Reverse semi-airborne electromagnetic prospecting

Information

  • Patent Grant
  • 9846255
  • Patent Number
    9,846,255
  • Date Filed
    Friday, February 7, 2014
    10 years ago
  • Date Issued
    Tuesday, December 19, 2017
    7 years ago
Abstract
Method for semi-airborne electromagnetic prospecting for hydrocarbons or other fluids or minerals. In the method, electromagnetic receivers are deployed on the Earth's surface over a subsurface region (71). An airborne electromagnetic transmitter is flown over the receivers (72) and the receivers record at least one component of electromagnetic field data excited by the transmitter (73). The recorded electromagnetic data are analyzed for subsurface resistivity (74), and the resistivity is interpreted for evidence of hydrocarbons or other fluids or minerals (75). Compared to traditional fully airborne surveys, the advantages of the method include better signal-to-noise, and data for multiple source-receiver offsets.
Description
FIELD OF THE INVENTION

This disclosure relates generally to the field of geophysical prospecting and, more particularly, to electromagnetic prospecting. More specifically, the disclosure concerns a fly-over method for electromagnetic prospecting for hydrocarbons or detection of other fluids or minerals.


BACKGROUND OF THE INVENTION

1. Technical Problem Solved by the Invention


For the case of shallow hydrocarbons such as the oil sands in Alberta, Canada, a technique is sought that will map edges, depth extent, and grade (saturation) of a shallow reservoir layer. In this environment, the reservoir layer is manifested in electrical parameters as a resistive anomaly (more resistive than the non-reservoir surroundings) in an already quite resistive background. The background resistivity can range from 50-100 ohm-m whereas the reservoir, depending on quality factors, can vary from 100-1000 ohm-m. In order to be economically accessed by surface mining, the reservoir layer must exist within the upper 70 m of earth. A new technique is disclosed that is able to detect resistivity variations between 50 and 1000 ohm m, at depths of 0 to 100 m from the surface.


2. Previous Techniques and Limitations


Current airborne electromagnetic prospecting involves a helicopter or airplane towing a single receiver and single transmitter over a prospect (FIG. 1). The transmitter broadcasts a specific magnetic signal and the magnetic receiver records the magnetic fields resulting from the source signal interacting with the materials of the earth. In FIG. 1, the transmitter is a magnetic coil attached to a helicopter and flown some 30 m above the ground. The transient electric current in the coil generates a primary magnetic field that penetrates the ground and generates electric currents in the conductive sediments. As a result, a secondary magnetic field is generated and recorded by a receiver comprising conductive coils depicted in the drawing. Information about the sediments is captured by the secondary field. This method has predominantly been employed for the identification of precious metal deposits and groundwater characterization. Both of these applications require the detection of a conductive anomaly (0.01-1 ohm m) within a resistive background (>100 ohm m). While this technique allows for the fast collection of data over a broad area, it is limited to one fixed source-receiver offset, and it is also limited by the fact that it must necessarily be vertically distant from the object it is intended to detect. For these reasons, it is not suitable for detecting the hydrocarbon target previously described.


The magnetic signal arising from the relatively resistive hydrocarbon is very weak and likely obscured within the noise level of a receiver flown above ground. FIG. 3 shows a synthetic sensitivity study, performed by the present inventors, where the altitude of the source and receiver was chosen to be comparable with the flight conditions at treetop level. FIG. 3 shows, on the left, sensitivity as a function of source frequency and source-receiver offset, for a resistive target. On the right, FIG. 3 shows sensitivity for a conductive target. The thin solid contour lines in the sensitivity plots (resistive target on the left, conductive target on the right) enclose regions of detectability in the data, i.e., a signal-to-noise ratio (SNR) greater than 1. In both sensitivity plots, the bold dashed vertical line shows the data coverage of current technology, i.e. a single offset and multiple frequencies. FIG. 3 also shows the resistivity models used to generate the synthetic data studies. Thus, it can be seen from FIG. 3 that the current fully airborne electromagnetic prospecting is good for detecting metallic ores (conductive bodies), which is what it was originally designed for, but not good, regardless of frequency or offset, for detecting hydrocarbons (resistive bodies).


