The present technology is generally related to systems and methods for generating electrical power and/or hydrogen from thermal energy.
Salinity gradient power is the energy created from the difference in salt concentration between two fluids, commonly fresh and salt water that naturally occurs, e.g., when a river flows into the sea. Reverse electrodialysis (RED) can be used to retrieve energy from the salinity gradient, e.g., by passing a salt solution and fresh water through a stack of alternating cation and anion exchange membranes. The chemical potential difference between the salt and fresh water generates a voltage over each membrane and the total potential of the system is the sum of the potential differences over all membranes. An open-loop RED battery requires a continuous source of salt and fresh water to maintain the salinity gradient. This constraint may limit practical locations of commercial-scale RED batteries. Furthermore, open-loop RED batteries are susceptible to contamination from minerals, microbes, or other foreign objects or material in the sources of water. Closed-loop RED cells do not require continuous sources of concentrated and dilute saline solutions but do require ongoing regeneration of the salinity difference between the concentrated and dilute solutions which can be energy intensive and/or inefficient.
This document describes methods and systems that are directed to addressing the problems described above, and/or other issues.
The details of one or more aspects of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the techniques described in this disclosure will be apparent from the description and drawings, and from the claims.
The present disclosure describes embodiments related to generating electrical power from thermal energy.
A reverse-electrodialysis system includes an anode, a cathode, and one or more cells disposed between the anode and the cathode. At least one of the one or more cells includes a first membrane configured to be selectively permeable to cations and a second membrane configured to be selectively permeable to anions, the second membrane spaced apart from the first membrane. The cell further includes a concentrated saline solution disposed between the first membrane and the second membrane, the first and second membranes separating the concentrated saline solution from a dilute saline solution such that the first membrane selectively allows cations to migrate toward the cathode and the second membrane selectively allows anions to migrate toward the anode, causing a voltage difference between the cathode and the anode. The reverse-electrodialysis system further includes a heat source configured to transfer thermal energy to the concentrated saline solution or the dilute saline solution and a regeneration system including a heat pump. The regeneration system is configured to receive the dilute saline solution from the at least one of the one or more cells and remove (by the heat pump) thermal energy from the dilute saline solution, causing the dilute saline solution to precipitate a salt. The regeneration system is further configured to, after causing the dilute saline solution to precipitate the salt, circulate the dilute saline solution to the at least one of the one or more cells, introduce the precipitated salt into the concentrated saline solution, and cause the precipitated salt to dissolve in the concentrated saline solution.
Implementations of the disclosure may include one or more of the following optional features. In some implementations, the regeneration system is further configured to transfer at least some of the thermal energy removed from the dilute saline solution back to the dilute saline solution after causing salt dissolved in the dilute saline solution to precipitate. In some implementations, the regeneration system is further configured to transfer at least some of the thermal energy removed from the dilute saline solution to the concentrated saline solution, causing the precipitated salt to dissolve in the concentrated saline solution. The heat source may be configured to transfer thermal energy to the concentrated saline solution, causing the precipitated salt to dissolve in the concentrated saline solution. The concentrated saline solution may include an endothermic solution or an exothermic solution. The concentrated saline solution may include a substance having a solubility with a non-linear temperature dependence. In some examples, the first membrane and the second membrane include ion-exchange membranes. The reverse-electrodialysis system may further include a control system configured to coordinate the transfer of heat between one or more heat sources and the reverse-electrodialysis system based on one or more measurements of a state of the one or more heat sources or the reverse-electrodialysis system. The heat source includes one or more of geothermal heat, industrial waste heat, or solar heat.
In some embodiments, the reverse-electrodialysis system includes a second cell. The second cell may include a third membrane configured to be selectively permeable to cations and a fourth membrane configured to be selectively permeable to anions, the fourth membrane spaced apart from the third membrane. The second cell may include a second concentrated saline solution disposed between the third membrane and the fourth membrane, the third and fourth membranes separating the second concentrated saline solution from a second dilute saline solution. The concentrated saline solution mat includes an endothermic solution, the second concentrated saline solution may include an exothermic solution, and the heat pump may be configured to transfer heat between the concentrated saline solution and the second concentrated saline solution.
In an embodiment, a method of generating electrical power from thermal energy is disclosed. The method includes separating, by a selectively permeable membrane, a first saline solution from a second saline solution. The method includes receiving, by the first saline solution and/or the second saline solution, thermal energy from a heat source. The method includes mixing the first saline solution and the second saline solution in a controlled manner, capturing at least some salinity-gradient energy as electrical power as the salinity difference between the first saline solution and the second saline solution decreases. The method includes transferring, by a heat pump, thermal energy from the first saline solution to the second saline solution, causing the salinity difference between the first saline solution and the second saline solution to increase.
Implementations of the disclosure may include one or more of the following optional features. In some implementations, the method further includes capturing the salinity-gradient energy using reverse electrodialysis. In some implementations, the method further includes capturing the salinity-gradient energy pressure-retarded osmosis driving an electrical generator. In some embodiments, each of the first saline solution and the second saline solution circulate in a closed system. Transferring thermal energy from the first saline solution to the second saline solution may cause the first saline solution to precipitate a salt. The method may further include introducing the precipitated salt into the second saline solution, causing the salinity difference between the first saline solution and the second saline solution to increase. The method may further include using a portion of the generated electrical power to produce hydrogen gas through electrolysis. In some examples, transferring thermal energy from the first saline solution to the second saline solution includes transferring thermal energy from the first saline solution that is cooler than the second saline solution.
The method may further include coordinating the transfer of heat from one or more heat sources to the first saline solution and/or the second saline solution based on one or more measurements of a state of the one or more heat sources or the first saline solution and/or the second saline solution. The heat source may include one or more of geothermal heat, industrial waste heat, or solar heat.
The accompanying drawings, which are incorporated herein and constitute part of this specification, are illustrative of particular embodiments of the present disclosure and do not limit the scope of the present disclosure.
The following discussion omits or only briefly describes conventional features of the disclosed technology that are apparent to those skilled in the art. Reference to various embodiments does not limit the scope of the claims attached hereto. Additionally, any examples set forth in this specification are intended to be non-limiting and merely set forth some of the many possible embodiments for the appended claims. Further, particular features described herein can be used in combination with other described features in each of the various possible combinations and permutations. A person of ordinary skill in the art would know how to use the instant invention, in combination with routine experiments, to achieve other outcomes not specifically disclosed in the examples or the embodiments.
It is also to be understood that the terminology used in the description is for the purpose of describing the particular versions or embodiments only and is not intended to limit the scope of the present disclosure which will be limited only by the appended claims. Unless otherwise specifically defined herein, all terms are to be given their broadest possible interpretation including meanings implied from the specification as well as meanings understood by those skilled in the art and/or as defined in dictionaries, treatises, etc. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. Although any methods, equipment, and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the present disclosure, the preferred methods, devices, and materials are now described. All references mentioned herein are incorporated by reference in their entirety.
As used in the specification and including the appended claims, the singular forms “a,” “an,” and “the” include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It is also understood that all spatial references, such as, for example, horizontal, vertical, top, upper, lower, bottom, left and right, are for illustrative purposes only and can be varied within the scope of the disclosure. For example, the references “upper” and “lower” are relative and used only in the context to the other and are not necessarily “superior” and “inferior”. Generally, similar spatial references of different aspects or components indicate similar spatial orientation and/or positioning, i.e., that each “first end” is situated on or directed towards the same end of the device.
The systems and methods described in this disclosure are generally directed to efficiently extracting usable energy from the difference in salt concentration between two solutions via a precisely orchestrated and controlled mixing of the two solutions. The systems may be used to directly generate electrical power or to generate hydrogen gas, which can be used as a fuel for generating mechanical (and/or electrical) power or to generate pressure and/or gravitational potential energy, either of which can be used to drive a turbine or perform other useful work. The systems encompass a range of sizes and power outputs. Some embodiments may be configured to generate power at the scale of a single residence or commercial building. In some examples, the systems include industrial power generation systems providing electrical power to a regional or national power grid. In some examples, the systems provide hydrogen fuel, e.g., to power a fleet of vehicles, as well as (or instead of) generating electrical power.
