Reusable surgical port with disposable seal assembly

Information

  • Patent Grant
  • 12310620
  • Patent Number
    12,310,620
  • Date Filed
    Monday, November 28, 2022
    2 years ago
  • Date Issued
    Tuesday, May 27, 2025
    4 months ago
Abstract
A surgical port includes a shell and a seal assembly. The shell has a housing and a cannula that extends from the housing. The housing has a sidewall defining a window therethrough. The seal assembly includes one or more seals. The seal assembly is selectively receivable into the housing through the window of the housing of the shell.
Description
TECHNICAL FIELD

This disclosure relates generally to surgical instruments, and in particular, to surgical ports with reusable and/or disposable components for use during a minimally invasive surgical procedure such as a robotic surgical procedure.


BACKGROUND

Robotic surgical systems have been used in minimally invasive medical procedures. Some robotic surgical systems include a robot arm having an instrument drive assembly coupled thereto for coupling surgical instruments to the robot arm, such as, for example, a pair of jaw members, electrosurgical forceps, cutting instruments, or any other endoscopic or open surgical devices, and a mount assembly coupled thereto for coupling surgical accessories to the robot arm, such as, for example, a trocar or surgical port, an optical device, or the like.


Prior to or during use of the robotic system, surgical instruments are selected and connected to the instrument drive assembly of each robot arm, where the instrument drive assembly can drive the actuation of an end effector of the surgical instrument. Under certain procedures, a surgical accessory, such as, for example, an optical device or a surgical port may be coupled to the robot arm via the mount assembly of the robot arm. During a procedure, the end effector and/or a portion of the surgical instrument may be inserted through the surgical port, and a small incision or a natural orifice of a patient, to bring the end effector proximate a working site within the body of the patient. Such surgical ports may provide additional stability, and act as a guide channel, for the surgical instrument during insertion and actuation of the end effector.


Given the loads and torques that can be applied during robotic surgery, high strength surgical ports are required to provide additional functionality. Surgical ports made from plastic material may not be sufficiently durable for high torques applied by surgical robot arms, but metallic components are expensive.


SUMMARY

This disclosure is directed to a surgical port system having a shell and a disposable seal assembly that is selectively receivable and/or removable to/from the shell. The shell may be 3D printed. In embodiments, the shell may include titanium. The shell can be configured to be lightweight, yet withstand high loads. The disposable seal assembly, which may be in the form of a puck, can include plastic and/or rubber material designed to seal against the shell and internally to enable access via laparoscopic instruments advanced through the seal assembly and shell. The shell may define a window through which the seal assembly passes. The seal assembly is configured to rotate within, and relative to the shell, for camming along the shell to snap-fit to the shell. With the seal assembly secured to the shell via snap-fit, the seal assembly is sealed against the shell and internally against the instruments passed therethrough. The seal assembly can be removed from the shell and discarded, for instance, after a surgical procedure. With the seal assembly removed, the shell can be sterilized for reprocessing and reuse with another seal assembly.


According to one aspect, this disclosure is directed to a surgical port including a shell and a seal assembly. The shell has a housing and a cannula that extends from the housing. The housing has a sidewall defining a window therethrough. The seal assembly includes one or more seals. The seal assembly is selectively receivable into the housing through the window of the housing of the shell.


In embodiments, the seal assembly may be selectively rotatable relative to the shell to secure the seal assembly to the shell. The seal assembly may be selectively removable from the shell.


In various embodiments, the shell may include reusable material and the seal assembly may include disposable material. The shell may include titanium and the seal assembly may include plastic and/or rubber.


In many embodiments, the seal assembly may include a floating seal and a duckbill seal.


In embodiments, the seal assembly may include a detent and the shell may define a detent slot that is positioned to receive the detent for securing the seal assembly to the shell.


In various embodiments, the seal assembly may support a gasket to seal the seal assembly within the shell.


In some embodiments, the seal assembly may include a seal housing having a first geometry. The window may have a second geometry. The first geometry may be keyed to the second geometry. The seal housing may include a tooth and the window may include a tooth gap positioned to receive the tooth when the seal housing is laterally slid into the window.


According to another aspect, this disclosure is directed to a surgical port system. The surgical port system includes a first seal assembly including one or more seals, a second seal assembly including one or more seals, and a shell. The shell has a housing and a cannula that extends from the housing. The housing has a sidewall defining a window therethrough that is configured to receive the first and second seal assemblies therethrough so that the shell can support one of the first or second seal assemblies therein at any given time.


In embodiments, each of the first and second seal assemblies may be selectively rotatable relative to the shell to secure the respective first or second seal assembly to the shell. The respective first or second seal assembly may be selectively removable from the shell.


In various embodiments, the shell may include reusable material and each of the first and second seal assemblies may include disposable material. The shell may include titanium and each of the first and second seal assemblies may include at least one of plastic or rubber.


In some embodiments, at least one of the first or second seal assemblies may include a floating seal and a duckbill seal.


In many embodiments, each of the first and second seal assemblies may include a detent and the shell may define a detent slot that is positioned to receive the detent for securing one of the first or second seal assemblies to the shell.


In embodiments, each of the first and second seal assemblies may support a gasket to seal one of the first or second seal assemblies within the shell.


In some embodiments, each of the first and second seal assemblies may include a tooth and the window of the shell may include a tooth gap positioned to receive the teeth of the first and second seal assemblies.


According to yet another aspect, this disclosure is directed to a method for sealing surgical instrumentation with a surgical port system. The method includes inserting a first disposable seal assembly through a window defined in a sidewall of a housing of a shell, the shell including a cannula that extends from the housing. The method further includes rotating the first disposable seal assembly relative to the housing to secure the first disposable seal assembly to the shell for providing a surgical port assembly that enables surgical instrumentation to remain sealed when such surgical instrumentation is advanced through surgical port assembly. The method also includes selectively removing the first disposable seal assembly from the housing for selective replacement with a second disposable seal assembly receivable through the window of the housing.