Exacerbating the distant-receiver problem is the fact that there is a limited range of frequencies that are both able to be transmitted with significant power, and able to invoke strong enough secondary-field anomaly from the reservoir to be detectable above the magnetic field resulting from the background geology. Geophysical inverse problems (inverting the geophysical data to infer the subsurface physical property model that gave rise to the data) often suffer from the problem of non-uniqueness, the electromagnetic problem especially so. The fewer independent geophysical observations we have, the larger the uncertainty of the recovered image of the subsurface will be. In this case, the narrower the frequency range of sensitivity to the reservoir, the weaker the constraints on the pertinent parameters of the reservoir target (e.g. aerial distribution, thickness, resistivity, depth of burial).


In order to address some of the issues, a different approach was considered by some research groups. Some relevant publications include:


U.S. Pat. No. 5,610,523, 1997 to P. J. Elliot, “Comparison of data from airborne, semi-airborne, and ground electromagnetic systems;”


R. S. Smith, et al., “Method and apparatus of interrogating a volume of material beneath the ground including an airborne vehicle with a detector being synchronized with a generator in a ground loop,” Geophysics 66, 1379-1385 (2001); and


T. Mogi, et al., “Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai, north-eastern Japan,” Exploration Geophysics 40(1), 1-7 Published online: 27 Feb. 2009.


Elliot's patent proposes a method of interrogating a volume of underground material located beneath a grounded loop transmitter whose transient electromagnetic signal is picked up by a receiver attached to an aircraft. Smith et al. considered an experimental semi-airborne system with a source loop placed on the ground and an airborne receiver, and investigated how the signal-to-noise level compares with the case of an earth-bounded survey and an airborne one. Mogi et al. used the semi-airborne technology with a grounded transient electromagnetic source and an airborne receiver for investigating volcanic structures.


All three of the above publications propose a semi-airborne survey method that places the source on the ground while the receiver is attached to an aircraft. Although this approach addresses some of the shortcomings of the existing technology, in particular the acquisition of multiple-offset data, the low signal-to-noise ratio for resistive targets remains a problem. With the sensitive receiver placed on a moving platform, much higher noise is generated through motional induction, than would be experienced in a stationary receiver on the ground, relative to the small signal from the reservoir. Conversely, the anomalous currents that might be induced through motion of the transmitter would be orders of magnitude smaller than the known current that drives it. In addition, the existing semi-airborne approach, by pinning a singular transmitter to the ground does not allow for the economical collection of data from multiple, sequential source locations. There is a need for a technique that mitigates the problems of weak reservoir signal relative to receiver noise and lack of constraints on the data inversion. The present inventive method satisfies this need.


SUMMARY OF THE INVENTION

In one embodiment, the present invention is a method for semi-airborne electromagnetic prospecting for hydrocarbons (or other fluids or minerals), comprising, referring to the flowchart of FIG. 5, (step 51) deploying a plurality of electromagnetic receivers on the Earth's surface over a subsurface region; (step 52) energizing an airborne electromagnetic transmitter, preferably a magnetic dipole, in a vicinity above the receivers; (step 53) recording at least one component of electromagnetic field data excited by the transmitter in the receivers; (step 54) analyzing the recorded data for subsurface resistivity; and (step 55) interpreting the resistivity for evidence of hydrocarbons (or other fluids or minerals).