As shown in
In some examples, the selectively permeable membranes 104 may be made of organic or inorganic polymer with charged (ionic) side groups, such as ion-exchange resins. The selectively permeable membranes 104 may also be made of graphene, e.g., configured in thin sheets. The permeability of the membrane 104 may depend on configuration or other aspects of the graphene sheets. In some examples, graphene sheets may be stretched or otherwise reconfigured to alter the permeability of the membrane 104. Ions may tend to accumulate near the membranes 104. This accumulation may impede the process of generating power. To counteract this accumulation, the system 100 may apply an agitating or mixing force to the salt solution 130 and/or the dilute solution 140, causing the ions to be distributed more evenly (homogeneously) throughout the solution 130, 140. In some examples, the system 100 applies sonic vibration to one or more solutions 130, 140 to enhance homogeneity of the solution 130, 140. The system 100 may apply sonic vibration to areas of the cell 150 where ions accumulate, e.g., near one or more membranes 104, to effectively enhance homogeneity of one or more solution 130, 140.
As shown in
The electrical current produced by the battery 110 is a function of the rate of ion movement, and the rate of ion movement is a function of several factors, including the salinity gradient (i.e., the salinity difference between the salt solution 130 and the dilute solution 140) and the temperature of (at least) the salt solution 130, as well as aspects of the membranes 104. The temperature of the salt solution 130 affects the rate at which ions in the salt solution 130 move toward (and across) the membranes 104 due to the increased kinetic energy of the ions at higher temperatures. According to the Nernst equation, the power produced is a function of the log of the salinity ration of the salt solution 130 and dilute solution 140. As ions move from the salt solution 130 to the dilute solution 140, however, the salinity of the dilute solution 140 increases and the salinity of the salt solution 130 decreases. Thus the gradient between the “spent” salt solution 130 and the “spent” dilute solution 140 decreases. To maintain electrical current (and therefore, power output) of the battery 110, the salinity difference may be continually regenerated by refreshing the spent salt solution 130 and/or the spent dilute solution 140. To this end, the spent salt solution 130 and/or the spent dilute solution 140 may be circulated (e.g., in a closed loop) between the RED battery 110 and a regeneration system. Alternatively, the spent salt solution 130 and/or the spent dilute solution 140 may be continually replenished, e.g., from natural sources such as rivers and oceans or bays.
As shown in
In the example salt removal subsystem 210, the precipitated salt 212 settles to the bottom of the salt removal subsystem 210, e.g., in a dense solid form. In some examples, the salt removal subsystem 210 includes a conveying device 230 configured to transport the precipitated salt 212 away from the salt removal subsystem 210. The conveying device 230 may be a belt, pump, Archimedes screw, or other device or system configured to physically transport the precipitated salt 212 away from the salt removal subsystem 210. For example, if the salt is in a solid form, the conveying device 230 may be a mechanical system capable of transporting solid material. In some examples, the removed salt 212 is conveyed to a salt replenishment subsystem 220 where the salt is reintroduced (e.g., redissolved) into the spent salt solution 130, thus refreshing the spent salt solution 130. In a similar manner to how the regeneration system 200 circulates dilute solution 140, the regeneration system 200 may also circulate spent salt solution 130 in a closed loop from the RED battery 110 through the salt replenishment subsystem 220 and back to the RED battery 110 as refreshed salt solution 130. The salt replenishment subsystem 220 may increase the salinity of the salt solution 130 through the process of redissolving the salt removed by the salt removal subsystem 210, thus regenerating the salinity difference between the salt solution 130 and dilute solution 140 in the RED battery 110.
As described above, the ability of solvent to dissolve a solute generally increases with increased temperature. Thus, higher temperatures of the salt solution 130 allow for higher levels of salinity and the accompanying greater differences between the salinity of the salt solution 130 and the dilute solution 140. A solubility curve is a plot of the amount of a solute that a specific amount of solvent can dissolve as a function of temperature. In some examples, a solubility curve associated with a solution is linear. That is, the amount of solute that the solvent can dissolve may change linearly with temperature change over a wide range of temperatures (e.g., the entire range that the solvent is a liquid). In some examples, the amount of solute that the solvent can dissolve changes non-linearly with temperature change. In these cases, the amount of solute that the solvent can dissolve may increase by, e.g., a factor of five or more, even within a narrow range of temperatures. The system 100 may be configured to operate the RED battery 110 within a temperature range where the salinity of the salt solution 130 is high. Dissolving additional salt may require transferring additional heat to the salt solution 130. Furthermore, the system 100 may maintain the temperature of the RED battery 110 at a point above the solubility point to provide a “safety margin,” to avoid unwanted precipitation if the salt solution 130 cools below the solubility point.
The salt replenishment subsystem 220 may receive thermal energy from one or more heat sources configured to increase the temperature of the salt solution 130, e.g., to allow additional salt to dissolve. For example, the salt replenishment subsystem 220 may receive waste heat from the heat transfer device 216 of the salt removal subsystem 210. The salt replenishment subsystem 220 may also be configured to receive thermal energy from other heat sources as well, as shown by the arrow associated with the salt replenishment subsystem 220 of
A thermal optimization system may be used to optimize the use of thermal energy with the power generation system 100 described herein. Thermal optimization systems are further described in U.S. Pat. No. 11,067,317, which is hereby incorporated by reference in its entirety. The thermal optimization system may transfer thermal energy from one or more heat sources to one or more heat sinks. Examples of heat sinks include the interior of living or office spaces during cooler seasons of the year, heated swimming pools, saunas, and steam rooms. In these examples, the system may be configured to regulate a temperature by modulating the transfer of thermal energy to a heat sink. For example, the thermal optimization system may monitor the temperature of the heated spaces and/or heated water and modulate the transfer of heat using processor-based logic, such as (but not limited to) running one or more MD feedback loops and/or expert systems. During hotter seasons, the interior spaces may be heat sources. In this case, the processor-based regulation system may modulate the transfer of thermal energy away from these spaces to regulate the temperature.
Operation of the thermal optimization system 300 may be coordinated by a control system 350 having a processor, e.g., as described below with respect to
A control system 350 may be used to transmit control signals, e.g., to control the speed of a compressor and/or pump, a direction of a reversing valve, the operating speed of the salt conveying/transfer device 230, etc. to achieve the indicated target temperatures and/or power outputs. For example, the control system 350 may adjust the temperature of the salt solution to be at or near its solubility limit. In this way, the control system 350 may efficiently control and modulate the transfer of heat between several heat sources 305 and heat sinks 310 simultaneously, based on prevailing conditions and user settings, while optimizing the output of the power generation system 100. Furthermore, the control system 350 may affect the level of vapor-compression-cycle waste heat generated by one or more heat pumps 320 and transfer the waste heat to one or more heat sinks and/or to the RED battery 110, thus efficiently recapturing its own waste heat for power generation or other purposes. In this way, the optimization system 300 may transfer heat from any or all of a variety of heat sources, under a variety of dynamic conditions (e.g., as conditions change throughout the year or throughout the day) and/or based on demands of the RED battery 110. Furthermore, the control system 350 may configure the power generation system 100 to store excess energy. For example, when demand for electrical energy is low, the control system 350 may configure the RED battery 110 to produce a portion of its energy output as hydrogen gas to be used as fuel at a later time, rather than as electrical energy to be used at the time of generation. Furthermore, in the case of a PRO system, the control system 350 may configure the rate at which pressure is converted to electricity, e.g., by controlling the rate of flow through a turbine. In this way, the control system 350 may retain some energy in the form of, e.g., gravitational potential energy when demand for electrical power is low and convert greater amounts of the gravitational potential energy to electrical energy when demand for electrical power is high.
