1. Field of the Invention
Embodiments of the invention generally relate to apparatus and methods for performing reverse flow (e.g. cementing) operations. In particular, embodiments of the invention relate to a reverse flow (e.g. cementing) valve.
2. Description of the Related Art
One or more casings may be cemented in a wellbore by utilizing what is known as a reverse cementing method. The reverse cementing method comprises pumping conventionally mixed cement into the annulus between the casing string and an existing string or an open hole section of the wellbore. As the cement is pumped down the annular space, drilling or other wellbore fluids ahead of the cement are displaced around the lower ends of the casing string and up the inner bore of the casing string and out at the surface. A predetermined amount of cement is pumped into the annulus to ensure a good quality cement job.
In some wellbore completion operations, such as a multi-zone open hole (MZOH) completion, a work string comprising a fracturing sleeve and one or more packers may be used to conduct a fracturing operation to treat or stimulate the formation surrounding the well. It is generally desired to cement the vertical section of the wellbore above the area where the fracturing operation is to take place, without passing any cement through the fracturing sleeve or packers. The cementing operation should be done without creating additional leak paths through the work string, or compromising the work string integrity above the packers. The operation should also be done without the requirement for any drill-out operations between cementing and fracturing, which increase the time and cost of the overall completion operation. Other operational considerations include the necessity to displace drilling or other wellbore fluids prior to or while cementing, and the desire to initiate operation of one or more tools on the work string by deploying a single ball into the flow through the work string, and then use only fluid flow (e.g. no intervention devices or further actuation devices such as balls) for additional operational stages.
Historically, although reverse cementing has been used to keep cement out of the work string, prior reverse cementing methods typically either create a leak path in the work string for fluid flow such as with use of a port collar, or cannot be run with fracturing sleeves in place. Stage collars have been used, but they require a drill-out operation after use and are not as robust as standard threaded connections. Another less than ideal solution has been to cement the entire wellbore, and to use fracturing sleeves that require mechanical intervention for actuation rather than standard ball actuated sleeves.
Therefore, there exists a need for new and improved methods and apparatus for conducting reverse flow or cementing operations.
In one embodiment, a valve assembly may comprise an outer housing having one or more ports; a closing sleeve movable in one direction using pressurized fluid to close fluid flow through the ports; and a locking device operable to temporarily secure the closing sleeve to the outer housing, wherein the locking device is movable in an opposite direction using pressurized fluid to release the closing sleeve from engagement with the outer housing.
In one embodiment, a method of conducting a wellbore operation may comprise providing a valve assembly for operation in a wellbore using a work string; moving an opening sleeve of the valve assembly using pressurized fluid supplied through the work string to open fluid flow through one or more ports; moving a locking device of the valve assembly using pressurized fluid supplied from an annulus surrounding the valve assembly through the one or more ports to release a closing sleeve of the valve assembly; and moving the closing sleeve using pressurized fluid supplied through the work string to close fluid flow through the one or more ports.
In one embodiment, a valve assembly may comprise an outer housing having one or more ports; a closing sleeve movable in one direction from an open position to a closed position to close fluid flow through the ports; and a locking device operable to temporarily secure the closing sleeve in the open position and movable in an opposite direction to release the closing sleeve for movement to the closed position.
In one embodiment, a valve assembly may comprise an outer housing having one or more ports; a closing sleeve movable from an open position to a closed position to close fluid flow through the ports, the closing sleeve temporarily secured in the open position using a fixing member; and a locking device temporarily retaining the fixing member to maintain the closing sleeve in the open position, wherein movement of the locking device in one direction releases the fixing member, thereby enabling the closing sleeve to move in an opposite direction towards the closed position.
In one embodiment, a valve assembly may comprise an outer housing having one or more ports; a closing sleeve movable from an open position to a closed position to close fluid flow through the ports; and a locking device operable to temporarily disallow movement of the closing sleeve to the closed position, wherein the locking device is movable in one direction to allow movement of the closing sleeve in an opposite direction to the closed position.
In one embodiment, a valve assembly may comprise an outer housing having one or more ports; a closing sleeve having an open position in which fluid flow through the ports is permitted and a closed position in which fluid flow through the ports is prevented; and a locking device temporarily retaining the closing sleeve in the open position, wherein the locking device is movable in one direction to release the closing sleeve, and wherein the closing sleeve moves in an opposite direction from the open position to the closed position.