The details of one or more aspects of this disclosure are set forth in the accompanying drawings and the description below. Other aspects, features, and advantages will be apparent from the description, the drawings, and the claims that follow.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and, together with the detailed description of the embodiments given below, serve to explain the principles of the disclosure.



FIG. 1 is a perspective view of a surgical port system;



FIG. 2 is a perspective view, with parts separated, of the surgical port system of FIG. 1;



FIG. 3 is a perspective view, with parts separated, of a seal assembly of the surgical port system of FIGS. 1 and 2;



FIG. 4 is a perspective view of a shell of the surgical port system of FIGS. 1 and 2;



FIG. 5 is an enlarged, cross-sectional view of the shell of FIG. 4 as taken along section line 5-5 shown in FIG. 2;



FIG. 6 is an enlarged, cross-sectional view of a seal assembly of the surgical port system of FIGS. 1 and 2 as taken along section line 6-6 shown in FIG. 2;



FIG. 7 is an enlarged, cross-sectional view of the shell of FIG. 4 as taken along section line 7-7 shown in FIG. 5;



FIG. 8 is an enlarged, cross-sectional view of the seal assembly of FIG. 3 as taken along section line 8-8 shown in FIG. 2;



FIGS. 9-13 are progressive views illustrating the seal assembly of FIG. 3 being secured to the shell of FIG. 4; and



FIG. 14 is an enlarged, cross-sectional view of a trailing end portion of the surgical port system of FIGS. 1 and 2 as taken along section line 14-14 shown in FIG. 12.





DETAILED DESCRIPTION

Aspects of this disclosure are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. Additionally, the term “proximal” or “trailing” refers to the portion of structure that is closer to the clinician and the term “distal” or “leading” refers to the portion of structure that is farther from the clinician. As commonly known, the term “clinician” refers to a doctor (e.g., a surgeon), a nurse, or any other care provider and may include support personnel.


In the following description, well-known functions or constructions are not described in detail to avoid obscuring this disclosure in unnecessary detail.


With regard to FIG. 1, a surgical port system 100 is a multi-piece construct including a shell 200, which may be autoclavable and reusable, and a seal assembly 300 that is selectively removable from shell 200, and which may be disposable when removed from shell 200. Shell 200 may include any suitable material such as metallic material like titanium. Seal assembly 300 may include any suitable material such as a plastic and/or rubber.


Turning to FIGS. 2-8, shell 200 of surgical port system 100 includes a housing 210 supported on a trailing end portion of shell 200 and an elongated cannula 220 that extends distally from housing 210 to an insertion tip 222 on a leading end portion of cannula 220. Shell 200 defines a longitudinal axis “L” and a central passage 230 that extends distally along longitudinal axis “L” from a proximal end portion of housing 210 through a distal end portion of insertion tip 222 of cannula 220 for receiving surgical instrumentation (not shown) therethrough. Such surgical instrumentation can include graspers, forceps, staplers, endoscopes, clip appliers, stitching devices, etc. Housing 210 defines a window 212 through a sidewall 210x of housing 210 that is keyed to seal assembly 300 for receiving seal assembly 300 within an inner cavity 214 defined by housing 210. Window 212 is defined by an angled bottom edge 212a having a tooth gap 212b, a first side edge 212c extending from a first side of angled bottom edge 212a, a second side edge 212d extending from tooth gap 212b on a second side of angled bottom edge 212a, and a top edge 212e that connects first and second side edges 212c, 212d. Housing 210 further defines a detent slot 216 that is angularly offset from window 212 of housing 210 for coupling seal assembly 300 to shell 200. Housing 210 also includes a keyed track 218 along which seal assembly 200 is configured to cam toward detent slot 216 of housing 210.


Seal assembly 300 of surgical port system 100 includes a seal housing 310 and a gasket 320 (e.g., an O-ring) supported by housing 310. Seal housing 310 defines an opening 312 that extends longitudinally through seal housing 310 and a gasket channel 314 that extends around an upper surface of seal housing 310 for selectively receiving gasket 320 therein. Seal housing 310 can include an upper housing 310a and a lower housing 310b that can be integrally (e.g., monolithically) formed together as a unit or independent portions of seal housing 310 that can be selectively secured together using any suitable securement technique such as fastening, welding, adhesion, snap-fit, friction-fit, etc., or combinations thereof. Seal housing 310 has geometry that is keyed to window 212 of housing 210 of shell 200 and configured to be received within inner cavity 214 of housing 210 of shell 200 through window 212 of housing 210 of shell 200. Seal housing 310 of seal assembly 300 includes an angled bottom edge 310c that corresponds to angled bottom edge 212a of housing 210 of shell 200. Seal housing 310 further includes a detent 316 that extends radially outward from an outer side surface of seal housing 310 and is configured to move toward and away from outer side surface of seal housing 310 (e.g., by flexing) for selectively engaging detent slot 216 of housing 210 of shell 200. In some embodiments, detent 316 may be formed of any suitable flexible material. Seal housing 310 further includes a tooth 318 that depends distally from seal housing 310.


As seen in FIG. 3, seal housing 310 of seal assembly 300 supports a floating seal 322 and a duckbill seal 326 that are separated by a disc 324. In embodiments, disc 324 may be integral with the seal housing 310. In some embodiments, floating seal 322 can be positioned on duckbill seal 326. Floating seal 322 includes a septum seal 322a and a plurality of resilient fingers 322b extending radially outward from floating seal 322 at spaced-apart positions about floating seal 322 to enable floating seal 322 to float within seal housing 310.