In some embodiments, the system 100 includes a PRO system instead of (or in addition to) the RED battery 110 described above.
As shown in
In some embodiments, the system includes a first RED battery 110a, configured to use an exothermic salt solution 130a, and a second RED battery 110b, configured to use an endothermic salt solution 130b. The system may transfer heat generated by dissolving the solute in the exothermic salt solution 130a to the endothermic solution 130b to replace heat absorbed while dissolving the solute.
In some embodiments, a portion of the generated electrical power is used to produce hydrogen gas, e.g., by decomposing water through electrolysis. For example, when the dilute solution is water, a potential difference of 1.23 volts may be applied to the water to split the water into hydrogen and oxygen. Either the salt solution or the dilute solution (or both) may be decomposed through electrolysis.
At step 604 the example method includes receiving thermal energy from a heat source. The power generated by the RED battery 110 (or PRO system) is a function of temperature. The received thermal energy may allow the RED battery 110 to continue to operate (e.g., produce electricity). In some examples, the control system 350 is configured to modulate the amount of thermal energy received and to configure which heat sources 305 provide the thermal energy. In some examples, the control system 350 is configured to transfer waste heat from one or more heat pumps 320 to the RED battery 110. In some embodiments, the power generation system 100 provides some or all of the power to operate one or more heat pumps 320. As a prophetic example, a RED battery 110 may have an efficiency of about 30% (i.e., 30% of the thermal energy transferred to the RED battery 110 is converted to electricity or other usable form of energy). A heat pump 320 may have a coefficient of performance (COP) between 3 and 4 (i.e., the heat pump 320 may require 1 KW of power to take up 2-3 KW of power from a heat source and transfer 3-4 KW to a heat sink (the sum of the input power and the thermal power taken up from the heat source). For example, a heat pump 320 with a COP of 4 may require 1 KW of power to transfer a total of 4 KW of heat to the RED battery 110. The heat pump 320 may transfer heat from a low-grade or “waste” heat source, e.g., a source that is not readily converted to a useful form of energy, such as a heat source less than 300 degrees C. In some predicted examples, the heat source may be the result of an industrial process which would otherwise simply output the waste heat to the environment. With an efficiency of 30%, the RED battery 110 may produce 1.2 KW of electrical power from the 4 KW of transferred heat. In this predictive example, 1 KW of the electrical power may be used to power the heat pump 320, leaving 200 W of electrical power for other purposes. Thus, in this predictive example, the combined system 100 of the RED battery 110 and heat pump 320 produces a net output of 200 W of electrical power with no net input of power other than the 3 KW of “waste” heat. In cases where the waste heat is the result of an industrial process, it is predicted that the combined system 110 of the RED battery 110 and heat pump 320 produces a net output of 200 W while simultaneously providing the benefit of cooling the waste heat by 3 KW before outputting it to the environment. The anticipated net efficiency of the combined system 110 may be further amplified with improvements to the efficiency of the RED battery 110.
Furthermore, the power generation system 100 may enhance the effective coefficient of performance (COP) of a heat pump 320, e.g., a heat pump used to heat or cool an inhabited space, by capturing some waste energy produced by one or more heat pumps and converting the waste energy into electrical energy to power the heat pump 320. For example, a heat pump with a heating COP of 3 may require 1.5 KW of power to pump 3 KW of heat from a source to a sink. If the heat sink does not require the full 4.5 KW of power (3 KW of pumped heat plus up to 1.5 KW of waste heat), the control system 350 may configure the optimization system 300 to transfer some or all of the waste heat to the RED battery 110 for conversion to power for the heat pump 320, increasing the effective COP of the heat pump 320. Furthermore, the control system 350 may configure the power generation system 100 to convert some amount to waste energy into a form which can be stored for later use, e.g., if the instantaneous demand for electrical power is greater than the amount of electrical power that can be produced. For example, a PRO system may retain waste energy in the form of unreleased pressure and/or gravitational potential energy, to be released at a future time, e.g., when demand for electrical energy is greater. Similarly, a RED battery 110 may produce hydrogen gas, to be used as fuel at a future time, in lieu of a producing some amount of electrical energy. Thus, waste heat from the heat pump 320 may be flexibly captured and released to further increase the effective COP of the heat pump.
At step 606 the example method includes mixing the first saline solution 130 and the second saline solution 140 in a controlled manner. At step 608, the example method includes capturing at least some salinity-gradient energy as electrical power. As described above, the RED battery 110 or PRO system may be configured such that as the solutions (130, 140) mix, the salinity-gradient energy is converted into a more useful form. At step 610, the example method includes transferring, by a heat pump 320, thermal energy from the first saline solution to the second saline solution. At step 612 the example method includes causing the salinity difference between the first saline solution and the second saline solution to increase. As described above, the heat pump 320 may cool the spent dilute solution 140, causing the salt to precipitate from the dilute solution 140, thus refreshing the dilute solution. The heat pump may transfer the heat from the spent dilute solution 140 to the spent salt solution 130, enhancing the process of dissolving salt introduced into the salt solution 130. Alternatively (or in addition), the heat pump 320 may heat the spent salt solution 140, causing the salt solution 140 to evaporate, thus refreshing the salt solution. The evaporated solvent may be condensed (e.g., cooled by the heat pump) as the solvent vapor is circulated back to the RED battery 110 as refreshed dilute solution.
It should be understood that various aspects disclosed herein may be combined in different combinations than the combinations specifically presented in the description and accompanying drawings. It should also be understood that, depending on the example, certain acts or events of any of the processes or methods described herein may be performed in a different sequence, may be added, merged, or left out altogether (e.g., all described acts or events may not be necessary to carry out the techniques). In addition, while certain aspects of this disclosure are described as being performed by a single module or unit for purposes of clarity, it should be understood that the techniques of this disclosure may be performed by a combination of units or modules associated with, for example, a RED battery, a PRO system, a hydrogen generation subsystem, a salt precipitation subsystem, an evaporation subsystem, etc.
In one or more examples, the described techniques may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a computer-readable medium and executed by a hardware-based processing unit. Computer-readable media may include non-transitory computer-readable media, which corresponds to a tangible medium such as data storage media (e.g., RAM, ROM, EEPROM, flash memory, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer).
Instructions may be executed by one or more processors, such as one or more digital signal processors (DSPs), general purpose microprocessors, application specific integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other equivalent integrated or discrete logic circuitry. Accordingly, the term “processor” as used herein may refer to any of the foregoing structure or any other physical structure suitable for implementation of the described techniques. Also, the techniques could be fully implemented in one or more circuits or logic elements.
Program instructions, software or interactive modules for providing the interface and performing any querying or analysis associated with one or more data sets may be stored in the memory device 720. Optionally, the program instructions may be stored on a tangible, non-transitory computer-readable medium such as a compact disk, a digital disk, flash memory, a memory card, a universal serial bus (USB) drive, an optical disc storage medium and/or other recording medium.
An optional display interface 730 may permit information from the bus 710 to be displayed on the display 735 in audio, visual, graphic or alphanumeric format. Communication with external devices may occur using various communication ports 740. A communication port 740 may be attached to a communications network, such as the Internet or an intranet.
The hardware may also include an interface 745 which allows for receipt of data from input devices such as a keypad 750 or other input device 755 such as a touch screen, a remote control, a pointing device, a video input device and/or an audio input device.
