The present invention relates to toys, and more particularly to mechanical toy apparatus including fillable water game toy structures concerning reusable toy water capsules, capsule toys, and the like considered to operate in accordance with a two-part refillable water balloon feature that bursts or explodes apart to in the fashion of a balloon burst effect.
There are many known toys and toy play sets which incorporate assemblies for water toys which may be categorized into single-use water-balloons, reusable splash toys and reusable water squirt toys. Currently, the water bomb market is divided between single use water balloons and reusable splash toys. The problem is children make one big mess throwing single use plastic water balloons and worse other reusable water bombs are just plain disappointing which cannot explode like balloons and fail as a real alternative to messy bursting balloons.
It is known to provide either single-use water-balloons, or reusable splash toys alternatively which may carry a sufficient body of water when thrown at an intended target to soak the target. However, single-use water-balloons such as those used in U.S. Pat. No. 9,315,282 to Malone for “System and Method for Filling Containers with Fluids” create substantial quantities of litter when they hit a target and break apart. This is a real issue in today's busy and environmentally conscious world. There have been some attempts to create reusable toy capsules that are intended to have an explosive splash, dousing a target when thrown. Some of these inventions break apart on impact and others release water through some kind of valve on impact.
China Utility Model CN 201543247 U of Aug. 11, 2010 to Myers, et al, for Game Device includes an upper part and a lower part which can be closed to form a hollow ball. The upper part and the lower part are a hemispherical upper part and a hemispherical lower part. The upper part and the lower part are provided with hemispherical cavities for accommodating water when in use. In order to increase the strength of the game device, reinforcing ribs are provided on the outer surfaces of the upper part and the lower part, respectively. Korea Utility Model Application KR 20000018398 U of Mar. 18, 1999 to Lee, et al., for Playing Ball, discloses dividing a ball into many divisions with perforated grooves formed on the ball's body with many segmented pieces connected vertically with perforated grooves that are formed uniformly on the body of an elastic ball, wherein the supporting pieces formed inside the segmented pieces come in contact with the outer surface.
Likewise U.S. Pat. No. 4,212,460 to Kraft for “Hollow Water-Filled Game Toy” relates to reusable capsules which break apart on impact yet requires dissimilar parts of hard plastic material for the mechanics of the device to work. The Kraft capsule has overlapping small joints limiting the design to a hard plastic. Consequently the safe use of the toy is compromised and can hurt on impact with a person. U.S. Pat. No. 5,975,983 to Panec for “Reusable Water-Containing Toy” concerns reusable capsules but employs mechanical valves to work by removing energy from an impact with a target to open the valves. As such the foregoing prior art limits the size of splash and consequently reduces desirability and prove to be disappointing in use. Further U.S. Pat. No. 5,848,946 to Stillinger for “Filled, deformable bladder amusement device with infinitely changeable pliability and tactility characteristics” issued Dec. 15, 1998; U.S. Pat. No. 6,527,616 to Li for “Throwing toy for producing splash effect” issued Mar. 4, 2003; U.S. Pat. No. 6,533,637 to Liao for “Impact expanding projectile device and its associated method of manufacture” issued Mar. 18, 2003; U.S. Pat. No. 6,585,555 to Wong, et al. for “Temperature sensitive color changing water toy” issued Jul. 1, 2003; U.S. Pat. No. 7,481,727 to Chia for “Water-release toy” issued Jan. 27, 2009; US Patent Application No. 20110003655 A1 to Chernick, et al. for “Segmented High-Bounce Toy Water Ball” published Jan. 6, 2011 disclose similar prior art water ball concepts.
Significantly, known toys do not include water toy apparatus and methods with reusable toy water capsule, or capsule toy which may be considered to operate as a refillable water balloon with two-part suction feature in a fashion that is simple with unique fillable water game toy capsule structures that are easy for anyone to fill and throw and exciting for a user. Moreover known single-use water balloons create litter, and known reusable splash water toy capsules intended to have an explosive affect often disappoint in use. It would be desirable to provide a reusable toy water capsule solution to the problem of explosive, reusable water bombs. Whereas the novel reusable toy water capsule explodes apart to produce an effect equal to a balloon burst.
The embodiments of the inventions disclosed herein facilitate a sealed hollow capsule assembled from two complimentary interlocking sealing components. The interlocking seal of the two components is identical. The components can be joined repeatably using their interlocking structure creating a seal when the capsule is filled with water. Various embodiments of the invention are disclosed as including reusable toy capsule apparatus with a pair, plurality of multiple flexible components having first and second walls with respective external and internal wall surfaces. In a described embodiment, each of two capsule walls are integrally formed together with the first wall external surface having a curved surface in the shape of a half sphere, and the second wall external surface having a curved surface in the shape of a quarter sphere with said second wall integrally formed with said first wall together as a curved surface in the shape of a three-quarter sphere, defining a fluid-holding interior, and a fluid seal or flanges formed with the flexible components. The coupling flange allows for being brought into apposition with the portion of the first wall internal surface.