Referring to FIGS. 9-14, seal assembly 300 can be inserted into housing 210 of shell 200 (e.g., laterally slid into) when features of the seal assembly 300 are aligned with window 212 of shell 200, as indicated by arrows “A”. For example, when tooth 318 of seal housing 310 is aligned with tooth gap 212b of shell 200, seal assembly 300 can be received through window 212 and into inner cavity 214 of shell 200 so that central longitudinal axes of seal assembly 300 and shell 200 are aligned with one another, as seen in FIG. 11. With seal assembly 300 seated within inner cavity 214, seal assembly 300 can be rotated (e.g., manually by a clinician) about longitudinal axis “L” so that tooth 318 of seal assembly 300 cams along keyed track 218 of shell 200 as detent 316 of seal assembly 300 cams along angled bottom edge 212a of shell 200 that defines window 212 of shell 200, as indicated by arrows “B.” Such camming movement of seal assembly 300 relative to shell 200 causes seal assembly 300 to rotate upwardly along longitudinal axis so that detent 316 of seal assembly 300 can snap-fit into detent slot 216 of shell 200 to rotationally and longitudinal fix seal assembly 300 to shell 200 for sealing surgical instrumentation passed through surgical port assembly 300 (e.g., seal and lock). With seal assembly 300 secured to shell 200, surgical port assembly 300 can be utilized to provide access to, for example, inner body cavities such as the abdominal cavity of a patient. With this configuration of surgical port assembly 300, torque applied to surgical port assembly 300, such as by a robotic system attached thereto (not shown), is received through shell 200 while bypassing seal assembly 300, reducing risk of failure.


Seal assembly 300 can be removed from shell 200, for example, after use of surgical port assembly 300, by actuating (e.g., depressing) detent 316, through detent slot 216 into inner cavity 214 of shell 200, and rotating seal assembly 300 until tooth 318 of seal assembly 300 is re-aligned with tooth gap 212b of shell 200. Once tooth 318 of seal assembly 300 is aligned with tooth gap 212b of shell 200, seal assembly 300 can be removed from shell 200 and discarded. Shell 200 can then be sterilized as desired and a new seal assembly 300 can be inserted into shell 200, as detailed above, for subsequent use.


As can be appreciated, any of the disclosed components of surgical port assembly 100 may be made from additive manufacturing such as 3D printing.


The various surgical ports disclosed herein may also be configured for use with robotic surgical systems, and what is commonly referred to as “Telesurgery.” Such systems employ various robotic elements to assist the clinician and allow remote operation (or partial remote operation) of surgical instrumentation. Various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. may be employed for this purpose and may be designed with a robotic surgical system to assist the clinician during the course of an operation or treatment. Such robotic systems may include remotely steerable systems, automatically flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, etc.


The robotic surgical systems may be employed with one or more consoles that are next to the operating theater or located in a remote location. In this instance, one team of clinicians may prep the patient for surgery and configure the robotic surgical system with one or more of the instruments disclosed herein while another clinician (or group of clinicians) remotely controls the instruments via the robotic surgical system. As can be appreciated, a highly skilled clinician may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients. For a detailed description of exemplary medical work stations and/or components thereof, reference may be made to U.S. Pat. No. 8,828,023, and PCT Application Publication No. WO2016/025132, the entire contents of each of which are incorporated by reference herein.


For a more detailed description of similar surgical ports, one or more components of which can be included with the disclosed embodiments, reference can be made to U.S. Pat. No. 5,807,338, filed Oct. 20, 1995 and U.S. Pat. No. 5,603,702, filed on Aug. 8, 1994, the entire contents of each of which are incorporated by reference herein.


Persons skilled in the art will understand that the structures and methods specifically described herein and illustrated in the accompanying figures are non-limiting exemplary embodiments, and that the description, disclosure, and figures should be construed merely as exemplary of particular embodiments. It is to be understood, therefore, that this disclosure is not limited to the precise embodiments described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of this disclosure. Additionally, it is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of this disclosure, and that such modifications and variations are also intended to be included within the scope of this disclosure. Indeed, any combination of any of the disclosed elements and features is within the scope of this disclosure. Accordingly, the subject matter of this disclosure is not to be limited by what has been particularly shown and described.

Claims
  • 1. A surgical port, comprising: a shell having a housing and a cannula extending from the housing, the housing having a sidewall defining a window therethrough; anda seal assembly having an angled bottom surface and being selectively laterally receivable into the housing of the shell through the window of the housing from an external position, the housing of the shell having an annular keyed track that urges the seal assembly from a first position in which the angled bottom surface of the seal assembly is sloped in the same direction as the annular keyed track to a second position in which the angled bottom surface of the seal assembly is sloped in a different direction than the annular keyed track.
  • 2. The surgical port of claim 1, wherein the shell secures the seal assembly in the housing when the seal assembly is disposed in the second position.
  • 3. The surgical port of claim 2, wherein the seal assembly is selectively removable from the shell when the seal assembly is moved from the second position, where the seal assembly is secured to the shell, to the first position, where the seal assembly is laterally removable through the window.
  • 4. The surgical port of claim 1, wherein the seal assembly includes a first seal having a duckbill configuration and a second seal having a configuration that is different than the duckbill configuration.
  • 5. The surgical port of claim 4, wherein the second seal has a floating seal configuration.
  • 6. The surgical port of claim 1, wherein the window is angled relative to the housing, the window including an angled bottom edge, a top edge, a first side edge and a second side edge, the first and second side edges connecting the angled bottom edge to the top edge.
  • 7. The surgical port of claim 6, wherein the window includes a tooth gap disposed between the angled bottom edge and the second side edge.
  • 8. The surgical port of claim 7, wherein the seal assembly includes a tooth depending from the angled bottom surface of the seal assembly, the tooth receivable through the tooth gap when the seal assembly is laterally slid into the window.
  • 9. The surgical port of claim 8, wherein the angled bottom surface of the seal assembly is vertically spaced apart from the annular keyed track when the seal assembly is disposed in the second position.
  • 10. The surgical port of claim 1, wherein the window includes a tooth gap, wherein the seal assembly is keyed to the tooth gap to enable the seal assembly to be laterally received through the window.
  • 11. The surgical port of claim 1, wherein the seal assembly includes a tooth depending from the angled bottom surface of the seal assembly, the tooth receivable through a tooth gap when the seal assembly is laterally slid into the window, and wherein the tooth cams along the annular keyed track to move the seal assembly from the first position to the second position.
  • 12. The surgical port of claim 1, wherein the angled bottom surface of the seal assembly is vertically spaced apart from the track when the seal assembly is disposed in the second position.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/564,780, filed Sep. 9, 2019, the entire contents of which are incorporated by reference herein.