It will be appreciated that the various above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications or combinations of systems and applications. Also, that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
The present application is a continuation of U.S. application Ser. No. 17/963,465, filed on Oct. 11, 2022, which is a divisional of U.S. application Ser. No. 17/662,587, filed May 9, 2022, which issued at U.S. Pat. No. 11,502,323 on Nov. 15, 2022. The entire contents of the foregoing applications are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4171409 | Loeb | Oct 1979 | A |
4283913 | Loeb | Aug 1981 | A |
4390402 | Mani et al. | Jun 1983 | A |
4404081 | Murphy | Sep 1983 | A |
5238574 | Kawashima et al. | Aug 1993 | A |
5421962 | Shvarts et al. | Jun 1995 | A |
5496659 | Zito | Mar 1996 | A |
5618507 | Olper et al. | Apr 1997 | A |
5643968 | Andreola et al. | Jul 1997 | A |
6030535 | Hayashi et al. | Feb 2000 | A |
6042701 | Lichtwardt et al. | Mar 2000 | A |
6187201 | Abe et al. | Feb 2001 | B1 |
6569298 | Merida-Donis | May 2003 | B2 |
6783682 | Awerbuch | Aug 2004 | B1 |
7037430 | Donaldson et al. | May 2006 | B2 |
7127894 | Battah | Oct 2006 | B2 |
7189325 | Wobben | Mar 2007 | B2 |
7303674 | Lampi et al. | Dec 2007 | B2 |
7550088 | Wobben | Jun 2009 | B2 |
7628921 | Efraty | Dec 2009 | B2 |
7879243 | Al-Mayahi et al. | Feb 2011 | B2 |
7901577 | SenGupta et al. | Mar 2011 | B2 |
7914680 | Cath et al. | Mar 2011 | B2 |
8029671 | Cath et al. | Oct 2011 | B2 |
8062527 | Ito et al. | Nov 2011 | B2 |
8083942 | Cath et al. | Dec 2011 | B2 |
8099198 | Gurin | Jan 2012 | B2 |
8123948 | Jensen | Feb 2012 | B2 |
8142942 | Imanaka | Mar 2012 | B2 |
8177978 | Kurth et al. | May 2012 | B2 |
8197664 | Murahara | Jun 2012 | B2 |
8216474 | Cath et al. | Jul 2012 | B2 |
8323491 | Brauns | Dec 2012 | B2 |
8647509 | Vora et al. | Feb 2014 | B2 |
8685249 | Takeuchi et al. | Apr 2014 | B2 |
8695343 | Moe | Apr 2014 | B2 |
8758954 | Van Baak et al. | Jun 2014 | B2 |
8834712 | Katayama et al. | Sep 2014 | B2 |
8871074 | Suh et al. | Oct 2014 | B2 |
8915378 | Tokimi et al. | Dec 2014 | B2 |
8932448 | Valk et al. | Jan 2015 | B2 |
8956782 | Van Berchum et al. | Feb 2015 | B2 |
8956783 | Antheunis et al. | Feb 2015 | B2 |
8968963 | Van Berchum et al. | Mar 2015 | B2 |
8968964 | Antheunis et al. | Mar 2015 | B2 |
8968965 | Antheunis et al. | Mar 2015 | B2 |
8980100 | Chidambaran | Mar 2015 | B2 |
9067811 | Bennett et al. | Jun 2015 | B1 |
9108169 | Sano et al. | Aug 2015 | B2 |
9112217 | Kim et al. | Aug 2015 | B2 |
9156714 | McCluskey et al. | Oct 2015 | B2 |
9216385 | Isaias et al. | Dec 2015 | B2 |
9227168 | DeVaul et al. | Jan 2016 | B1 |
9242213 | Aylesworth | Jan 2016 | B1 |
9278315 | Davis et al. | Mar 2016 | B2 |
9297366 | Paripati et al. | Mar 2016 | B2 |
9359998 | Innig et al. | Jun 2016 | B2 |
9382135 | Moe et al. | Jul 2016 | B2 |
9409117 | Ukai et al. | Aug 2016 | B2 |
9433900 | Ordonez Fernandez | Sep 2016 | B2 |
9474998 | Koo et al. | Oct 2016 | B2 |
9502720 | Tsai et al. | Nov 2016 | B2 |
9540255 | Kang et al. | Jan 2017 | B2 |
9556316 | Antheunis | Jan 2017 | B2 |
9604178 | Bharwada et al. | Mar 2017 | B1 |
9611368 | Lin | Apr 2017 | B2 |
9675940 | Van Berchum et al. | Jun 2017 | B2 |
9688548 | Dette et al. | Jun 2017 | B2 |
9751046 | Sakai et al. | Sep 2017 | B2 |
9851129 | Tanner | Dec 2017 | B1 |
9915436 | Feria | Mar 2018 | B1 |
9932257 | Prakash et al. | Apr 2018 | B2 |
9938167 | Su et al. | Apr 2018 | B2 |
9944765 | Antheunis | Apr 2018 | B2 |
9950297 | Chang et al. | Apr 2018 | B2 |
9957169 | Shinoda et al. | May 2018 | B2 |
9982104 | Choi et al. | May 2018 | B2 |
9988287 | Cai | Jun 2018 | B2 |
10029927 | Murtha et al. | Jul 2018 | B2 |
10046280 | Hayakawa et al. | Aug 2018 | B2 |
10065868 | Alshahrani | Sep 2018 | B2 |
10093747 | Kurihara et al. | Oct 2018 | B2 |
10118836 | Dette et al. | Nov 2018 | B2 |
10144654 | Govindan et al. | Dec 2018 | B2 |
10177396 | Van Baak | Jan 2019 | B2 |
10189733 | Wallace | Jan 2019 | B2 |
10221491 | Blunn et al. | Mar 2019 | B2 |
10226740 | Wallace | Mar 2019 | B2 |
10308524 | Ahmed et al. | Jun 2019 | B1 |
10336638 | Bader | Jul 2019 | B1 |
10363688 | Moon et al. | Jul 2019 | B2 |
10384164 | Iyer | Aug 2019 | B2 |
10384165 | Haidar et al. | Aug 2019 | B1 |
10399878 | Ukai et al. | Sep 2019 | B2 |
10473091 | Halloy et al. | Nov 2019 | B2 |
10562793 | Cioanta et al. | Feb 2020 | B2 |
10597309 | Alshahrani | Mar 2020 | B2 |
10603636 | Bublitz | Mar 2020 | B2 |
10615441 | Kaku et al. | Apr 2020 | B2 |
10626029 | Lin | Apr 2020 | B2 |
10626037 | Lienhard et al. | Apr 2020 | B2 |
10653976 | Miki | May 2020 | B2 |
10829913 | Ahmed et al. | Nov 2020 | B1 |
10830508 | Tanner | Nov 2020 | B2 |
10934181 | Constantz | Mar 2021 | B2 |
10954145 | Ortiz Diaz-Guerra et al. | Mar 2021 | B2 |
10988391 | Kim et al. | Apr 2021 | B2 |
11000806 | Efraty | May 2021 | B2 |
11002373 | Fink et al. | May 2021 | B2 |
11014833 | Weng | May 2021 | B2 |
11014834 | Janson et al. | May 2021 | B2 |
11067317 | Feria | Jul 2021 | B2 |
11198096 | Efraty | Dec 2021 | B1 |
11198097 | Wei et al. | Dec 2021 | B2 |
11220448 | Scheu | Jan 2022 | B2 |
11502322 | Nana et al. | Nov 2022 | B1 |
11502323 | Nana | Nov 2022 | B1 |
11563229 | Nana et al. | Jan 2023 | B1 |
11566823 | Feria | Jan 2023 | B1 |
11611099 | Nana | Mar 2023 | B1 |
20040013918 | Merida-Donis | Jan 2004 | A1 |
