inner collar 104. The inner collar 104 may remain affixed to some other base object, surface, heat sink, or lamp module as a new unit 114 is positioned within the inner collar 104 and retained by the same outer collar 106. Perhaps more importantly, the LED module 100 is energy efficient, with the capability of producing over 100 lumens per Watt at a 3.15 amp (A) drive current. The LED module 100, even with only one LED light source, can also generate high output, that is, up to 6,500 lumens at a correlated color temperature of 6,500 Kelvin (K).
While the LED module 100 has been described in some detail, the LED module 100 may in some embodiments be used as a constituent of lamp modules that emit light in particular distributions.
In any event, the area light 250 may generally include a support member 252, a housing 254, a lamp hood 256, a lens 258, and an entry door 260. The support member 252 may uphold the housing 254, which may in turn contain the LED module 100, the lamp hood 256, and the lens 258. In some embodiments, the support member 252 and the housing 254 may be formed from die-cast aluminum. The housing 254 may be accessible via the entry door 260, which may be hingedly attached to the housing 254. In one embodiment, opening and closing the entry door 260 may not require any tools. Magnets, for example, may be disposed along the housing 254 and the entry door 260 such that one may open the entry door 260 merely be applying a counteracting force.
As shown in
Yet another feature of the area lamp 250 is thermal radiation fins 272 acting as a heat sink, which may be disposed along the housing 254. The thermal radiation fins 272 help dissipate heat from the LED chip 108 packaged within the housing 254. Since the thermal radiation fins 272 are proximal to the LED chip 108 once the area lamp 250 is assembled, the fins both increase the surface area through which heat may radiate away from the area lamp 250 and provide channels through which heat may be carried away from the LED chip 108.
In addition, the lens 258 may attach to the lamp hood 256 with, for example, a clip feature, fasteners, or the like such that the lens 258 is easily replaceable in the field. In a preferred embodiment, the lens 258 is attached to the lamp hood 256 such that the lens 258 may be removed by hand, without any tooling. The lens 258 may in one embodiment be a precision-molded optical acrylic lens. Such a lens accurately controls lighting distribution and limits glare. What is more, the lamp hood 256 may accept a variety of optical lenses. This capability allows the LED module 100 and the area lamp 250 to be used for variety of lighting platforms. One skilled in the art will recognize that changing the drive current and/or the optical lens may help achieve a variety of lighting distributions and lumen outputs.
It is contemplated that in some embodiments, all of the components shown in
As can be seen in the cross-sectional view of
Though not shown, the area lamp 250 may be equipped with an LED driver that accepts inputs that range, at least in some embodiments, from 120 volts (V) through 277 V and 50 hertz (HZ) through 60 HZ. The area lamp 250 has proven to be greater than 90% efficient, produces a max luminous flux of 6,000-6,500 lumens at a 6.3 A drive current, has a color rendering index of greater than 70, and has a correlated color temperature of 4,500 K.
Further like the area lamp 250, the lamp fixture 300 may include thermal radiation fins 272, which act as a heat sink for helping to dissipate heat from the LED chip 108. The lamp fixture may further comprise a lamp hood 304 as a means of directing the distribution of light from the LED module 100. In a preferred embodiment, the lamp fixture 300 may be about 381 millimeters tall, while the external diameter of the lamp hood 304 may be about 432 millimeters.
Now referring to
It will be understood that the embodiments of the present invention which have been described are illustrative of some of the applications of the principles of the present invention. Numerous modifications may be made by those skilled in the art without departing from the true spirit and scope of the invention
This application claims the benefit of U.S. Provisional Application No. 61/486,019, filed May 13, 2011.
Number | Date | Country | |
---|---|---|---|
61486019 | May 2011 | US |