US Referenced Citations (480)
Number Name Date Kind
3402710 Paleschuck Sep 1968 A
3495586 Regenbogen Feb 1970 A
4016884 Kwan-Gett Apr 1977 A
4112932 Chiulli Sep 1978 A
4183357 Bentley et al. Jan 1980 A
4356826 Kubota Nov 1982 A
4402683 Kopman Sep 1983 A
4653476 Bonnet Mar 1987 A
4737148 Blake Apr 1988 A
4863430 Klyce et al. Sep 1989 A
4863438 Gauderer et al. Sep 1989 A
4984564 Yuen Jan 1991 A
5002557 Hasson Mar 1991 A
5073169 Raiken Dec 1991 A
5082005 Kaldany Jan 1992 A
5122122 Allgood Jun 1992 A
5159921 Hoover Nov 1992 A
5176697 Hasson Jan 1993 A
5183471 Wilk Feb 1993 A
5192301 Kamiya et al. Mar 1993 A
5209741 Spaeth May 1993 A
5209754 Ahluwalia May 1993 A
5217466 Hasson Jun 1993 A
5242409 Buelna Sep 1993 A
5242415 Kantrowitz et al. Sep 1993 A
5257973 Villasuso Nov 1993 A
5257975 Foshee Nov 1993 A
5269772 Wilk Dec 1993 A
5290249 Foster et al. Mar 1994 A
5312391 Wilk May 1994 A
5312417 Wilk May 1994 A
5314417 Stephens et al. May 1994 A
5318516 Cosmescu Jun 1994 A
5330486 Wilk Jul 1994 A
5334143 Carroll Aug 1994 A
5336169 Divilio et al. Aug 1994 A
5336203 Goldhardt et al. Aug 1994 A
5337937 Remiszewski et al. Aug 1994 A
5345927 Bonutti Sep 1994 A
5360417 Gravener et al. Nov 1994 A
5366478 Brinkerhoff et al. Nov 1994 A
5375588 Yoon Dec 1994 A
5378588 Tsuchiya Jan 1995 A
5391156 Hildwein et al. Feb 1995 A
5394863 Sanford et al. Mar 1995 A
5395367 Wilk Mar 1995 A
5407433 Loomas Apr 1995 A
5437683 Neumann et al. Aug 1995 A
5445615 Yoon Aug 1995 A
5451222 De Maagd et al. Sep 1995 A
5458640 Gerrone Oct 1995 A
5460170 Hammerslag Oct 1995 A
5464409 Mohajer Nov 1995 A
5480410 Cuschieri et al. Jan 1996 A
5490843 Hildwein et al. Feb 1996 A
5507758 Thomason et al. Apr 1996 A
5511564 Wilk Apr 1996 A
5514133 Golub et al. May 1996 A
5514153 Bonutti May 1996 A
5520698 Koh May 1996 A
5522791 Leyva Jun 1996 A
5524644 Crook Jun 1996 A
5540648 Yoon Jul 1996 A
5545150 Danks et al. Aug 1996 A
5545179 Williamson, IV Aug 1996 A
5556385 Andersen Sep 1996 A
5569159 Anderson et al. Oct 1996 A
5577993 Zhu et al. Nov 1996 A
5601581 Fogarty et al. Feb 1997 A
5603702 Smith et al. Feb 1997 A
5624399 Ackerman Apr 1997 A
5634911 Hermann et al. Jun 1997 A
5634937 Mollenauer et al. Jun 1997 A
5643285 Rowden et al. Jul 1997 A
5649550 Crook Jul 1997 A
5651771 Tangherlini et al. Jul 1997 A
5653705 de la Torre et al. Aug 1997 A
5656013 Yoon Aug 1997 A
5672168 de la Torre et al. Sep 1997 A
5683378 Christy Nov 1997 A
5685857 Negus et al. Nov 1997 A
5697946 Hopper et al. Dec 1997 A
5709675 Williams Jan 1998 A
5713858 Heruth et al. Feb 1998 A
5713869 Morejon Feb 1998 A
5722962 Garcia Mar 1998 A
5728103 Picha et al. Mar 1998 A
5730748 Fogarty et al. Mar 1998 A
5735791 Alexander, Jr. et al. Apr 1998 A
5741298 MacLeod Apr 1998 A
5743884 Hasson Apr 1998 A
5752970 Yoon May 1998 A
5782817 Franzel et al. Jul 1998 A
5795290 Bridges Aug 1998 A
5803921 Bonadio Sep 1998 A
5807338 Smith et al. Sep 1998 A
5810712 Dunn Sep 1998 A
5813409 Leahy et al. Sep 1998 A
5830191 Hildwein et al. Nov 1998 A
5836871 Wallace et al. Nov 1998 A
5836913 Orth et al. Nov 1998 A
5840077 Rowden et al. Nov 1998 A
5842971 Yoon Dec 1998 A
5848992 Hart et al. Dec 1998 A
5853417 Fogarty et al. Dec 1998 A
5857461 Levitsky et al. Jan 1999 A
5865817 Moenning et al. Feb 1999 A
5871474 Hermann et al. Feb 1999 A
5876413 Fogarty et al. Mar 1999 A
5894843 Benetti et al. Apr 1999 A
5899208 Bonadio May 1999 A
5899913 Fogarty et al. May 1999 A
5904703 Gilson May 1999 A
5906577 Beane et al. May 1999 A
5914415 Tago Jun 1999 A
5916198 Dillow Jun 1999 A
5941898 Moenning et al. Aug 1999 A
5951588 Moenning Sep 1999 A
5957913 de la Torre et al. Sep 1999 A
5964781 Mollenauer et al. Oct 1999 A
5976174 Ruiz Nov 1999 A
5997515 de la Torre et al. Dec 1999 A
6017355 Hessel et al. Jan 2000 A