BRIEF DESCRIPTION OF THE DRAWINGS

The advantages of the present invention are better understood by referring to the following detailed description and the attached drawings, in which:



FIG. 1 is a schematic diagram showing airborne electromagnetic (“EM”) data being collected using existing technology, where both the source and the receiver are attached to a helicopter acquiring a data set that is limited to a single source-receiver offset;



FIG. 2 is a schematic diagram illustrating how semi-airborne EM data may be collected using the present invention, where the source is still attached to a helicopter but the receivers are placed on the ground acquiring an enhanced signal data set featuring multiple source-receiver offsets;



FIG. 3 is a conversion to gray scale of a color data display, shows displays of sensitivity to a resistive target (left) and sensitivity to a conductive target (right) for a conventional, fully airborne (both source and receiver airborne) survey;



FIG. 4, also a conversion to gray scale of a color data display, compares resistive target sensitivity for an airborne receiver (left) compared to a ground receiver (right); and



FIG. 5 is a flow chart showing basic steps in one embodiment of the method of the present invention.





The invention will be described in connection with example embodiments. However, to the extent that the following detailed description is specific to a particular embodiment or a particular use of the invention, this is intended to be illustrative only, and is not to be construed as limiting the scope of the invention. On the contrary, it is intended to cover all alternatives, modifications and equivalents that may be included within the scope of the invention, as defined by the appended claims.


DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

In order to solve these problems of weakness in reservoir signal, and paucity in constraints, a technique is disclosed for the collection of electromagnetic recordings at many different source-receiver offsets on the earth's surface.


The present invention involves the airborne towing of a magnetic source by an aircraft flown above the survey area. In preferred embodiments of the invention, the source is a magnetic dipole, oriented horizontally or vertically. (An electric source such as an electric dipole will be unsatisfactory because it will not be able to efficiently transfer the field energy into the subsurface due to the air/ground interface acting like a Faraday cage and insolating the subsurface from the airborne electric fields.) An array of receivers is placed on the earth's surface in the survey area, as shown in FIG. 2, with a spacing that may be determined at least partly based on economics. The receiver could perform either magnetic field measurements or electric field measurements, or both measurements at the same time. The airborne source could be either a time-domain or a frequency-domain system, with the latter requiring that the helicopter or airplane is moving slowly relative to the time it takes for the receivers to record several cycles of earth response. If a frequency-domain source is chosen, the airborne magnetic source may broadcast a waveform with frequency content based on feasibility studies prior to the survey, typically between 50 Hz and 100 kHz, and the receivers will sample the resulting field at a rate with a Nyquist frequency sufficiently higher than the highest transmitted frequency. All receivers and the transmitter may be synchronized through GPS timing or the synchronization could be established at a later processing time.


Because the receivers are placed on the ground, and only the source is airborne, the present inventive method may be referred to as reverse semi-airborne electromagnetic prospecting, the word reverse referring to the fact that in the existing semi-airborne electromagnetic prospecting (examples discussed above), the source is on the ground and the receiver is airborne. Although not part of the present invention, FIG. 2 includes an airborne electromagnetic receiver as might be used in current airborne electromagnetic prospecting.


The benefits of the present invention are particularly useful for shallow hydrocarbon exploration. Now the receivers are significantly closer to the target creating the anomalous field, thereby rendering its signal detectable above the noise level. This is demonstrated in FIG. 4. The thin solid contour lines in the sensitivity plots (airborne receiver on the left, ground receiver on the right) enclose regions in which the lighter shading indicates detectability in the data, i.e., a signal-to-noise ratio (SNR) greater than 1. (FIG. 4 also shows the resistivity model used to generate the synthetic data studies.) In the left sensitivity plot, the bold dashed vertical line shows the data coverage of the current all-airborne technology (single offset, multiple frequencies). In the right-hand panel in FIG. 4, showing resistive target sensitivity for a ground receiver, there are large zones in the offset-frequency domain representing signal that is detectable above the noise level. This may be compared to the left-hand panel of FIG. 4 (this is the same display as the left-hand panel in FIG. 3) showing resistive target sensitivity for an airborne receiver and airborne transmitter. It can be seen that there are very limited combinations of source frequency and source-receiver offset that will yield signal detectable above noise levels for the airborne receiver. Also, placing the multiple receivers on the ground provides a greater richness of independent measurements by introducing the ability to simultaneously record more than one source-receiver offset over multiple, sequential source locations. The final advantage afforded by this technique is the significant reduction in noise by having the receiver stationary on the ground, which removes the problem of induction by translation and rotation of the receiver in a spatially variable magnetic field.