So that the manner in which the above recited features of the invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Embodiments of the invention relate to a reverse flow or cementing valve assembly 100 for use in a (open hole or cased) wellbore. The valve assembly 100 may be disposed on a work string below one or more fracturing sleeves and/or packers operable to conduct a fracturing operation in a wellbore. One or more float valves (such as one-way check valves) may also be coupled to the work string below the valve assembly 100 for allowing fluid flow out of the work string and into the wellbore, while preventing fluid flow from the wellbore back into the work string. The work string may be run into the wellbore while circulating fluid forward through the work sting and into the wellbore, which is generally done to displace any drilling or other wellbore fluids with a desired fluid, such as a conditioning fluid or a fracturing fluid. This forward circulation and displacement of wellbore fluids is also known as conditioning the well. In one embodiment, the work string and valve assembly 100 may be run-in and positioned at the desired location within the wellbore, and then fluid may be circulated therethrough to condition the well. The valve assembly 100 may be positioned and operable in a vertical, lateral, or horizontal section of the wellbore.
The outer housing 20 may support a locking device 40, a closing device 50, an opening device 60, and a hydraulic lock compensation assembly 70. The locking device 40 is operable to prevent the valve assembly 100 from being actuated prematurely into the final closed position illustrated in
Referring to
The locking device 40 may further include an inner sleeve member 44 for supporting the flapper valve 47, and an upper housing 41 for supporting the sleeve member 44. The sleeve member 44 may be biased by a biasing member 45 (such as a spring), which is disposed between the sleeve member 44 and a retaining member 46 coupled to the lower end of the upper housing 41. One or more dog (fixing) members 42 are movably disposed through the upper end of the upper housing 41, and temporarily secure the sleeve member 44 in the upper housing 41. A compressible ring member 43 (or other similar type of detent mechanism) may be coupled to the upper housing 41 and extends into a recess 81 of the outer housing 20. The ring member 43 resists movement between the upper housing 41 and the outer housing 20.
In one embodiment, the flapper valve 47 may be a tri-flapper valve assembly, and may permit fluid flow in one direction while preventing or substantially restricting fluid flow in the opposite direction. The flapper valve 47 may be biased into a closed position by a spring or other similar biasing member. Pressurized fluid flow in one direction may overcome the bias of the spring to open and permit fluid flow through the flapper valve 47 as illustrated in
The closing device 50 may also include another flapper valve 51, and a flapper valve seat 52 coupled to a closing sleeve member 55 by a retaining member 53. The flapper valve 51 is held in an open position by the upper housing 41 of the locking device 40. One or more dog (fixing) members 54 are movably disposed through an upper end of the closing sleeve member 55, and extend into a recess 83 in the outer housing 20 to temporarily secure the closing sleeve member 55 to the outer housing 20. The dog members 54 are temporarily secured in the recess 83 by the upper housing 41 and/or the retaining member 46 of the locking device 40. One or more seals 56A, 56B, 56C, such as o-rings, are coupled to the closing sleeve member 55 and sealingly engage the outer housing 20. The closing sleeve member 55 includes one or more ports 58 that are aligned with and/or are in fluid communication with the ports 21 of the outer housing when the valve assembly 100 is in the run-in position. A retaining member 57 may be threadedly coupled to the lower end of the closing sleeve member 55. The retaining member 57 may also be releasably coupled to a ratchet member 64 by one or more releasable members 69, such as shear screws. A ratchet ring 59 may be disposed between the retaining member 57 and the ratchet member 64. The ratchet ring 59 engages teeth formed on the inner surface of the retaining member 57 and teeth formed on the outer surface of the ratchet member 64 to permit relative movement between the retaining and ratchet members in one direction, while preventing movement in the opposite direction. Upon release of the releasable members 69, the retaining member 57 and thus the closing sleeve member 55 are moveable in a downward direction to close fluid communication through the ports 21 of the outer housing 20.