6018094 Fox Jan 2000 A
6024736 de la Torre et al. Feb 2000 A
6030402 Thompson et al. Feb 2000 A
6033426 Kaji Mar 2000 A
6033428 Sardella Mar 2000 A
6042573 Lucey Mar 2000 A
6048309 Flom et al. Apr 2000 A
6059816 Moenning May 2000 A
6068639 Fogarty et al. May 2000 A
6077288 Shimomura et al. Jun 2000 A
6086603 Termin et al. Jul 2000 A
6093176 Dennis Jul 2000 A
6099506 Macoviak et al. Aug 2000 A
6110154 Shimomura et al. Aug 2000 A
6142936 Beane et al. Nov 2000 A
6156006 Brosens et al. Dec 2000 A
6162196 Hart et al. Dec 2000 A
6171282 Ragsdale Jan 2001 B1
6197002 Peterson Mar 2001 B1
6217555 Hart et al. Apr 2001 B1
6228063 Aboul-Hosn May 2001 B1
6234958 Snoke et al. May 2001 B1
6238373 de la Torre et al. May 2001 B1
6241768 Agarwal et al. Jun 2001 B1
6251119 Addis Jun 2001 B1
6254534 Butler et al. Jul 2001 B1
6264604 Kieturakis et al. Jul 2001 B1
6276661 Laird Aug 2001 B1
6293952 Brosens et al. Sep 2001 B1
6315770 de la Torre et al. Nov 2001 B1
6319246 de la Torre et al. Nov 2001 B1
6328720 McNally et al. Dec 2001 B1
6329637 Hembree et al. Dec 2001 B1
6371968 Kogasaka et al. Apr 2002 B1
6382211 Crook May 2002 B1
6423036 Van Huizen Jul 2002 B1
6440061 Wenner et al. Aug 2002 B1
6440063 Beane et al. Aug 2002 B1
6443957 Addis Sep 2002 B1
6447489 Peterson Sep 2002 B1
6450983 Rambo Sep 2002 B1
6454783 Piskun Sep 2002 B1
6464686 O'Hara et al. Oct 2002 B1
6468292 Mollenauer et al. Oct 2002 B1
6485410 Loy Nov 2002 B1
6488620 Segermark et al. Dec 2002 B1
6488692 Spence et al. Dec 2002 B1
6524283 Hopper et al. Feb 2003 B1
6527787 Fogarty et al. Mar 2003 B1
6544210 Trudel et al. Apr 2003 B1
6551270 Bimbo et al. Apr 2003 B1
6558371 Dorn May 2003 B2
6562022 Hoste et al. May 2003 B2
6572631 McCartney Jun 2003 B1
6578577 Bonadio et al. Jun 2003 B2
6582364 Butler et al. Jun 2003 B2
6589167 Shimomura et al. Jul 2003 B1
6589316 Schultz et al. Jul 2003 B1
6592543 Wortrich et al. Jul 2003 B1
6613952 Rambo Sep 2003 B2
6623426 Bonadio et al. Sep 2003 B2
6669674 Macoviak et al. Dec 2003 B1
6676639 Ternstrom Jan 2004 B1
6684405 Ezdey Feb 2004 B2
6706050 Giannadakis Mar 2004 B1
6716201 Blanco Apr 2004 B2
6723044 Pulford et al. Apr 2004 B2
6723088 Gaskill, III et al. Apr 2004 B2
6725080 Melkent et al. Apr 2004 B2
6800084 Davison et al. Oct 2004 B2
6811546 Callas et al. Nov 2004 B1
6814078 Crook Nov 2004 B2
6830578 O'Heeron et al. Dec 2004 B2
6837893 Miller Jan 2005 B2
6840946 Fogarty et al. Jan 2005 B2
6840951 de la Torre et al. Jan 2005 B2
6846287 Bonadio et al. Jan 2005 B2
6863674 Kasahara et al. Mar 2005 B2
6878110 Yang et al. Apr 2005 B2
6884253 McFarlane Apr 2005 B1
6890295 Michels et al. May 2005 B2
6913609 Yencho et al. Jul 2005 B2
6916310 Sommerich Jul 2005 B2
6916331 Mollenauer et al. Jul 2005 B2
6929637 Gonzalez et al. Aug 2005 B2
6939296 Ewers et al. Sep 2005 B2
6942633 Odland Sep 2005 B2
6945932 Caldwell et al. Sep 2005 B1
6958037 Ewers et al. Oct 2005 B2
6972026 Caldwell et al. Dec 2005 B1
6986752 McGuckin, Jr. et al. Jan 2006 B2
6991602 Nakazawa et al. Jan 2006 B2
6997909 Goldberg Feb 2006 B2
7001397 Davison et al. Feb 2006 B2
7008377 Beane et al. Mar 2006 B2
7011645 McGuckin, Jr. et al. Mar 2006 B2
7014628 Bousquet Mar 2006 B2
7033319 Pulford et al. Apr 2006 B2
7052454 Taylor May 2006 B2
7056321 Pagliuca et al. Jun 2006 B2
7077852 Fogarty et al. Jul 2006 B2
7081089 Bonadio et al. Jul 2006 B2
7083626 Hart et al. Aug 2006 B2
7100614 Stevens et al. Sep 2006 B2
7101353 Lui et al. Sep 2006 B2
7104981 Elkins et al. Sep 2006 B2
7153261 Wenchell Dec 2006 B2
7160309 Voss Jan 2007 B2
7163510 Kahle et al. Jan 2007 B2
7192436 Sing et al. Mar 2007 B2
7195590 Butler et al. Mar 2007 B2
7201725 Cragg et al. Apr 2007 B1
7214185 Rosney et al. May 2007 B1
7217277 Parihar et al. May 2007 B2
7223257 Shubayev et al. May 2007 B2