An embodiment the invention is in the general form of a water toy capsule with an intended form of exploding water balloons and the like. Another embodiment the invention is in the form of a directional hand powered water squirt to compete with squirt gun toys. Further embodiments may include a number of components supplied having two or more to be assembled. Supplying a number of components where any one component will fit with any other improves play giving a similar experience as having a number of water balloon-type structures.
Briefly summarized, several disclosed embodiments of the invention provide a plurality of various shaped flexible components each of which including a first wall with a first wall external surface and a first wall internal surface, and a second wall with a second wall external surface and a second wall internal surface. The second wall is disposing with structure integrally together with the first wall, and a portion of each second wall external surface includes a fluid seal which may be provided as a coupling flange formed together for being brought into apposition with a portion of the first wall internal surface forming a fluid seal between the plurality of various shaped flexible components, thus defining a fluid-holding interior where fluid is received between the first wall and the second wall. The fluid-holding interior between the plurality of flexible components first and the second wall external surfaces are brought into apposition in use to allow for a partial vacuum sufficient for a lower relative internal pressure inside the fluid-holding interior for creating a suction force that moves fluid into the fluid-holding interior within the plurality of flexible components. The fluid seal with the plurality of flexible components which may be provided as a coupling flange formed with a portion of each second wall external surface is brought into apposition with a portion of each first wall internal surface of the plurality of flexible components. The reusable toy capsule fluid in the fluid-holding interior may be maintained structurally through the mechanical structural integrity of the flexible components, which may be assisted due to hydrostatic pressure of the fluid pushing against the walls to generate surface tension at the fluid-holding interior within the plurality of flexible components.
For the purpose of facilitating an understanding of the inventions, the accompanying drawings and description illustrate described embodiments thereof, from which the inventions, structure, construction and operation, and many related advantages may be readily understood and appreciated.
As described herein, fillable water toy concerning reusable toy water capsules, capsule toys, and the like considered to operate in accordance with a two-part refillable water balloon feature that bursts or explodes apart to in the fashion of a balloon burst effect, and explode apart to produce an affect similar to a balloon burst when thrown at a target. The combination of unique design with the typically chosen softness of the material used to make the capsule means much of the kinetic energy in a throw is dissipated in a water burst.
With reference to
Primary sealing edge 16 and an internal, secondary sealing edge 18 may be provided additionally with complementary thicknesses for maintaining the seal and may include a sharp right-angled structure or otherwise crafted the component shapes so as to fit complementary components.
The user has a choice between throwing the capsule at a target
As disclosed the present described embodiments provide a plurality of various shaped flexible components each of which including a first wall with a first wall external surface and a first wall internal surface, and a second wall with a second wall external surface and a second wall internal surface. The second wall is disposing with structure integrally together with the first wall, and a portion of each second wall external surface includes a fluid seal which may be provided as a coupling flange formed together for being brought into apposition with a portion of the first wall internal surface forming a fluid seal between the plurality of various shaped flexible components, thus defining a fluid-holding interior where fluid is received between the first wall and the second wall.
The fluid-holding interior between the plurality of flexible components first and the second wall external surfaces are brought into apposition in use to allow for a partial vacuum sufficient for a lower relative internal pressure inside the fluid-holding interior for creating a suction force that moves fluid into the fluid-holding interior within the plurality of flexible components. The fluid seal with the plurality of flexible components which may be provided as a coupling flange formed with a portion of each second wall external surface is brought into apposition with a portion of each first wall internal surface of the plurality of flexible components. The reusable toy capsule with fluid in the fluid-holding interior may be maintained structurally through the mechanical structural integrity of the flexible components, which may be assisted due to hydrostatic pressure of the fluid pushing against the walls to generate surface tension at the fluid-holding interior within the plurality of flexible components. The seal is sufficient to create a partial vacuum that holds the capsule together. The capsule 10 can be thrown or propelled from say a toy gun and it will only break apart on impact releasing the contained water. A soft construction means a substantive amount of the kinetic energy of a throw is released in a splash in a manner to rival throwing a filled water-balloon advantageously without the litter made by water-balloons that need to be collected, recycled or thrown away.