Once acquired, the raw data may be subject to a processing workflow including: GPS and amplitude corrections, de-spiking, de-noising, drift-corrections etc. These are standard industry processing steps and an overview of these steps is detailed in Nicholas C. Valleau's paper (Nicholas C. Valleau, “HEM data processing—a practical overview,” Exploration Geophysics 31, 584-594 (2000)). Although the raw data are a time series, in practice the data are commonly interpreted in the temporal frequency domain. The frequency domain data is generated by “binning” the time domain data in intervals equal with the period of the transmitted waveform and extracting the dominant frequencies by means of Fourier Transform (FT). At this stage a time to depth transformation can be carried out by means of modeling (see, for example, Gregory A. Newman and David L. Alumbaugh, “Frequency-domain modeling of airborne electromagnetic responses using staggered finite differences,” Geophysical Prospecting 43, 1021-1042, (1995)) and inversion. The airborne EM data included in the inversion can be substantially larger than other airborne EM data previously used in inversion calculations because of the multi-offset nature of the proposed data. Although this data redundancy carries a computational overhead, it also enriches the measured data set providing an important advantage over existing methods. The mechanics of the inversion may be identical to that described in any of several references on CSEM (Controlled Source EM) iterative inversion, for example Gregory A. Newman, Michael Commer, and James J. Carazzone, “Imaging CSEM data in the presence of electrical anisotropy,” Geophysics 75, F51-F61 (2010), with the exception that the transmitter and receivers are immersed in air instead of water. See PCT International Patent Application WO 08/033184, “Rapid inversion of electromagnetic reconnaissance survey data,” by Jing, et al., for a particularly efficient method of inversion. Converged inversions provide subsurface resistivity volumes which are used for integrated geological interpretation.


In a preferred embodiment, basic steps of the present inventive method, summarized in the flowchart of FIG. 5, are as follows:

  • 1. Deploy a plurality of electromagnetic receivers on the earth's surface;
  • 2. Energize an airborne electromagnetic transmitter in the vicinity of said receivers;
  • 3. Record at least one component of electromagnetic field data excited by said transmitter in said receivers;
  • 4. Analyze said data for subsurface resistivity;
  • 5. Interpret the resistivity for evidence of mineral or hydrocarbon accumulation;


In many embodiments of the invention, the survey source, i.e. the electromagnetic transmitter, will be a magnetic dipole, which can be oriented either horizontally or vertically. The electromagnetic receivers may be directional magnetometers, having 1, 2, or 3 axes depending upon how many components of the magnetic field vector one wants to measure. The receivers and transmitters may be linked to a GPS for synchronization and location purposes. The receivers may be placed on the ground in a variety of ways, including by dropping a robust package from an aircraft, or by lowering to the ground from an aircraft, or placing them by a ground-based operation.


Those skilled in the art of Airborne EM data acquisition would find it straightforward to carry out a survey as described above, and will appreciate the gain in the signal level as a result of the more suitable survey geometry afforded by the present inventive method.


The foregoing description is directed to particular embodiments of the present invention for the purpose of illustrating it. It will be apparent, however, to one skilled in the art, that many modifications and variations to the embodiments described herein are possible. All such modifications and variations are intended to be within the scope of the present invention, as defined by the appended claims.