7223278 Davison et al. May 2007 B2
7235064 Hopper et al. Jun 2007 B2
7235084 Skakoon et al. Jun 2007 B2
7238154 Ewers et al. Jul 2007 B2
7258712 Schultz et al. Aug 2007 B2
7276075 Callas et al. Oct 2007 B1
7294103 Bertolero et al. Nov 2007 B2
7300399 Bonadio et al. Nov 2007 B2
7316699 McFarlane Jan 2008 B2
7331940 Sommerich Feb 2008 B2
7344547 Piskun Mar 2008 B2
7377898 Ewers et al. May 2008 B2
7390322 McGuckin, Jr. et al. Jun 2008 B2
7393322 Wenchell Jul 2008 B2
7412977 Fields et al. Aug 2008 B2
7440661 Kobayashi Oct 2008 B2
7445597 Butler et al. Nov 2008 B2
7452363 Ortiz Nov 2008 B2
7473221 Ewers et al. Jan 2009 B2
7481765 Ewers et al. Jan 2009 B2
7493703 Kim et al. Feb 2009 B2
7513361 Mills, Jr. Apr 2009 B1
7513461 Reutenauer et al. Apr 2009 B2
7520876 Ressemann et al. Apr 2009 B2
7537564 Bonadio et al. May 2009 B2
7540839 Butler et al. Jun 2009 B2
7559893 Bonadio et al. Jul 2009 B2
7608082 Cuevas et al. Oct 2009 B2
7625361 Suzuki et al. Dec 2009 B2
7645232 Shluzas Jan 2010 B2
7650887 Nguyen et al. Jan 2010 B2
7704207 Albrecht et al. Apr 2010 B2
7717846 Zirps et al. May 2010 B2
7717847 Smith May 2010 B2
7721742 Kalloo et al. May 2010 B2
7727146 Albrecht et al. Jun 2010 B2
7730629 Kim Jun 2010 B2
7736306 Brustad et al. Jun 2010 B2
7753901 Piskun et al. Jul 2010 B2
7758500 Boyd et al. Jul 2010 B2
7762995 Eversull et al. Jul 2010 B2
7766824 Jensen et al. Aug 2010 B2
7787963 Geistert et al. Aug 2010 B2
7798998 Thompson et al. Sep 2010 B2
7811251 Wenchell et al. Oct 2010 B2
7815567 Albrecht et al. Oct 2010 B2
7837612 Gill et al. Nov 2010 B2
7846123 Vassiliades et al. Dec 2010 B2
7850600 Piskun Dec 2010 B1
7850667 Gresham Dec 2010 B2
7867164 Butler et al. Jan 2011 B2
7896889 Mazzocchi et al. Mar 2011 B2
7905829 Nishimura et al. Mar 2011 B2
7909760 Albrecht et al. Mar 2011 B2
7913697 Nguyen et al. Mar 2011 B2
7951076 Hart et al. May 2011 B2
7955257 Frasier et al. Jun 2011 B2
7955313 Boismier Jun 2011 B2
7998068 Bonadio et al. Aug 2011 B2
8021296 Bonadio et al. Sep 2011 B2
8025670 Sharp et al. Sep 2011 B2
8038652 Morrison et al. Oct 2011 B2
8066673 Hart et al. Nov 2011 B2
8079986 Taylor et al. Dec 2011 B2
8092430 Richard et al. Jan 2012 B2
8105234 Ewers et al. Jan 2012 B2
8109873 Albrecht et al. Feb 2012 B2
8157786 Miller et al. Apr 2012 B2
8157817 Bonadio et al. Apr 2012 B2
8187177 Kahle et al. May 2012 B2
8187178 Bonadio et al. May 2012 B2
8241209 Shelton, IV et al. Aug 2012 B2
8262568 Albrecht et al. Sep 2012 B2
8323184 Spiegal et al. Dec 2012 B2
8335783 Milby Dec 2012 B2
8343047 Albrecht et al. Jan 2013 B2
8353824 Shelton, IV et al. Jan 2013 B2
8403889 Richard Mar 2013 B2
8480683 Fowler et al. Jul 2013 B2
8574153 Richard Nov 2013 B2
8585632 Okoniewski Nov 2013 B2
8828023 Neff et al. Sep 2014 B2
11523842 Baril et al. Dec 2022 B2
20010037053 Bonadio et al. Nov 2001 A1
20020055714 Rothschild May 2002 A1
20030014076 Mollenauer et al. Jan 2003 A1
20030093104 Bonner et al. May 2003 A1
20030187376 Rambo Oct 2003 A1
20030233115 Eversull et al. Dec 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040059297 Racenet et al. Mar 2004 A1
20040092795 Bonadio et al. May 2004 A1
20040102804 Chin May 2004 A1
20040111061 Curran Jun 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040204734 Wagner et al. Oct 2004 A1
20040267096 Caldwell et al. Dec 2004 A1
20050020884 Hart et al. Jan 2005 A1
20050070935 Ortiz Mar 2005 A1
20050096695 Olich May 2005 A1
20050119525 Takemoto Jun 2005 A1
20050137459 Chin et al. Jun 2005 A1
20050148823 Vaugh et al. Jul 2005 A1
20050192483 Bonadio et al. Sep 2005 A1
20050203346 Bonadio et al. Sep 2005 A1
20050209608 O'Heeron Sep 2005 A1
20050222582 Wenchell Oct 2005 A1
20050245876 Khosravi et al. Nov 2005 A1
20050251092 Howell et al. Nov 2005 A1
20050277946 Greenhalgh Dec 2005 A1