The opening device 60 may further include one or more seals 62A, 62B, such as o-rings, coupled to the opening sleeve member 63 that sealingly engage the closing sleeve member 55. The ratchet member 64 may be releasably coupled to the opening sleeve member 63 by one or more releasable members 66, such as shear screws. A ratchet ring 65 may be disposed between the opening sleeve member 63 and the ratchet member 64. The ratchet ring 65 engages teeth formed on the outer surface of the opening sleeve member 63 and teeth formed on the inner surface of the ratchet member 64 to permit relative movement between the sleeve and ratchet members in one direction, while preventing movement in the opposite direction. Upon release of the releasable members 66, the opening sleeve member 63 is moveable in a downward direction to open fluid communication through the ports 21 of the outer housing 20 and the ports 58 of the closing sleeve member 55. The ratchet member 64 may be supported at a lower end by the lower housing 67, which may be threadedly coupled to the lower sub 30.
The hydraulic lock compensation assembly 70 may include a mandrel 71 threadedly coupled to the lower housing 67, and a plug member 72 and a biasing member 73 (such as a spring) secured in the mandrel 71 by a retaining member 74. The biasing member 73 biases the plug member 72 against an inner shoulder of the mandrel 71, which includes a bore in fluid communication with outer housing 20. The plug member 72 is sealingly disposed in the mandrel 71 and prevents fluid flow through the mandrel 71. The hydraulic lock compensation assembly 70 may be provided to compensate for any hydraulic lock that may occur within the valve assembly 100, such as when actuated into the final closed position and the opening sleeve member 63 is moved downward and sealingly engages one or more seals 75 (such as o-rings) coupled to the mandrel 71 as illustrated in
When the valve assembly 100 is in the open position, a reverse, pressurized fluid flow may be used to actuate the locking device 40 into an open position to thereby open fluid flow through the valve assembly 100 as illustrated in
Once the locking device 40 has been stroked upward, the flapper valve 51 is released and may close against the flapper valve seat 52 (as illustrated in
Referring to
After the valve assembly 100 is actuated into the final closed position and/or the cementing operation is complete, the inner bore of the work string may be pressurized to actuate one or more other tools coupled to the work string above the valve assembly 100, the other tools including but not limited to packers, fracture sleeves, and/or other valves. For example, after the valve assembly 100 is actuated into the final closed position, the work string may be pressurized to actuate one or more (open hole) packers into engagement with the wellbore to conduct a fracturing operation, and/or one or more (liner-top) packers to maintain the cement within a desired section of the wellbore. The pressurized fluid may also actuate a sleeve or valve to open communication through the work string adjacent an area of interest for conducting the fracturing operation. A fracturing fluid may be supplied through the work string and into the area of interest to conduct the fracturing operation. The fracturing fluid may be prevented from flowing up or down the annulus by the surrounding packers. In one embodiment, one or more of the valve assembly 100 components may be formed from a drillable material, such that the assembly may be drilled out of the wellbore if desired.
Based on the description above, the work string and the valve assembly 100 enable forward circulation through the valve assembly 100 and one or more float (check) valves disposed below, and out the end of the work string when running the assembly into the well. When positioned in the desired location, fluid flow through the valve assembly 100 may be prevented or substantially restricted by dropping the closure member 80 onto the seat of the opening sleeve member 63 to open fluid communication through the ports 21, 58 of the valve assembly 100. Reverse circulation from the annulus through the ports 21, 58 allows cementing of a desired section of the wellbore above the valve assembly 100, and actuates the locking device 40 to release the flapper valve 51 and enable closing of the valve assembly 100. The flapper valve 51 prevents or substantially restricts fluid flow through the valve assembly 100, so that the work string above can be pressurized to move the valve assembly 100 to the final closed position and to actuate one or more other tools coupled to the work string.
Advantages of the embodiments described herein include enabling a cementing operation to be conducted with standard (MZOH) packers and ball actuated fracturing sleeves; and no drill-out operations required between cementing and fracturing, resulting in improved operational efficiencies and cost savings. Other advantages include maintaining the integrity of the work string above all packers and fracturing sleeves, rather than being compromised by a port collar or other similar device which can create a leak path in the work string above the packers; and not requiring cementing of the entire wellbore length, including any horizontal or lateral portions of the wellbore.
While the foregoing is directed to embodiments of the invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.