20040219400 | Al-Hallaj et al. | Nov 2004 | A1 |
20050006295 | Bharwada | Jan 2005 | A1 |
20050067352 | Kontos | Mar 2005 | A1 |
20050103631 | Freydina et al. | May 2005 | A1 |
20060263646 | Seale | Nov 2006 | A1 |
20070227966 | Koo et al. | Oct 2007 | A1 |
20090272692 | Kurth et al. | Nov 2009 | A1 |
20100163471 | Elyanow et al. | Jul 2010 | A1 |
20110042219 | Wei et al. | Feb 2011 | A1 |
20110050158 | MacDonald et al. | Mar 2011 | A1 |
20110100218 | Wolfe | May 2011 | A1 |
20110117395 | Roodenburg | May 2011 | A1 |
20110309020 | Rietman et al. | Dec 2011 | A1 |
20120018365 | Iyer | Jan 2012 | A1 |
20120080377 | Jensen et al. | Apr 2012 | A1 |
20120132591 | Zhu et al. | May 2012 | A1 |
20120160753 | Vora et al. | Jun 2012 | A1 |
20130001162 | Yangali-Quintanilla et al. | Jan 2013 | A1 |
20130101486 | Liu et al. | Apr 2013 | A1 |
20130288142 | Fu et al. | Oct 2013 | A1 |
20140021135 | Sawyer et al. | Jan 2014 | A1 |
20140042089 | Matsui et al. | Feb 2014 | A1 |
20140246371 | Cao et al. | Sep 2014 | A1 |
20140255813 | Kingsbury | Sep 2014 | A1 |
20140308712 | Hanakawa et al. | Oct 2014 | A1 |
20150165380 | Jung et al. | Jun 2015 | A1 |
20150266762 | Jang et al. | Sep 2015 | A1 |
20160016116 | Ge et al. | Jan 2016 | A1 |
20160023925 | Liu | Jan 2016 | A1 |
20160115061 | Ukai et al. | Apr 2016 | A1 |
20160376680 | Abuhasel et al. | Dec 2016 | A1 |
20170014758 | Wilkinson et al. | Jan 2017 | A1 |
20170098846 | Watakabe et al. | Apr 2017 | A1 |
20170152159 | Stauffer | Jun 2017 | A1 |
20170173532 | Ide et al. | Jun 2017 | A1 |
20170240439 | Lin | Aug 2017 | A1 |
20170326499 | Iyer | Nov 2017 | A1 |
20170334738 | Suh | Nov 2017 | A1 |
20180126336 | Iyer | May 2018 | A1 |
20180147532 | Switzer et al. | May 2018 | A1 |
20180169541 | Anderson | Jun 2018 | A1 |
20180180034 | Wei | Jun 2018 | A1 |
20180326366 | Kim et al. | Nov 2018 | A1 |
20190226463 | Feng | Jul 2019 | A1 |
20190374780 | Hestekin et al. | Dec 2019 | A1 |
20200047130 | Ishii | Feb 2020 | A1 |
20200061541 | Herron et al. | Feb 2020 | A1 |
20200101427 | Gao et al. | Apr 2020 | A1 |
20200267894 | Maisonneuve | Aug 2020 | A1 |
20200292207 | Feria | Sep 2020 | A1 |
20200316354 | Jeong et al. | Oct 2020 | A1 |
20210002148 | Sato et al. | Jan 2021 | A1 |
20210024375 | Cen et al. | Jan 2021 | A1 |
20210054252 | Novek | Feb 2021 | A1 |
20210087697 | Riabtsev et al. | Mar 2021 | A1 |
20210268438 | Nishiura | Sep 2021 | A1 |
20210323851 | Jones et al. | Oct 2021 | A1 |
20220002170 | Phatak | Jan 2022 | A1 |
Number | Date | Country |
---|---|---|
2010201962 | Dec 2010 | AU |
MU8702650 | Apr 2009 | BR |
2604132 | May 2009 | CA |
1208719 | Feb 1999 | CN |
1375461 | Oct 2002 | CN |
2883340 | Mar 2007 | CN |
101029733 | Sep 2007 | CN |
101767840 | Jul 2010 | CN |
101891267 | Nov 2010 | CN |
101955277 | Jan 2011 | CN |
101967017 | Feb 2011 | CN |
201746366 | Feb 2011 | CN |
102040258 | May 2011 | CN |
102134137 | Jul 2011 | CN |
202054635 | Nov 2011 | CN |
202056062 | Nov 2011 | CN |
202072502 | Dec 2011 | CN |
101358578 | May 2012 | CN |
202246147 | May 2012 | CN |
102120663 | Jul 2012 | CN |
102747717 | Oct 2012 | CN |
202474102 | Oct 2012 | CN |
202586809 | Dec 2012 | CN |
102211803 | Jan 2013 | CN |
102452751 | Jan 2013 | CN |
102897800 | Jan 2013 | CN |
202729841 | Feb 2013 | CN |
102963966 | Mar 2013 | CN |
202811178 | Mar 2013 | CN |
202811240 | Mar 2013 | CN |
202924780 | May 2013 | CN |
103172189 | Jun 2013 | CN |
102627339 | Jul 2013 | CN |
102795686 | Jul 2013 | CN |
103193304 | Jul 2013 | CN |
203112560 | Aug 2013 | CN |
203159267 | Aug 2013 | CN |
102976559 | Sep 2013 | CN |
103362763 | Oct 2013 | CN |
203222497 | Oct 2013 | CN |
203229396 | Oct 2013 | CN |
203360202 | Dec 2013 | CN |
103570088 | Feb 2014 | CN |
103274488 | Apr 2014 | CN |
203530063 | Apr 2014 | CN |
102840091 | May 2014 | CN |
102840092 | May 2014 | CN |
102840093 | May 2014 | CN |
102852702 | May 2014 | CN |
102852703 | May 2014 | CN |
102852704 | May 2014 | CN |
203625184 | Jun 2014 | CN |
102610844 | Jul 2014 | CN |
103101932 | Jul 2014 | CN |
103359896 | Jul 2014 | CN |
102464343 | Aug 2014 | CN |
102812884 | Aug 2014 | CN |
103288285 | Aug 2014 | CN |
203781962 | Aug 2014 | CN |
104098157 | Oct 2014 | CN |
104140135 | Nov 2014 | CN |
204058158 | Dec 2014 | CN |
102757138 | Jan 2015 | CN |
104370394 | Feb 2015 | CN |
103818978 | Apr 2015 | CN |
104534731 | Apr 2015 | CN |
204301361 | Apr 2015 | CN |
104601042 | May 2015 | CN |
204334382 | May 2015 | CN |
204434315 | Jul 2015 | CN |
103708665 | Oct 2015 | CN |
204689747 | Oct 2015 | CN |
105048870 | Nov 2015 | CN |
204752255 | Nov 2015 | CN |
105110543 | Dec 2015 | CN |
204848326 | Dec 2015 | CN |
204897499 | Dec 2015 | CN |
104071875 | Jan 2016 | CN |
105254101 | Jan 2016 | CN |
105428089 | Mar 2016 | CN |
205088043 | Mar 2016 | CN |
104591461 | Apr 2016 | CN |
105502756 | Apr 2016 | CN |
205133216 | Apr 2016 | CN |
205170431 | Apr 2016 | CN |
103964527 | May 2016 | CN |
104649478 | May 2016 | CN |
105540930 | May 2016 | CN |
105540953 | May 2016 | CN |
105540970 | May 2016 | CN |
103615363 | Jun 2016 | CN |
205313150 | Jun 2016 | CN |
205328675 | Jun 2016 | CN |
105810985 | Jul 2016 | CN |
205442690 | Aug 2016 | CN |
205472805 | Aug 2016 | CN |
105948337 | Sep 2016 | CN |
205590347 | Sep 2016 | CN |
205590348 | Sep 2016 | CN |
205603350 | Sep 2016 | CN |
104355473 | Oct 2016 | CN |
