The present invention generally relates to a reverse die cutting insert and method of using the same. Specifically, the present invention relates to a reverse die cutting insert used in a die converting process which makes for a reverse or inside cut on a converted material.
It is noted that the die converting process is a suitable process for a variety of substrates including, but not limited to, plastic, paperboard, and Mylar. However, for purposes of this application, the paperboard converting process will be used as an example.
Generally, in the paperboard industry, a reverse cut, or “rev cut” as known in the industry, may be desired to provide an offset partial cut on both sides of a converted substrate, thereby providing for a tear open feature which can facilitate the opening of cartons and can further provide an element of control by dampening the opening of a carton. Presently, reverse cut scores, having a planar portion with a linearly aligned blade extending therefrom, are positioned in a milled-out cavity or channel formed in a counter die. A reverse cut score is a chemically etched steel plate which usually includes a straight cutting edge that is used to cut an inside surface of a blank in a die converting process. In milling the channels in the counter die, it is difficult to provide a smooth and even bottom surface of the channel, such that it is often difficult to get the depth and dimensions within a needed tolerance for a particular job. The non-uniform channels make for extensive and precise milling which is time consuming in order to provide a flat and even bottom to the channel that will properly receive a straight-lined reverse cut score. Further, it is expensive to mill these channels to a precise depth and dimension on the counter die to provide appropriate channel dimensions. In the die converting process, it is necessary to be able to repeat a die converting step numerous times once the counter die is set in a “make ready” state. Currently, when a reverse cut score is placed in a milled channel on the counter die, an adhesive is used to help retain the reverse cut score in place. During the die converting process, the counter die can heat up and cause the adhesive to become warm and reconstitute which leads to inadvertent repositioning of the reverse cut score within the channel. This movement of the reverse cut score causes manufacturers to “lose the cut”, such that significant down time is necessary in order for a manufacturer to reposition the reverse cut score within the counter die channel to provide a proper cut. Further, the straight blades found in present day reverse cut scores are difficult to place in custom rev cut jobs that call for any number of arching or angled rev cuts.
Thus, it is necessary to provide a method of reverse cutting in a die converting process, wherein the reverse cut is easily and cost effectively customizable and readily configured and properly retained on a counter die for high volume repeated cycles.
One aspect of the present invention includes a counter die having a relief or aperture disposed therethrough, wherein the aperture is adapted to receive an insert. The insert includes a body portion and a raised blade portion extending upwardly from the body portion such that the blade portion is adapted to provide a reverse cut to an inside substrate as used in the die converting process.
Another aspect of the present invention includes a reverse die cutting apparatus for use with a substrate in a die converting process. The apparatus includes a counter die having a generally planar body portion and a receiving aperture disposed through the planar body portion. The receiving aperture includes a geometric configuration relative to an outer perimeter. An insert having a generally planar body portion, includes a geometric configuration disposed about its outer perimeter that is complementary to the geometric configuration of the receiving aperture. In this way, the insert is configured to be received within the receiving aperture disposed through the generally planar body portion of the counter die. One or more blades extend outwardly from the generally planar body portion of the insert, and the insert, as received in the receiving aperture of the counter die, is configured to provide a reverse cut to a substrate during a die converting process.
Another aspect of the present invention includes a method of providing a reverse cut in a substrate in a die converting process. The method includes the steps of providing a counter die having a generally planar body portion and forming a receiving aperture through the body portion of the counter die. The receiving aperture is formed having a first geometric configuration disposed about an outer perimeter. The method further includes the step of providing an insert having a generally planar body portion and having a second geometric configuration disposed about an outer perimeter, wherein the second geometric configuration is complementary to the first geometric configuration of the counter die. One or more blade portions are formed on the insert, and the insert is positioned in the receiving aperture of the counter die. The counter die and insert are then positioned in a die press where a substrate is converted, such that the blade portions of the insert provide a reverse cut on an underside of the substrate during the converting step.
Another aspect of the present invention includes a reverse die cutting apparatus for use with a substrate in a die converting process. A counter die, having a generally planar body portion, includes a top surface and a bottom surface. A receiving aperture is disposed through the planar body portion, and includes a first geometric configuration relative to its outer perimeter. An insert includes a generally planar body portion and a second geometric configuration disposed about an outer perimeter. The second geometric configuration is complementary and smaller than the first geometric configuration of the receiving aperture. As such, the insert is received within the receiving aperture disposed through the generally planar body portion of the counter die. One or more blades extending outwardly from the generally planar body portion of the insert and are raised relative to the top surface of the counter die in assembly.
Yet another aspect of the present invention includes a method of providing a reverse cut in a die converting process which includes the steps of providing a counter die having one or more apertures disposed therethrough, inserting an insert into one of the apertures disposed on the counter die, such that the insert is frictionally fit within the associated aperture, providing a blade portion on the insert, wherein the blade portion is adapted to provide a reverse cut to a substrate in a die converting process.
These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.
For the purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” “top,” “bottom” and derivates thereof shall relate to the invention as orientated in
Referring now to
Referring now to
Referring now to
Referring now to
As noted above, the counter die 10, having an insert 20 received therein, must be capable of repeated stampings in a die converting process. Generally, as noted above, receiving aperture 14 disposed on the counter die 10 is configured to essentially mirror the overall configuration of the insert 20, thereby providing a proper fit and alignment of the insert 20 in receiving aperture 14 in such a way that the insert 20 is retained in receiving aperture 14. However, the insert 20 must also have a certain amount of float in relation to receiving aperture 14, such that the insert 20 is easily placed in receiving aperture 14 by the die converter.
Referring now to
Referring now to
Thus, the present invention provides for an insert which can be customized to have a blade extending therefrom for use in a reverse cutting process. Thus, the insert can be milled to have any configuration necessary to provide a blade with a specific configuration needed for a particular job. Thus, it is contemplated that the insert 20 shown in
The present invention eliminates these factors by providing an aperture, which is cut directly through the counter die, thereby making for an easier cut-through process as compared to milling a channel to a specific depth in a relatively thin counter die. Cutting straight through the counter die, such as counter die 10 shown in
A method of providing a reverse cut in a substrate in a die converting process using the present invention includes providing a counter die, such as counter die 10 described above having a generally planar body portion 12. A receiving aperture 14 is formed therethrough by cutting the counter die using a suitable cutting process. The receiving aperture 14 has a first geometric configuration disposed about an outer perimeter OP1 thereof. An insert 20 is provided having a generally planar body portion 22 with a second geometric configuration disposed about an outer perimeter OP2 of the insert 20. In this method, the second geometric configuration OP2 of the insert is complementary to the first geometric configuration OP1 of the counter die 10. One or more blade portions 24a, 24b are formed on the insert 20 by milling or other like forming process. The insert 20 is then positioned within the receiving aperture 14 of the counter die 10 on a die press. A substrate is then converted in the die press, such that the blade portions 24a, 24b of the insert provide a reverse cut on an underside of the substrate during the die converting process.
It will be understood by one having ordinary skill in the art that construction of the described invention and other components is not limited to any specific material. Other exemplary embodiments of the invention disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
This application claims the benefit under 35 USC §119(3) of U.S. Provisional Application No. 61/810,474, filed Apr. 20, 2013, entitled REVERSE DIE CUTTING INSERT AND METHOD, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61810474 | Apr 2013 | US |