Various types of content may be displayed on a computing device as two axes of information organized into a grid layout of cells such that each cell contains a content item. Such a grid may be used for calendar views, television schedules and other types of schedules, timelines and spreadsheets.
In some cases, a grid of information displayed on a computing device may be uniform in that the cells are equal in size. In other cases, a grid may be non-uniform in that the cells are of different sizes, and start and/or end in different locations along the axes of information. Depending on the size of a given cell, a content item displayed within that cell may be truncated based on the size of the cell.
Various embodiments related to the revealing of truncated content on a scrollable grid of content are disclosed herein. For example, one disclosed embodiment provides a computing device comprising a display, a processor, and memory comprising instructions executable by the processor to display a cell of a grid of content at a first, smaller size and display in the cell a content item that is truncated based upon the first, smaller size of the cell. The computing device is further configured to receive a request to scroll the grid, and scroll the grid on the display device. During scrolling, the size of the cell is increased to a second, larger size, and a revealing of a truncated portion of the content item is animated.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.
As described above, various types of content may be displayed on a computing device as a grid of information. In some cases, including but not limited to media programming guides, spreadsheets with merged cells, etc., such grids may be non-uniform in that not all grids share common side boundaries. Therefore, content items in the grid may be affected in different manners by a scrolling operation, depending upon the size and boundary locations of the cell in which the content items are found. For example, where a grid is being scrolled from left to right, (i.e. to reveal earlier time slots in a media programming guide), content in a cell may either be moved from left to right across the grid where the left boundary of the cell is visible, or may remain in place where the left boundary of the cell has not vet come into view. In the case where the left boundary has not yet come into view, the size of the cell increases as left-to-right scrolling continues, thereby allowing the cell to hold more displayed content. In this case, truncated content, such as movie titles, etc., that did not fit in the cell at a smaller size may fit within the cell at the larger size. Therefore, various embodiments are disclosed herein related to the revealing of truncated content in a grid during scrolling.
Continuing with
Next, at 106, method 100 includes receiving a request to scroll the grid. In some cases, such a request may be received from an input device such as a mouse, touchpad, trackball, etc. In other cases, the display device may be a touch-sensitive display device, such that a request to scroll the grid may be received from an object configured to interact with the display device, such as a user's finger, a stylus, etc.
Upon receiving the request to scroll the grid, at 108 method 100 next includes scrolling the grid on the display device. For such input devices as described above, scrolling the grid may include scrolling by tracking the motion of a cursor displayed on the display device that is controlled by a mouse, touchpad, trackball or other such input device. Likewise, where the display device is a touch-sensitive display device, the scrolling may track a movement of a location of the user's finger on the touch-sensitive display device. Further, in some embodiments, scrolling the grid may include inertially scrolling the grid, where scrolling continues after cessation of a touch input at a rate initially proportional to the speed of the motion of the touch input across the display surface. It will be understood that the term “scrolling” as used herein may denote pixel-by-pixel scrolling, rather than discrete scrolling that jumps between boundaries defined by the grid. Such pixel-by-pixel scrolling may appear as a smooth, continuous movement of the grid, whereas discrete scrolling between grid boundaries may appear to be a more discontinuous, choppier movement.
Next, at 110, method 100 includes, during scrolling, increasing the size of the cell to a second, larger size. For example, in the case of the media programming guide discussed above, scrolling may include viewing programming at prior and/or upcoming times by scrolling the grid to display programming at these other times. Further, in some embodiments, the size of the cell may be increased to the second, larger size by scrolling in a horizontal direction and by increasing a horizontal size of the cell. In other embodiments, the size of the cell may be increased to the second, larger size by scrolling in a vertical direction and by increasing a vertical size of the cell.
Next, at 112, method 100 includes animating a revealing of a truncated portion of the content item based upon the second, larger size of the cell. For example, the second, larger size of the cell may allow more of a content item to be shown within the cell than allowed by the first, smaller size of the cell. In the case of the truncated movie title described above, a user may have scrolled to view an additional hour of the media programming guide and as such, increased the cell size displaying the movie title. This allows a previously truncated portion of the title to now be revealed. Currently, such grids often simply refresh content shown in such a cell after the cell expands. This may appear to a user as a sudden, discontinuous process. By animating the revealing of the content (such that the truncated content is progressively brought into view), a smoother user experience may be provided.
In some embodiments, animating the revealing of the truncated portion of the content item may include revealing the truncated portion upon completion of scrolling. An example of such an embodiment is shown in
Next,
Accordingly, at a next time step,
As described above and shown in
First,
Next,
Next,
It will be appreciated that the computing device 400 may be any suitable computing device configured to perform the methods described herein via the execution of programs. For example, the computing devices may be a mainframe computer, personal computer, laptop computer, personal digital assistant (PDA), computer-enabled wireless telephone, networked computing device, or other suitable computing device, and may be connected to each other via computer networks, such as the Internet. These computing devices typically include a processor and associated volatile and non-volatile memory, and are configured to execute programs stored in non-volatile memory using portions of volatile memory and the processor. As used herein, the term “program” refers to software or firmware components that may be executed by, or utilized by, one or more computing devices described herein, and is meant to encompass individual or groups of executable files, data files, libraries, drivers, scripts, database records, etc. It will be appreciated that computer-readable media may be provided having program instructions stored thereon, which upon execution by a computing device, cause the computing device to execute the methods described above and cause operation of the systems described above.
It should be understood that the embodiments herein are illustrative and not restrictive, since the scope of the invention is defined by the appended claims rather than by the description preceding them, and all changes that fall within metes and bounds of the claims, or equivalence of such metes and bounds thereof are therefore intended to be embraced by the claims.
Number | Name | Date | Kind |
---|---|---|---|
5119079 | Hube et al. | Jun 1992 | A |
6271835 | Hoeksma | Aug 2001 | B1 |
6377285 | Doan et al. | Apr 2002 | B1 |
6839575 | Ostergaard | Jan 2005 | B2 |
7032181 | Farcasiu | Apr 2006 | B1 |
7117441 | Allport | Oct 2006 | B2 |
7216291 | Kim | May 2007 | B2 |
7257776 | Bailey et al. | Aug 2007 | B2 |
7305617 | McCully | Dec 2007 | B2 |
7725815 | Peters | May 2010 | B2 |
7907974 | Brinda et al. | Mar 2011 | B2 |
20020013165 | Ostergaard | Jan 2002 | A1 |
20030117427 | Haughawout et al. | Jun 2003 | A1 |
20030217074 | Wallace | Nov 2003 | A1 |
20050094207 | Lo et al. | May 2005 | A1 |
20050251825 | Fukuda et al. | Nov 2005 | A1 |
20060150078 | Brookler et al. | Jul 2006 | A1 |
20060253775 | Ovetchkine et al. | Nov 2006 | A1 |
20070130502 | Tolgu et al. | Jun 2007 | A1 |
20090133063 | Sparrell | May 2009 | A1 |
Number | Date | Country |
---|---|---|
100561608 | Mar 2006 | KR |
100616103 | Aug 2006 | KR |
Number | Date | Country | |
---|---|---|---|
20100175023 A1 | Jul 2010 | US |