The following description relates to systems with centrifugal compressors and, more specifically, to reverse rotation prevention in systems with centrifugal compressors.
Heat exchanger systems, such as a water-cooled chiller, typically include a compressor, an expansion valve, a condenser fluidly interposed between the compressor and the expansion valve and an evaporator fluidly interposed between the expansion valve and the compressor. The compressor compresses a saturated vapor and outputs a high-pressure and high-temperature superheated vapor to the condenser. The condenser causes the superheated vapor to condense and outputs the resulting condensed liquid to the expansion valve as a saturated liquid. The expansion valve abruptly reduces a pressure of the saturated liquid and produces a relatively cold mixture with liquid that is then evaporated in the evaporator. The resulting saturated vapor is returned to the compressor.
In water-cooled chillers, in particular, manual isolation valves are often used in discharge pipes between centrifugal compressors and condensers. When the units are shutdown, high pressure gas from the condenser flows through the compressor into the evaporator. After, a period of time (e.g., ˜3 seconds), the compressor goes into reverse rotation before coming to a complete stop. For a compressor using rolling element bearings, such reverse rotation is not significantly problem whereas, for a compressor using magnetic bearings, reverse rotation can be an issue.
According to an aspect of the disclosure, a method of operating a heat exchanger system in which a compressor, which is drivable by a motor, is fluidly interposed between an evaporator and a condenser following receipt of a shutdown command is provided. The method includes positioning inlet guide vanes (IGVs) of the compressor in a first position in the event of at least one of a first precondition being in effect and the first and a second precondition both not being in effect. The method further includes positioning the IGVs in a second position in an event the first precondition is not in effect but the second precondition is in effect, ramping a speed of the compressor down until a third precondition takes effect, removing power from the motor and positioning the IGVs in the first position once power is removed from the motor.
In accordance with additional or alternative embodiments, opening a hot gas bypass (HGBP) valve immediately following receipt of the shutdown command.
In accordance with additional or alternative embodiments, the first precondition includes a variable frequency drive (VFD) fault being declared, the second precondition includes an operating point being greater than or equal to a VFD surge prevention line and the third precondition includes a pressure difference between the compressor and the condenser being less than a predefined amount.
In accordance with additional or alternative embodiments, the predefined amount is about 3 PSI.
In accordance with additional or alternative embodiments, the first position is a fully closed position of the IGVs.
In accordance with additional or alternative embodiments, the ramping of the speed of the compressor down includes ramping the speed of the compressor down to 0 RPM within a predefined time.
According to an aspect of the disclosure, a controller to operate a heat exchanger system following receipt of a shutdown command is provided. The controller is configured to position inlet guide vanes (IGVs) of a compressor in a first position in the event of at least one of a first precondition being in effect and the first and a second precondition both not being in effect, position the IGVs in a second position in an event the first precondition is not in effect but the second precondition is in effect, ramp a speed of the compressor down until a third precondition takes effect, remove power from a motor configured to drive the compressor and position the IGVs in the first position once power is removed from the motor.
In accordance with additional or alternative embodiments, the controller is further configured to open a hot gas bypass (HGBP) valve immediately following receipt of the shutdown command.
In accordance with additional or alternative embodiments, the first precondition includes a variable frequency drive (VFD) fault being declared, the second precondition includes an operating point being greater than or equal to a VFD surge prevention line and the third precondition includes a pressure difference between the compressor and the condenser being less than a predefined amount.
In accordance with additional or alternative embodiments, the predefined amount is about 3 PSI.
In accordance with additional or alternative embodiments, the first position includes a fully closed position of the IGVs.
In accordance with additional or alternative embodiments, the controller is configured to ramp the speed of the compressor down to 0 RPM within a predefined time.
According to an aspect of the disclosure, a controller of a heat exchanger system is provided. The heat exchanger system includes a compressor including inlet guide vanes (IGVs) at an inlet thereof, a motor configured to drive the compressor and a controller. The controller is configured to control the compressor, the IGVs and the motor and, upon receipt of a shutdown command, positions the IGVs in a first position in the event of at least one of a first precondition being in effect and the first and a second precondition both not being in effect, positions the IGVs in a second position in an event the first precondition is not in effect but the second precondition is in effect, ramps a speed of the compressor down until a third precondition takes effect, removes power from the motor and positions the IGVs in the first position once power is removed from the motor.