Claims
  • 1. A method for semi-airborne electromagnetic prospecting for fluids or minerals, comprising: deploying a plurality of electromagnetic receivers on the Earth's surface over a subsurface region;energizing an airborne electromagnetic transmitter in a vicinity above the receivers;recording at least one component of electromagnetic field data excited by the transmitter in the receivers, wherein the electromagnetic transmitter transmits, and the receivers record, multiple frequencies for a single offset;analyzing the at least one component of electromagnetic field data generated from the semi-airborne electromagnetic prospecting for subsurface resistivity; andinterpreting the resistivity for evidence of hydrocarbons.
  • 2. The method of claim 1, wherein the electromagnetic transmitter is a magnetic dipole.
  • 3. The method of claim 2, wherein the magnetic dipole is oriented either horizontally or vertically.
  • 4. The method of claim 2, wherein the magnetic dipole is oriented horizontally.
  • 5. The method of claim 1, wherein the electromagnetic receivers are directional magnetometers, measuring one or more vector components of magnetic field.
  • 6. The method of claim 1, wherein the transmitter and receivers are linked to a global positioning satellite for synchronization and location purposes.
  • 7. The method of claim 1, wherein the deploying of receivers is accomplished by one of (a) dropping from an aircraft; (b) lowering to the ground from an aircraft; and (c) placing by a ground-based operation.
  • 8. The method of claim 1, wherein the transmitter is towed above the subsurface region by an airplane or helicopter.
  • 9. The method of claim 1, wherein the receivers are deployed in a regular array.
  • 10. The method of claim 1, wherein the analyzing comprises inverting the recorded data to infer a resistivity model of the subsurface region.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application 61/814,589, filed Apr. 22, 2013, entitled REVERSE SEMI-AIRBORNE ELECTROMAGNETIC PROSPECTING, the entirety of which is incorporated by reference herein.