106058921 | Oct 2016 | CN |
106145229 | Nov 2016 | CN |
205740453 | Nov 2016 | CN |
205740598 | Nov 2016 | CN |
106207234 | Dec 2016 | CN |
106219648 | Dec 2016 | CN |
106242145 | Dec 2016 | CN |
106277120 | Jan 2017 | CN |
106277121 | Jan 2017 | CN |
106277122 | Jan 2017 | CN |
106277123 | Jan 2017 | CN |
106277124 | Jan 2017 | CN |
106277125 | Jan 2017 | CN |
106277133 | Jan 2017 | CN |
106277134 | Jan 2017 | CN |
106277135 | Jan 2017 | CN |
106277136 | Jan 2017 | CN |
106277137 | Jan 2017 | CN |
106348510 | Jan 2017 | CN |
106365233 | Feb 2017 | CN |
106365234 | Feb 2017 | CN |
106379961 | Feb 2017 | CN |
106395926 | Feb 2017 | CN |
106400879 | Feb 2017 | CN |
106430786 | Feb 2017 | CN |
205974125 | Feb 2017 | CN |
105060380 | Mar 2017 | CN |
106477800 | Mar 2017 | CN |
104944487 | Apr 2017 | CN |
106554103 | Apr 2017 | CN |
206098553 | Apr 2017 | CN |
104986818 | May 2017 | CN |
106630359 | May 2017 | CN |
106242133 | Jun 2017 | CN |
106830479 | Jun 2017 | CN |
206244450 | Jun 2017 | CN |
206279019 | Jun 2017 | CN |
104153946 | Jul 2017 | CN |
105261808 | Jul 2017 | CN |
106981674 | Jul 2017 | CN |
206308197 | Jul 2017 | CN |
107008155 | Aug 2017 | CN |
107165791 | Sep 2017 | CN |
107188358 | Sep 2017 | CN |
206529357 | Sep 2017 | CN |
105439351 | Oct 2017 | CN |
105439352 | Oct 2017 | CN |
105439353 | Oct 2017 | CN |
105439354 | Oct 2017 | CN |
105540968 | Oct 2017 | CN |
206592241 | Oct 2017 | CN |
107311353 | Nov 2017 | CN |
107326387 | Nov 2017 | CN |
107522307 | Dec 2017 | CN |
104944492 | Jan 2018 | CN |
206878725 | Jan 2018 | CN |
105502784 | Mar 2018 | CN |
207064144 | Mar 2018 | CN |
105753104 | Apr 2018 | CN |
107922213 | Apr 2018 | CN |
107973481 | May 2018 | CN |
107987844 | May 2018 | CN |
108083518 | May 2018 | CN |
108097059 | Jun 2018 | CN |
108114599 | Jun 2018 | CN |
207478339 | Jun 2018 | CN |
108380050 | Aug 2018 | CN |
108423733 | Aug 2018 | CN |
108439675 | Aug 2018 | CN |
108910996 | Nov 2018 | CN |
108996616 | Dec 2018 | CN |
109020021 | Dec 2018 | CN |
208279441 | Dec 2018 | CN |
208327445 | Jan 2019 | CN |
208394968 | Jan 2019 | CN |
105800886 | Feb 2019 | CN |
109304088 | Feb 2019 | CN |
109311709 | Feb 2019 | CN |
109534568 | Mar 2019 | CN |
109534585 | Mar 2019 | CN |
208639229 | Mar 2019 | CN |
109593973 | Apr 2019 | CN |
109599572 | Apr 2019 | CN |
109607918 | Apr 2019 | CN |
106492639 | May 2019 | CN |
109810254 | May 2019 | CN |
208916850 | May 2019 | CN |
103269777 | Jun 2019 | CN |
106995253 | Jun 2019 | CN |
109867317 | Jun 2019 | CN |
109889099 | Jun 2019 | CN |
109928561 | Jun 2019 | CN |
106587446 | Jul 2019 | CN |
109956604 | Jul 2019 | CN |
109957885 | Jul 2019 | CN |
110104851 | Aug 2019 | CN |
110182915 | Aug 2019 | CN |
209259726 | Aug 2019 | CN |
110204009 | Sep 2019 | CN |
209411984 | Sep 2019 | CN |
110358143 | Oct 2019 | CN |
107158968 | Nov 2019 | CN |
110407276 | Nov 2019 | CN |
110498523 | Nov 2019 | CN |
209567937 | Nov 2019 | CN |
209685356 | Nov 2019 | CN |
110560179 | Dec 2019 | CN |
110601600 | Dec 2019 | CN |
209721842 | Dec 2019 | CN |
110683693 | Jan 2020 | CN |
110734178 | Jan 2020 | CN |
110776185 | Feb 2020 | CN |
210122508 | Mar 2020 | CN |
107158967 | Apr 2020 | CN |
109617455 | Apr 2020 | CN |
111036098 | Apr 2020 | CN |
111056676 | Apr 2020 | CN |
210313850 | Apr 2020 | CN |
111170517 | May 2020 | CN |
210620293 | May 2020 | CN |
108123152 | Jun 2020 | CN |
111268754 | Jun 2020 | CN |
111282443 | Jun 2020 | CN |
111342703 | Jun 2020 | CN |
106877742 | Jul 2020 | CN |
107265734 | Jul 2020 | CN |
110510712 | Jul 2020 | CN |
111470704 | Jul 2020 | CN |
211056755 | Jul 2020 | CN |
111517533 | Aug 2020 | CN |
111564884 | Aug 2020 | CN |
111573787 | Aug 2020 | CN |
211310967 | Aug 2020 | CN |
107362694 | Sep 2020 | CN |
109179832 | Sep 2020 | CN |
109811358 | Sep 2020 | CN |
211497236 | Sep 2020 | CN |
211595081 | Sep 2020 | CN |
106915789 | Oct 2020 | CN |
106927541 | Oct 2020 | CN |
111744364 | Oct 2020 | CN |
111763103 | Oct 2020 | CN |
111792743 | Oct 2020 | CN |
211644724 | Oct 2020 | CN |
111871219 | Nov 2020 | CN |
111943398 | Nov 2020 | CN |
111995011 | Nov 2020 | CN |
111807473 | Dec 2020 | CN |
107954528 | Jan 2021 | CN |
112266050 | Jan 2021 | CN |
212403781 | Jan 2021 | CN |
108083369 | Feb 2021 | CN |
109802163 | Feb 2021 | CN |
112299515 | Feb 2021 | CN |
212504155 | Feb 2021 | CN |
212504424 | Feb 2021 | CN |
212581574 | Feb 2021 | CN |
110316913 | Mar 2021 | CN |
112436758 | Mar 2021 | CN |
112456608 | Mar 2021 | CN |
112479314 | Mar 2021 | CN |
112479467 | Mar 2021 | CN |
112520915 | Mar 2021 | CN |
112551624 | Mar 2021 | CN |
112569805 | Mar 2021 | CN |
108976258 | Apr 2021 | CN |
112607806 | Apr 2021 | CN |
112610433 | Apr 2021 | CN |
112661223 | Apr 2021 | CN |
112694180 | Apr 2021 | CN |
112707566 | Apr 2021 | CN |
109336206 | May 2021 | CN |
108716447 | Jun 2021 | CN |
111628675 | Jun 2021 | CN |
112194136 | Jun 2021 | CN |
112713808 | Jun 2021 | CN |
112892230 | Jun 2021 | CN |
112910314 | Jun 2021 | CN |
112939321 | Jun 2021 | CN |
213416391 | Jun 2021 | CN |
108025930 | Jul 2021 | CN |
113134305 | Jul 2021 | CN |
113137338 | Jul 2021 | CN |
113153676 | Jul 2021 | CN |
213656765 | Jul 2021 | CN |
109250846 | Aug 2021 | CN |
110746657 | Aug 2021 | CN |
112973463 | Aug 2021 | CN |
113233623 | Aug 2021 | CN |
113278152 | Aug 2021 | CN |
113292144 | Aug 2021 | CN |
113321257 | Aug 2021 | CN |