In accordance with additional or alternative embodiments, the heat exchanger system further includes an evaporator and a condenser and the compressor is fluidly interposed between the evaporator and the condenser.
In accordance with additional or alternative embodiments, the heat exchanger system further includes a hot gas bypass (HGBP) valve downstream from the compressor, interposed between the evaporator and the condenser, and the controller opens the HGBP valve immediately following the receipt of the shutdown command.
In accordance with additional or alternative embodiments, the first precondition includes a variable frequency drive (VFD) fault being declared, the second precondition includes an operating point being greater than or equal to a VFD surge prevention line and the third precondition includes a pressure difference between the compressor and the condenser being less than a predefined amount.
In accordance with additional or alternative embodiments, the predefined amount is about 3 PSI.
In accordance with additional or alternative embodiments, the first position is a fully closed position of the IGVs.
In accordance with additional or alternative embodiments, the controller ramps the speed of the compressor down to 0 RPM within a predefined time.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the disclosure, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features and advantages of the disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
As will be described below, a control algorithm is proposed for use with water-cooled chillers, in particular, to prevent reverse rotation of the compressor following unit shutdown. The control algorithm generally opens inlet guide vanes (IGVs) of the compressor and a hot gas bypass valve (HGBP) when a shutdown command is provided and received. In addition, a monitoring unit monitors condenser and evaporator pressures so that compressor rotational speed can be held at zero until equalization.
With reference to
The compressor 11 may include or be provided as a centrifugal compressor that operates by compressing fluids as a result of a rotation of the compressor 11 about a longitudinal axis thereof. Such rotation can be driven in part by motor 111, which is powered by power source 112.
The IGVs 110 of the compressor 11 are provided at an inlet of the compressor 11 and can assume various angular positions, which are referred to herein as IGV positions, and which include fully closed positions and multiple open positions. When the IGVs 110 assume the fully closed positions, the compressor 11 does not receive saturated vapor from the evaporator 14. By contrast, when the IGVs assume any of the open positions, the compressor 11 is receptive of the saturated vapor from the evaporator 14 in an amount which is related to how open the IGVs 110 are.
When the IGVs 110 assume one of the open positions, the IGVs 110 can be closed or opened at a rate that is reflective of a need for the compressor 11 to decrease or increase the amount of saturated vapor it can receive. In addition, the IGVs 110 can be closed to the fully closed position at a maximum closure rate in some cases.
As shown in
With reference to
With reference back to
With reference to
In accordance with embodiments, the shutdown command may be received in block 401 from an operator or a high level control element in response to a variable frequency drive (VFD) being in effect, for example. More particularly, the shutdown command may be generated and received from a building control system (based on a load requirement), a chiller control system (e.g., as part of operations for monitoring freeze protection, surges, motor winding temperatures, oil pressures, bearing temperatures, high compressor discharge temperatures, etc.), a VFD alarm and a bearing controller alarm.
In an event the first precondition is not in effect (e.g., the VFD fault is not in effect and has not been declared), the method includes determining whether a second precondition is in effect (block 405). In accordance with embodiments, the second precondition may include or be provided as an operating point of the heat exchanger system 10 or the compressor 11 being less than or below the VPF surge prevention line 201. In an event the second precondition is determined to not be in effect (e.g., the operating point of the heat exchanger system 10 or the compressor 11 is greater than or equal to the VPF surge prevention line 201), the method further includes closing the IGVs 110 at the maximum rate (block 406). Alternatively, in an event the second precondition is determined to be in effect (e.g., the operating point of the heat exchanger system 10 or the compressor 11 is below the VPF surge prevention line 201), the method further includes holding a position of the IGVs 110 (block 407).
At this point, the method also includes ramping a speed of the compressor 11 down to zero RPM within a given time (block 408), determining whether a third precondition is in effect (block 409), removing power from the motor 111 in an event the third precondition is determined to be in effect (block 410) and closing the IGVs 110 once the power is removed (block 411). In accordance with embodiments, the given time may be about five seconds and the third precondition may include or be provided as a cooler-condenser pressure difference being less than a given pressure (e.g., about 3 PSI).