Filling is achieved through the suction force created relative to pressure differential for lower internal pressure for suction force drawing water into ball via partial vacuum relates to the partial vacuum being sufficient for a lower relative internal pressure inside the ball creating a suction force that moves water into the capsule. (Fill relative to pressure differential for lower internal pressure for suction force moving water into capsule) as sufficient for the said capsule to hold a fluid. The partial vacuum relates to the partial vacuum being sufficient for a lower relative internal pressure inside the capsule creating a suction force that moves water into the capsule. (Fill relative to pressure differential for lower internal pressure for suction force moving water into capsule.) Then, separately as to maintaining (holding fluid) after the capsule is filled, appears to be hydrostatic pressure of the water pushing out, i.e. pushing against the walls generates surface tension. Suction is the force that a partial vacuum exerts upon a solid, liquid, or a gas. Removing air from a space results in this pressure differential. Suction pressure is therefore limited by external air pressure. The pressure differential of the surrounding environment (water) pressure being relatively greater than the lower internal pressure where the air is removed, results in water in the higher pressure environment exerting a force relative to the lower internal pressure of the capsule. With the capsule submerged and compressed, air is expressed and water comes in because it seeks to fill a void not necessarily due to vacuum. Once recovery of the wall commences, it is believed the water may accelerate filling due to expansion of the walls and pulling in of the water (suction).
The toy capsule can be filled with water in a number of ways which include:
(1). To fill the toy capsule with water the interlocking sealing components are first joined to create a capsule. The capsule can then be compressed whilst under water to purge the contained air. This deforms the capsule and breaks the seal allowing water to enter the capsule. Then by releasing from compression the capsule returns to its original sealed shape;
(2). The capsule also can be filled by deforming the capsule and holding it under a running tap, e.g.,
(3). Further, the capsule can also be filled by assembling the components under water
Turning to the embodiments of
A further embodiment may additionally include a “surprise toy” within the capsule adding functional use of packaging for additional surprise toys wherein a small toy such a toy car, ball, jacks games or other small objects may be sold/packaged as housed within the two capsule halves when sold together, additionally enabling the water capsule toy to be used for the function of packaging.
Turning to
The fillable water game toy structures may be provided in multiple forms and sizes, e.g., a 50-millimeter capsule size for capsule toy deployments and a larger 65-millimeter tennis ball size for the full balloon exploding experience and enjoy water balloons and capsule toys. There are a variety rubber types and methods, both vulcanizing and non-vulcanizing that may be employed to make this reusable water toy capsule 10. Advantageous identified materials were considered to include plastics and soft rubber-like materials such as polyvinyl chloride (PVC), thermoplastic rubber or elastomers (TPR or TPE) resins or other composites formed of any material, blends, mixtures, or combinations such that the soft projectile has a Shore A hardness value of about 20 to about 55, about 25 to about 50, about 30 to about 45, or about 35 to about 40. Ball examples tested include 2, 3, 4 mm ball thickness; other suitable values may include about 1, 2, 3, 4, 5, 6, 7, or 8 mm thicknesses. Batches of testing samples considered in different materials/thickness/hardness testing data on PVC, TPR and TPE, with “softness” of the materials include, e.g.: PVC/50 degree-1, 2, 3, 4 mm ball thickness; TPR/50 degree-1, 2, 3, 4 mm ball thickness; TPE/40 degree-1, 2, 3, 4 mm ball thicknesses. Material durometer hardness of 30, 40, 50 generally with materials, e.g. TPR/TPE 30, 40, 50, PVC 30, 40, 50 and the like with wall thicknesses of 1.25 mm, 1.5 mm, 1.75 mm, and 2.0 mm are also found to work. Examples identify a number of differing options are being considered as potential PVC, TPR or TPE materials. TPE: e.g. manufacturer Terinseo™ bio TPE introduction, the distributor Plastech HK™ resin samples. PVC: e.g. manufacturer Grandtec™ green PVC, using hardness Shore A 40 green PVC commercially available.
Balancing less material in the mold/sufficient break-apart on impact, specifics of the composition of the capsule including the specific range of materials that could be used, the range of possible wall thickness expected to be used and any alternative configurations. Prototyped 2 mm, 3 mm & 4 mm wall thicknesses and defined PVC and TPE as the materials, where 2 mm wall thickness proved in testing to be the best performing and useless material, has less weight and contributes to best performance. Such may be made from soft plastic materials that present none of the safety concerns of undue shore hardness by molding with “bio-TPE” of hardness shore A 35 and 40 in 2 mm thickness.