113415838 | Sep 2021 | CN |
113244779 | Oct 2021 | CN |
113461887 | Oct 2021 | CN |
214400132 | Oct 2021 | CN |
112678930 | Nov 2021 | CN |
214571328 | Nov 2021 | CN |
214654101 | Nov 2021 | CN |
214654190 | Nov 2021 | CN |
109534465 | Dec 2021 | CN |
109867313 | Dec 2021 | CN |
110523296 | Dec 2021 | CN |
215539863 | Jan 2022 | CN |
114941 | Sep 1975 | DE |
2510168 | Sep 1976 | DE |
2829530 | Jan 1980 | DE |
2847519 | May 1980 | DE |
2851105 | May 1980 | DE |
3714628 | Nov 1987 | DE |
19620214 | Oct 1996 | DE |
19603494 | Feb 1998 | DE |
19649146 | May 1998 | DE |
19714512 | Jun 1999 | DE |
10222316 | May 2004 | DE |
202007013079 | Dec 2007 | DE |
102009051845 | Sep 2011 | DE |
102014225190 | Jun 2016 | DE |
166657 | Jun 1993 | DK |
31763 | Feb 2019 | EA |
979801 | Feb 2000 | EP |
1426097 | Jun 2004 | EP |
1833595 | Sep 2007 | EP |
1935479 | Sep 2009 | EP |
2125173 | Dec 2009 | EP |
2089142 | Jul 2010 | EP |
2374760 | Oct 2011 | EP |
1540019 | Apr 2012 | EP |
2516561 | Oct 2012 | EP |
2546201 | Jan 2013 | EP |
2122736 | Nov 2013 | EP |
2697512 | Feb 2014 | EP |
2507515 | Jul 2016 | EP |
2804682 | Nov 2016 | EP |
2367613 | Mar 2018 | EP |
3201140 | Jul 2018 | EP |
2996989 | Oct 2018 | EP |
3643683 | Apr 2020 | EP |
3680847 | Jul 2020 | EP |
3708544 | Sep 2020 | EP |
2857441 | Oct 2020 | EP |
3656461 | Mar 2021 | EP |
3912707 | Nov 2021 | EP |
3939692 | Jan 2022 | EP |
2299396 | Apr 2009 | ES |
1229209 | May 2019 | ES |
1229209 | Jul 2019 | ES |
1248815 | Sep 2020 | ES |
2814028 | Mar 2021 | ES |
2583738 | Dec 1986 | FR |
2848877 | Apr 2012 | FR |
2194669 | Mar 1988 | GB |
2194855 | Mar 1988 | GB |
2197116 | May 1988 | GB |
2202550 | Sep 1988 | GB |
2195818 | Aug 1990 | GB |
2442941 | Apr 2008 | GB |
72916 | Sep 1987 | IL |
147905 | Jul 2005 | IL |
225697 | Aug 2017 | IL |
201500935 | Oct 2016 | IN |
201741039747 | Dec 2017 | IN |
202011038480 | Oct 2020 | IN |
60168504 | Sep 1985 | JP |
63100996 | Jun 1988 | JP |
2002306118 | Oct 2002 | JP |
2003031255 | Jan 2003 | JP |
2003120427 | Apr 2003 | JP |
2003305343 | Oct 2003 | JP |
2003340439 | Dec 2003 | JP |
2004012303 | Jan 2004 | JP |
2005049173 | Feb 2005 | JP |
03637458 | Apr 2005 | JP |
4092374 | Sep 2005 | JP |
2005268114 | Sep 2005 | JP |
2006004797 | Jan 2006 | JP |
2006004832 | Jan 2006 | JP |
03773437 | May 2006 | JP |
03906677 | Apr 2007 | JP |
2008103262 | May 2008 | JP |
2008269807 | Nov 2008 | JP |
2009112925 | May 2009 | JP |
2010077934 | Apr 2010 | JP |
2010517746 | May 2010 | JP |
04629999 | Feb 2011 | JP |
2011025119 | Feb 2011 | JP |
04843908 | Dec 2011 | JP |
05131952 | Jan 2013 | JP |
2013181501 | Sep 2013 | JP |
2014069181 | Apr 2014 | JP |
05713348 | May 2015 | JP |
2015166478 | Sep 2015 | JP |
2015202445 | Nov 2015 | JP |
2016000995 | Jan 2016 | JP |
05862372 | Feb 2016 | JP |
2016051519 | Apr 2016 | JP |
05940387 | Jun 2016 | JP |
05970664 | Aug 2016 | JP |
05980521 | Aug 2016 | JP |
06021739 | Nov 2016 | JP |
2017025834 | Feb 2017 | JP |
2017091857 | May 2017 | JP |
2017152199 | Aug 2017 | JP |
06311089 | Apr 2018 | JP |
06431658 | Nov 2018 | JP |
2019072660 | May 2019 | JP |
2019098205 | Jun 2019 | JP |
2020027761 | Feb 2020 | JP |
2021502239 | Jan 2021 | JP |
2021100744 | Jul 2021 | JP |
06956953 | Nov 2021 | JP |
893565 | Apr 2009 | KR |
956652 | May 2010 | KR |
1011403 | Jan 2011 | KR |
2011138464 | Dec 2011 | KR |
1109534 | Jan 2012 | KR |
1131092 | Mar 2012 | KR |
1184650 | Sep 2012 | KR |
1184652 | Sep 2012 | KR |
1190610 | Oct 2012 | KR |
1200838 | Nov 2012 | KR |
1206618 | Nov 2012 | KR |
1239440 | Mar 2013 | KR |
1245264 | Mar 2013 | KR |
1297857 | Aug 2013 | KR |
1311360 | Oct 2013 | KR |
1328279 | Nov 2013 | KR |
1328433 | Nov 2013 | KR |
1328524 | Nov 2013 | KR |
2013123888 | Nov 2013 | KR |
1338187 | Dec 2013 | KR |
2013143219 | Dec 2013 | KR |
1387136 | Apr 2014 | KR |
1394132 | May 2014 | KR |
1394237 | May 2014 | KR |
2014003731 | Jun 2014 | KR |
1431636 | Aug 2014 | KR |
1454314 | Oct 2014 | KR |
2014116724 | Oct 2014 | KR |
2015046410 | Apr 2015 | KR |
1519828 | May 2015 | KR |
1526214 | Jun 2015 | KR |
1544747 | Aug 2015 | KR |
1555781 | Sep 2015 | KR |
2015100091 | Sep 2015 | KR |
1557704 | Oct 2015 | KR |
2015145997 | Dec 2015 | KR |
1587592 | Jan 2016 | KR |
1596301 | Feb 2016 | KR |
1609795 | Apr 2016 | KR |
2016054230 | May 2016 | KR |
2016059438 | May 2016 | KR |
1632685 | Jun 2016 | KR |
1641789 | Jul 2016 | KR |
1643146 | Aug 2016 | KR |
1647994 | Aug 2016 | KR |
1668244 | Oct 2016 | KR |
2016116824 | Oct 2016 | KR |
2016127402 | Nov 2016 | KR |
1683602 | Dec 2016 | KR |
1695881 | Jan 2017 | KR |
1702850 | Feb 2017 | KR |
1705783 | Feb 2017 | KR |
1710006 | Feb 2017 | KR |
1712408 | Mar 2017 | KR |
2017023237 | Mar 2017 | KR |
2017023238 | Mar 2017 | KR |
1723807 | Apr 2017 | KR |
1726393 | Apr 2017 | KR |
1730643 | Apr 2017 | KR |
1751291 | Jun 2017 | KR |
1758979 | Jul 2017 | KR |
1766780 | Aug 2017 | KR |
1778562 | Sep 2017 | KR |
1789093 | Oct 2017 | KR |
1815298 | Jan 2018 | KR |
1822188 | Mar 2018 | KR |
2018034106 | Apr 2018 | KR |
1844275 | May 2018 | KR |
1857444 | May 2018 | KR |
2018081279 | Jul 2018 | KR |
1892075 | Aug 2018 | KR |
1906544 | Oct 2018 | KR |
1909397 | Oct 2018 | KR |
2018111229 | Oct 2018 | KR |
1918275 | Nov 2018 | KR |
1946980 | Feb 2019 | KR |
1933000 | Mar 2019 | KR |
1966941 | Apr 2019 | KR |
2019041104 | Apr 2019 | KR |
2019058117 | May 2019 | KR |