While the disclosure is provided in detail in connection with only a limited number of embodiments, it should be readily understood that the disclosure is not limited to such disclosed embodiments. Rather, the disclosure can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the disclosure. Additionally, while various embodiments of the disclosure have been described, it is to be understood that the exemplary embodiment(s) may include only some of the described exemplary aspects. Accordingly, the disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
This application is a National Phase of PCT Application No. PCT/US2019/026308 filed Apr. 8, 2019, which claims the benefit of Provisional Application 62/655,020 filed Apr. 9, 2018, the disclosure of which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/026308 | 4/8/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/199662 | 10/17/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4071306 | Calabretta | Jan 1978 | A |
4514989 | Mount | May 1985 | A |
4539820 | Zinsmeyer | Sep 1985 | A |
4589060 | Zinsmeyer | May 1986 | A |
4762469 | Tischer | Aug 1988 | A |
4840545 | Moilanen | Jun 1989 | A |
4955795 | Griffith | Sep 1990 | A |
5167491 | Keller, Jr. | Dec 1992 | A |
5186613 | Kotlarek et al. | Feb 1993 | A |
5591014 | Wallis et al. | Jan 1997 | A |
5683236 | Harrison et al. | Nov 1997 | A |
5800141 | Ceylan et al. | Sep 1998 | A |
5820349 | Caillat | Oct 1998 | A |
6042344 | Lifson | Mar 2000 | A |
6095764 | Shibamoto et al. | Aug 2000 | A |
6171064 | Hugenroth et al. | Jan 2001 | B1 |
6190138 | Hugenroth | Feb 2001 | B1 |
6203300 | Williams et al. | Mar 2001 | B1 |
6210119 | Lifson et al. | Apr 2001 | B1 |
6418740 | Williams et al. | Jul 2002 | B1 |
6533552 | Centers et al. | Mar 2003 | B2 |
6669456 | Kim | Dec 2003 | B2 |
6672845 | Kim et al. | Jan 2004 | B1 |
6893236 | Jeong | May 2005 | B2 |
7121813 | Choi et al. | Oct 2006 | B2 |
7160088 | Peyton | Jan 2007 | B2 |
7197890 | Taras et al. | Apr 2007 | B2 |
7290990 | Lifson | Nov 2007 | B2 |
7300257 | Lifson et al. | Nov 2007 | B2 |
7356999 | Bodell, II et al. | Apr 2008 | B2 |
7429167 | Bonear et al. | Sep 2008 | B2 |
7950911 | Ohtsuka et al. | May 2011 | B2 |
8291713 | Matz | Oct 2012 | B2 |
8855474 | Marchinkiewicz et al. | Oct 2014 | B2 |
8979509 | Matsumoto et al. | Mar 2015 | B2 |
9816742 | Rite et al. | Nov 2017 | B2 |
10544791 | De | Jan 2020 | B2 |
10612827 | Sibik | Apr 2020 | B2 |
20140328667 | Sommer | Nov 2014 | A1 |
20150219378 | Crane et al. | Aug 2015 | A1 |
20150362240 | Sibik | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
201461404 | May 2010 | CN |
103115022 | May 2013 | CN |
103321934 | Sep 2013 | CN |
103946555 | Jul 2014 | CN |
105074360 | Nov 2015 | CN |
0538179 | Dec 1995 | EP |
3267591 | Jul 2001 | JP |
20100083257 | Jul 2010 | KR |
2005035992 | Apr 2005 | WO |
2014074448 | May 2014 | WO |
2014106233 | Jul 2014 | WO |
Entry |
---|
International Search Report Application No. PCT/US2019/026308, dated Jul. 2, 2019, pp. 5. |
Written Opinion Application No. PCT/US2019/026308, dated Jul. 2, 2019, pp. 10. |
Werner Soedel:, “Proceedings of the 1996 International Compressor Engineering Conference at Purdue”; Purdue University, West Lafayette, IN; vol. II; Jul. 23-26, 2996; pp. 8. |
Office Action issued in Chinese Application No. 201980038590.8; Application Filing Date Apr. 8, 2019; dated Nov. 26, 2021 (16 pages). |
Number | Date | Country | |
---|---|---|---|
20210364209 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
62655020 | Apr 2018 | US |