20060071432 Staudner Apr 2006 A1
20060129165 Edoga et al. Jun 2006 A1
20060149137 Pingleton et al. Jul 2006 A1
20060149306 Hart et al. Jul 2006 A1
20060161049 Beane et al. Jul 2006 A1
20060161050 Butler et al. Jul 2006 A1
20060212063 Wilk Sep 2006 A1
20060224161 Bhattacharyya Oct 2006 A1
20060241651 Wilk Oct 2006 A1
20060247498 Bonadio et al. Nov 2006 A1
20060247499 Butler et al. Nov 2006 A1
20060247500 Voegele et al. Nov 2006 A1
20060247516 Hess et al. Nov 2006 A1
20060247586 Voegele et al. Nov 2006 A1
20060247673 Voegele et al. Nov 2006 A1
20060247678 Weisenburgh et al. Nov 2006 A1
20060270911 Voegele et al. Nov 2006 A1
20070088277 McGinley et al. Apr 2007 A1
20070093695 Bonadio et al. Apr 2007 A1
20070118175 Butler et al. May 2007 A1
20070151566 Kahle et al. Jul 2007 A1
20070203398 Bonadio et al. Aug 2007 A1
20070208312 Norton et al. Sep 2007 A1
20070225650 Hart et al. Sep 2007 A1
20070270654 Pignato et al. Nov 2007 A1
20070270882 Hjelle et al. Nov 2007 A1
20080009826 Miller et al. Jan 2008 A1
20080021360 Fihe et al. Jan 2008 A1
20080027476 Piskun Jan 2008 A1
20080048011 Weller Feb 2008 A1
20080091143 Taylor et al. Apr 2008 A1
20080097162 Bonadio et al. Apr 2008 A1
20080097332 Greenhalgh et al. Apr 2008 A1
20080119868 Sharp et al. May 2008 A1
20080161826 Guiraudon Jul 2008 A1
20080188868 Weitzner et al. Aug 2008 A1
20080194973 Imam Aug 2008 A1
20080200767 Ewers et al. Aug 2008 A1
20080255519 Piskun et al. Oct 2008 A1
20080319261 Lucini et al. Dec 2008 A1
20090012477 Norton et al. Jan 2009 A1
20090036738 Cuschieri et al. Feb 2009 A1
20090036745 Bonadio et al. Feb 2009 A1
20090093752 Richard et al. Apr 2009 A1
20090093850 Richard Apr 2009 A1
20090105635 Bettuchi et al. Apr 2009 A1
20090131751 Spivey et al. May 2009 A1
20090137879 Ewers et al. May 2009 A1
20090182279 Wenchell et al. Jul 2009 A1
20090182288 Spenciner Jul 2009 A1
20090187079 Albrecht et al. Jul 2009 A1
20090204067 Abu-Halawa Aug 2009 A1
20090221968 Morrison et al. Sep 2009 A1
20090227843 Smith et al. Sep 2009 A1
20090326330 Bonadio et al. Dec 2009 A1
20090326332 Carter Dec 2009 A1
20100063452 Edelman et al. Mar 2010 A1
20100100043 Racenet Apr 2010 A1
20100113886 Piskun et al. May 2010 A1
20100228094 Ortiz et al. Sep 2010 A1
20100240960 Richard Sep 2010 A1
20100249516 Shelton, IV et al. Sep 2010 A1
20100249523 Spiegal et al. Sep 2010 A1
20100249524 Ransden et al. Sep 2010 A1
20100262080 Shelton, IV et al. Oct 2010 A1
20100280326 Hess et al. Nov 2010 A1
20100286484 Stellon et al. Nov 2010 A1
20100286506 Ransden et al. Nov 2010 A1
20100298646 Stellon et al. Nov 2010 A1
20100312063 Hess et al. Dec 2010 A1
20110009704 Marczyk et al. Jan 2011 A1
20110021877 Fortier et al. Jan 2011 A1
20110028891 Okoniewski Feb 2011 A1
20110034778 Kleyman Feb 2011 A1
20110054257 Stopek Mar 2011 A1
20110054258 O'Keefe et al. Mar 2011 A1
20110054260 Albrecht et al. Mar 2011 A1
20110082341 Kleyman et al. Apr 2011 A1
20110082343 Okoniewski Apr 2011 A1
20110082346 Stopek Apr 2011 A1
20110118553 Stopek May 2011 A1
20110124968 Kleyman May 2011 A1
20110124969 Stopek May 2011 A1
20110124970 Kleyman May 2011 A1
20110125186 Fowler et al. May 2011 A1
20110166423 Farascioni et al. Jul 2011 A1
20110251463 Kleyman Oct 2011 A1
20110251464 Kleyman Oct 2011 A1
20110251465 Kleyman Oct 2011 A1
20110251466 Kleyman et al. Oct 2011 A1
20110282160 Bhadri Nov 2011 A1
20110313250 Kleyman Dec 2011 A1
20120004613 Franer Jan 2012 A1
20120059640 Roy et al. Mar 2012 A1
20120130177 Davis May 2012 A1
20120130181 Davis May 2012 A1
20120130182 Rodrigues, Jr. et al. May 2012 A1
20120130183 Barnes May 2012 A1
20120130184 Richard May 2012 A1
20120130185 Pribanic May 2012 A1
20120130186 Stopek et al. May 2012 A1
20120130187 Okoniewski May 2012 A1
20120130188 Okoniewski May 2012 A1