1956293 | Jun 2019 | KR |
1958734 | Jul 2019 | KR |
2016320 | Aug 2019 | KR |
2016503 | Sep 2019 | KR |
2020657 | Sep 2019 | KR |
2006120 | Oct 2019 | KR |
2015064 | Oct 2019 | KR |
2018617 | Nov 2019 | KR |
2030113 | Nov 2019 | KR |
2042043 | Nov 2019 | KR |
2055255 | Jan 2020 | KR |
2063831 | Jan 2020 | KR |
2065275 | Jan 2020 | KR |
2072469 | Feb 2020 | KR |
2020024695 | Mar 2020 | KR |
2020036416 | Apr 2020 | KR |
2020073886 | Jun 2020 | KR |
2143397 | Aug 2020 | KR |
2144454 | Aug 2020 | KR |
2175288 | Nov 2020 | KR |
2183195 | Nov 2020 | KR |
2020139009 | Dec 2020 | KR |
2021067116 | Jun 2021 | KR |
2274447 | Jul 2021 | KR |
2021102076 | Aug 2021 | KR |
2021102077 | Aug 2021 | KR |
2297153 | Sep 2021 | KR |
2021112483 | Sep 2021 | KR |
2315033 | Oct 2021 | KR |
2325186 | Nov 2021 | KR |
2344835 | Dec 2021 | KR |
27309 | Sep 2013 | KZ |
27310 | Sep 2013 | KZ |
2016001468 | Jul 2016 | MX |
10201804036 | Dec 2019 | SG |
1550292 | Mar 1990 | SU |
I363838 | May 2012 | TW |
201334847 | Sep 2013 | TW |
M476844 | Apr 2014 | TW |
201909514 | Mar 2019 | TW |
I717277 | Jan 2021 | TW |
1994027913 | Dec 1994 | WO |
1997016464 | May 1997 | WO |
2001092555 | Dec 2001 | WO |
2006067240 | Jun 2006 | WO |
2006072122 | Jul 2006 | WO |
2006123258 | Nov 2006 | WO |
2007132477 | Nov 2007 | WO |
2008053700 | May 2008 | WO |
2009015511 | Feb 2009 | WO |
2010004819 | Jan 2010 | WO |
2010008275 | Jan 2010 | WO |
2010018249 | Feb 2010 | WO |
2010021158 | Feb 2010 | WO |
2010108872 | Sep 2010 | WO |
2010143950 | Dec 2010 | WO |
2011003874 | Jan 2011 | WO |
2011050473 | May 2011 | WO |
2011148422 | Dec 2011 | WO |
2012000558 | Jan 2012 | WO |
2012025656 | Mar 2012 | WO |
2012032557 | Mar 2012 | WO |
2012071994 | Jun 2012 | WO |
2012099074 | Jul 2012 | WO |
2012102677 | Aug 2012 | WO |
2012115114 | Aug 2012 | WO |
2012161663 | Nov 2012 | WO |
2013036111 | Mar 2013 | WO |
2013134710 | Sep 2013 | WO |
2013154367 | Oct 2013 | WO |
2013169023 | Nov 2013 | WO |
2013172605 | Nov 2013 | WO |
2014058469 | Apr 2014 | WO |
2014091199 | Jun 2014 | WO |
2014181898 | Nov 2014 | WO |
2016056778 | Apr 2016 | WO |
2017190505 | Nov 2017 | WO |
2018229505 | Dec 2018 | WO |
2019164462 | Aug 2019 | WO |
2020017694 | Jan 2020 | WO |
2020032356 | Feb 2020 | WO |
2020068930 | Apr 2020 | WO |
2020072080 | Apr 2020 | WO |
2020186665 | Sep 2020 | WO |
2020237155 | Nov 2020 | WO |
2020251218 | Dec 2020 | WO |
2020251568 | Dec 2020 | WO |
2020259733 | Dec 2020 | WO |
2021047417 | Mar 2021 | WO |
2021057558 | Apr 2021 | WO |
2021071425 | Apr 2021 | WO |
2021071824 | Apr 2021 | WO |
2021085979 | May 2021 | WO |
2021090919 | May 2021 | WO |
2021165338 | Aug 2021 | WO |
2021177823 | Sep 2021 | WO |
Entry |
---|
International Search Report and Written Opinion issued in counterpart patent application Ser. No. PCT/US2023/021444 dated Jul. 31, 2023. |
Norwegian University of Science and Technology, https://scitechdaily.com/turning-waste-heat-into-hydrogen-fuel-using-reverse-electrodialysis/, Nov. 23, 2019 (9 pages). |
Nuclear Power 2022, https://www.nuclear-power.com/nuclear-engineering/thermodynamics/thermodynamic-cycles/heating-and-air-conditioning/coefficient-of-performance-heat-pump/ (6 pages). |
Energy Transition Model, https://docs.energytransitionmodel.com/main/heat-pumps/ (5 pages). |
Isidoro Martinez, Heat of Solution Data for Aqueous Solutions, 1995-2022, https://docs.energytransitionmodel.com/main/heat-pumps/. (2 pages). |
Saltworks, https://docs.energytransitionmodel.com/main/heat-pumps/ (8 pages). |
Krakhella, K. et al. Heat to H2: Using Waste Heat for Hydrogen Production through Reverse Electrodialysis, Energies 2019, 12(18): 3428 (25 pages). |
ResearchGate, https://www.researchgate.net/figure/Illustration-of-reverse-electrodialysis-RED-power-generation-system-Internal_fig7_337494612 (4 pages). |
Vermaas, D. et al., Influence of multivalent ions on renewable energy generation in reverse electrodialysis, Energy & Environmental Science, Issue No. 4, 2014, https://pubs.rsc.org/en/content/articlelanding/2014/ee/c3ee43501f <https://urldefense.com/v3/_https:/pubs.rsc.org/en/content/articlelanding/2014/ee/c3ee43501f_;!!A14RNwflftzD!Fc3vkktGCsrDwurEjKK31PqBgHJjiB5xAGk03Da88Mo0RBPbGIBnjRJqXvO3jmTjVg$> (12 pages). |
MaterialsToday, Graphene Could Make Tunable Ion Filter, Nov. 27, 2018, https://www.materialstoday.com/computation-theory/news/graphene-could-make-tunable-ion-filter/ (2 pages). |
Facchinetti, I. et al., Thermally Regenerable Redox Flow Battery for Exploiting Low-Temperature Heat Sources, Cell Reports Physical Science 1(5): 100056, May 20, 2020 (27 pages). |
Palakkal, V. et al., High Power Thermally Regenerative Ammonia-Copper Redox Flow Battery Enabled by a Zero Gap Cell Design, Low-Resistant Membranes, and Electrode Coatings, ACS Appl. Energy Matter, 3(5): 4787-98, 2020. |
Moreno, J. et al., Upscaling Reverse Electrodialysis, Environ. Sci. Technol. 52: 10856-63, 2018. |
Veerman, J. et al., Reverse electrodialysis: evaluation of suitable electrode systems, Journal of Applied Electrochemistry, 40: 1461-74, 2010. |
U.S. Appl. No. 17/662,584, filed May 9, 2022 (32 pages). |
Number | Date | Country | |
---|---|---|---|
20230361332 A1 | Nov 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17662587 | May 2022 | US |
Child | 17963465 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17963465 | Oct 2022 | US |
Child | 18170141 | US |