A variety of different reusable toy capsule apparatus have been disclosed including a pair of flexible components, each with a first wall having a first wall edge and a first wall external surface in the shape of a half sphere curved surface and a first wall internal surface thereof; a second wall having a second wall edge and a second wall external surface in the shape of a quarter sphere curved surface and a second wall internal surface thereof, said second wall integrally formed with said first wall together as a curved surface in the shape of a three-quarter sphere and defining an opening between the first wall edge and the second wall edge with a fluid-holding interior; and a fluid seal formed with said pair of flexible components where a portion of each second wall external surface is brought into apposition with a portion of each first wall internal surface of said pair of flexible components. The reusable toy capsule apparatus further wherein the portion of each second wall external surface comprises a coupling flange for being brought into apposition with the portion of the first wall internal surface. The reusable toy capsule apparatus wherein the first wall edge comprises a primary sealing edge, and the second wall edge comprises a secondary sealing edge.
The reusable toy capsule apparatus may further include at least one rib on the first wall internal surface where the a secondary sealing edge engages said at least one rib when portion of each second wall external surface is brought into apposition with a portion of each first wall internal surface of said pair of flexible components. The reusable toy capsule apparatus including a plurality of ribs on the first wall internal surface. The reusable toy capsule apparatus further having one or more ribs on the second wall internal surface.
Also a reusable toy capsule methods have been disclosed providing a pair of flexible components, each having a first wall with a first wall external surface and a first wall internal surface thereof, and having a second wall with a second wall external surface and a second wall internal surface thereof; disposing the second wall integrally together with the first wall; defining a fluid-holding interior; receiving fluid between the first wall and the second wall; and forming a fluid seal with the pair of flexible components where a portion of each second wall external surface is brought into apposition with a portion of each first wall internal surface of the pair of flexible components. The reusable toy capsule methods further wherein the step of receiving fluid into the fluid-holding interior between the pair of flexible components first and the second wall external surfaces brought into apposition further comprises providing a partial vacuum sufficient for a lower relative internal pressure inside the fluid-holding interior for creating a suction force that moves fluid into the fluid-holding interior within the pair of flexible components. The reusable toy capsule methods can provide a first wall edge at the first wall of each flexible component, and provide a second wall edge the second wall of each flexible component defining an opening into each flexible component between the first wall edge and the second wall edge. The reusable toy capsule methods can provide a primary sealing edge along the first wall edge, with the portion of each second wall external surface brought into apposition with the portion of the first wall internal surface with the second wall edge providing a secondary sealing edge, and maintaining fluid in the fluid-holding interior with hydrostatic pressure of the fluid pushing against the walls to generate surface tension at the fluid-holding interior within the pair of flexible components.
From the foregoing, it can be seen that there has been provided a unique mechanical toy apparatus operated as an amusement device in the general form of a reusable exploding water toy capsule in a way that is simple yet unique and exciting for a user. While a particular embodiment of the present invention has been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects. Therefore, the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of the invention. The matter set forth in the foregoing description and accompanying drawings is offered by way of illustration only and not as a limitation. The actual scope of the invention is intended to be defined in the following claims when viewed in their proper perspective based on the prior art.
This application claims priority pursuant to 35 U.S.C. 119(e) or 120 from U.S. Provisional Application No. 63/039,499 filed Jun. 16, 2020 for inventions disclosed therein.
Number | Name | Date | Kind |
---|---|---|---|
4212460 | Kraft | Jul 1980 | A |
4886273 | Unger | Dec 1989 | A |
4991847 | Rudell | Feb 1991 | A |
5240450 | Graham | Aug 1993 | A |
5254379 | Kotsiopoulos | Oct 1993 | A |
5538456 | Liu et al. | Jul 1996 | A |
5688567 | Daulton | Nov 1997 | A |
5848946 | Stillinger | Dec 1998 | A |
5975983 | Panec | Nov 1999 | A |
6527616 | Li | Mar 2003 | B1 |
6533637 | Liao | Mar 2003 | B1 |
6585555 | Wong et al. | Jul 2003 | B2 |
7481727 | Chia | Jan 2009 | B2 |
9315282 | Malone | Apr 2016 | B2 |
20110003655 | Chernick et al. | Jan 2011 | A1 |
20130118640 | Saggio | May 2013 | A1 |
Number | Date | Country |
---|---|---|
201543247 | Aug 2010 | CN |
20000018398 | Mar 1999 | KR |
Entry |
---|
PCT/US21/37441 ISR Transmittal, Written Opinion, and ISA Search 1-769 PCT papers dated Sep. 23, 2021. |
Number | Date | Country | |
---|---|---|---|
20210387105 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
63039499 | Jun 2020 | US |