20120130190 Kasvikis May 2012 A1
20120130191 Pribanic May 2012 A1
20120149987 Richard et al. Jun 2012 A1
20120149988 Hickingbotham Jun 2012 A1
20120157777 Okoniewski Jun 2012 A1
20120157779 Fischvogt Jun 2012 A1
20120157780 Okoniewski et al. Jun 2012 A1
20120157781 Kleyman Jun 2012 A1
20120157782 Alfieri Jun 2012 A1
20120157783 Okoniewski et al. Jun 2012 A1
20120157784 Kleyman et al. Jun 2012 A1
20120157785 Kleyman Jun 2012 A1
20120157786 Pribanic Jun 2012 A1
20120190931 Stopek Jul 2012 A1
20120190932 Okoniewski Jul 2012 A1
20120190933 Kleyman Jul 2012 A1
20120209077 Racenet Aug 2012 A1
20120209078 Pribanic et al. Aug 2012 A1
20120245427 Kleyman Sep 2012 A1
20120245429 Smith Sep 2012 A1
20120245430 Kleyman et al. Sep 2012 A1
20120283520 Kleyman Nov 2012 A1
20130225930 Smith Aug 2013 A1
20130225931 Cruz et al. Aug 2013 A1
20130245373 Okoniewski Sep 2013 A1
20130274559 Fowler et al. Oct 2013 A1
20130310651 Alfieri Nov 2013 A1
20140018632 Kleyman Jan 2014 A1
20180116693 Blanchard May 2018 A1
Foreign Referenced Citations (84)
Number Date Country
2702419 Nov 2010 CA
0226026 Jun 1987 EP
0538060 Apr 1993 EP
0567142 Oct 1993 EP
0577400 Jan 1994 EP
0630660 Dec 1994 EP
0807416 Nov 1997 EP
0950376 Oct 1999 EP
1188415 Mar 2002 EP
1312318 May 2003 EP
1774918 Apr 2007 EP
1932485 Jun 2008 EP
2044889 Apr 2009 EP
2044897 Apr 2009 EP
2080494 Jul 2009 EP
2095781 Sep 2009 EP
2098182 Sep 2009 EP
2138117 Dec 2009 EP
2138118 Dec 2009 EP
2181657 May 2010 EP
2226025 Sep 2010 EP
2229900 Sep 2010 EP
2238924 Oct 2010 EP
2238925 Oct 2010 EP
2238926 Oct 2010 EP
2238933 Oct 2010 EP
2248478 Nov 2010 EP
2248482 Nov 2010 EP
2253283 Nov 2010 EP
2272450 Jan 2011 EP
2277464 Jan 2011 EP
2289438 Mar 2011 EP
2292165 Mar 2011 EP
2343019 Jul 2011 EP
2469083 Apr 2009 GB
05-293112 Nov 1993 JP
10-501711 Feb 1998 JP
2006280959 Oct 2006 JP
2008057056 Mar 2008 JP
8401512 Apr 1984 WO
9314801 Aug 1993 WO
9404067 Mar 1994 WO
9532019 Nov 1995 WO
9610963 Apr 1996 WO
9636283 Nov 1996 WO
9733520 Sep 1997 WO
9742889 Nov 1997 WO
WO9747248 Dec 1997 WO
9916368 Apr 1999 WO
9922804 May 1999 WO
9929250 Jun 1999 WO
9952577 Oct 1999 WO
0032116 Jun 2000 WO
0032120 Jun 2000 WO
0054675 Sep 2000 WO
0108581 Feb 2001 WO
0149363 Jul 2001 WO
0207611 Jan 2002 WO
03034908 May 2003 WO
03071926 Sep 2003 WO
03077726 Sep 2003 WO
2004043275 May 2004 WO
2004054456 Jul 2004 WO
2004075741 Sep 2004 WO
2004075930 Sep 2004 WO
2005058409 Jun 2005 WO
2006019723 Feb 2006 WO
2006100658 Sep 2006 WO
2006110733 Oct 2006 WO
2007018458 Feb 2007 WO
2007095703 Aug 2007 WO
2007143200 Dec 2007 WO
2008015566 Feb 2008 WO
2008042005 Apr 2008 WO
2008077080 Jun 2008 WO
2008093313 Aug 2008 WO
2008103151 Aug 2008 WO
2008121294 Oct 2008 WO
2008147644 Dec 2008 WO
2009036343 Mar 2009 WO
2010000047 Jan 2010 WO
2010141409 Dec 2010 WO
2010141673 Dec 2010 WO
2016025132 Feb 2016 WO
Non-Patent Literature Citations (9)
Entry
G. Ramm and A.I. Katsevich, The Radon Transform and Local Tomography, CRC Press, 1996.
F. Natterer, The Mathematics of Computerized Tomography, Wiley, 1989.
G.T. Herman et al., Basic Methods of Tomography and Inverse Problems, Hildger, 1987.
G.T. Herman and Attila Kuba, Discrete Tomography, Birhauser, 1999.
Extended European Search Report for application No. 20195301.5 dated Jan. 28, 2021.
European Communication for application No. 20 195 301 .5 dated Nov. 21, 2022.
Extended European Search Report issued in corresponding European Application No. 23212710.0 dated Feb. 19, 2024, 6 pages.
JP2020-133609, Notice of Reasons for Rejection, May 1, 2024, 8 pgs.
Japanese Notice of Allowance, 2020-133609, Oct. 7, 2024, 5 pgs.
Related Publications (1)
Number Date Country
20230090131 A1 Mar 2023 US
Continuations (1)
Number Date Country
Parent 16564780 Sep 2019 US
Child 17994810 US