US Referenced Citations (160)
Number Name Date Kind
4686474 Olsen Aug 1987 A
4742305 Stolarczyk May 1988 A
4792761 King et al. Dec 1988 A
4831383 Ohnishi et al. May 1989 A
4875015 Ward Oct 1989 A
5050129 Schultz Sep 1991 A
5175500 McNeill Dec 1992 A
5189644 Wood Feb 1993 A
5210691 Freedman et al. May 1993 A
5265192 McCormack Nov 1993 A
5357893 Ruffa Oct 1994 A
5373443 Lee et al. Dec 1994 A
5406206 Safinya et al. Apr 1995 A
5467018 Ruter et al. Nov 1995 A
5563513 Tasci et al. Oct 1996 A
5594343 Clark et al. Jan 1997 A
5610523 Elliot Mar 1997 A
5629626 Russell May 1997 A
5706194 Neff et al. Jan 1998 A
5764515 Guerillot et al. Jun 1998 A
5770945 Constable Jun 1998 A
5825188 Montgomery et al. Oct 1998 A
5835883 Neff et al. Nov 1998 A
5841733 Bouyoucos et al. Nov 1998 A
5884227 Rabinovich et al. Mar 1999 A
5905657 Celniker May 1999 A
6037776 McGlone Mar 2000 A
6049760 Scott Apr 2000 A
6088656 Ramakrishnan et al. Jul 2000 A
6094400 Ikelle Jul 2000 A
6101448 Ikelle et al. Aug 2000 A
6115670 Druskin et al. Sep 2000 A
6138075 Yost Oct 2000 A
6181138 Hagiwara et al. Jan 2001 B1
6253100 Zhdanov Jun 2001 B1
6253627 Lee et al. Jul 2001 B1
6256587 Jericevic et al. Jul 2001 B1
6278948 Jorgensen et al. Aug 2001 B1
6304086 Minerbo et al. Oct 2001 B1
6311132 Rosenquist et al. Oct 2001 B1
6332109 Sheard et al. Dec 2001 B1
6339333 Kuo Jan 2002 B1
6393363 Wilt et al. May 2002 B1
6424918 Jorgensen et al. Jul 2002 B1
6430507 Jorgensen et al. Aug 2002 B1
6466021 MacEnany Oct 2002 B1
6470274 Mollison et al. Oct 2002 B1
6476609 Bittar Nov 2002 B1
6493632 Mollison et al. Dec 2002 B1
6502037 Jorgensen et al. Dec 2002 B1
6529833 Fanini et al. Mar 2003 B2
6533627 Ambs Mar 2003 B1
6534986 Nichols Mar 2003 B2
6593746 Stolarczyk Jul 2003 B2
6594584 Omeragic et al. Jul 2003 B1
6671623 Li Dec 2003 B1
6675097 Routh et al. Jan 2004 B2
6686736 Schoen et al. Feb 2004 B2
6711502 Mollison et al. Mar 2004 B2
6724192 McGlone Apr 2004 B1
6739165 Strack May 2004 B1
6765383 Barringer Jul 2004 B1
6813566 Hartley Nov 2004 B2
6816787 Ramamoorthy et al. Nov 2004 B2
6842006 Conti et al. Jan 2005 B2
6842400 Blanch et al. Jan 2005 B2
6846133 Martin et al. Jan 2005 B2
6876725 Rashid-Farrokhi et al. Apr 2005 B2
6883452 Gieseke Apr 2005 B1
6888623 Clements May 2005 B2
6901029 Raillon et al. May 2005 B2
6901333 Van Riel et al. May 2005 B2
6914433 Wright et al. Jul 2005 B2
6950747 Byerly Sep 2005 B2
6957708 Chemali et al. Oct 2005 B2
6958610 Gianzero Oct 2005 B2
6985403 Nicholson Jan 2006 B2
6993433 Chavarria et al. Jan 2006 B2
6999880 Lee Feb 2006 B2
7002349 Barringer Feb 2006 B2
7002350 Barringer Feb 2006 B1
7023213 Nichols Apr 2006 B2
7035525 Weeks et al. Apr 2006 B2
7062072 Anxionnaz et al. Jun 2006 B2
7092315 Olivier Aug 2006 B2
7109717 Constable Sep 2006 B2
7113869 Xue Sep 2006 B2
7114565 Estes et al. Oct 2006 B2
7116108 Constable Oct 2006 B2
7126338 MacGregor et al. Oct 2006 B2
7142986 Moran Nov 2006 B2
7187569 Sinha et al. Mar 2007 B2
7191063 Tompkins Mar 2007 B2
7203599 Strack et al. Apr 2007 B1
7227363 Gianzero et al. Jun 2007 B2
7250768 Ritter et al. Jul 2007 B2
7257049 Laws et al. Aug 2007 B1
7262399 Hayashi et al. Aug 2007 B2
7262602 Meyer Aug 2007 B2
7307424 MacGregor et al. Dec 2007 B2
7328107 Strack et al. Feb 2008 B2
7337064 MacGregor et al. Feb 2008 B2
7347271 Ohmer et al. Mar 2008 B2
7356412 Tompkins Apr 2008 B2
7362102 Andreis Apr 2008 B2
7382135 Li et al. Jun 2008 B2
7400977 Alumbaugh et al. Jul 2008 B2
7411399 Reddig et al. Aug 2008 B2
7453763 Johnstad Nov 2008 B2
7456632 Johnstad et al. Nov 2008 B2
7477160 Lemenager et al. Jan 2009 B2
7482813 Constable et al. Jan 2009 B2
7483792 MacGregor et al. Jan 2009 B2
7502690 Thomsen et al. Mar 2009 B2
7536262 Hombostel et al. May 2009 B2
7542851 Tompkins Jun 2009 B2
7565245 Andreis et al. Jul 2009 B2
7659721 MacGregor et al. Feb 2010 B2
7660188 Meldahl Feb 2010 B2
7683625 Milne et al. Mar 2010 B2
7805250 Colombo et al. Sep 2010 B2
7822552 Bittleston Oct 2010 B2
7884612 Conti Feb 2011 B2
7928732 Nichols Apr 2011 B2
7987074 Carazzone et al. Jul 2011 B2
8008920 Lu et al. Aug 2011 B2
8014988 Wahrmund et al. Sep 2011 B2
8078404 Sjolie et al. Dec 2011 B2
8095345 Hoversten Jan 2012 B2
8099239 MacGregor et al. Jan 2012 B2
20020043976 Holladay, III et al. Apr 2002 A1
20020172329 Rashid-Farrokhi et al. Nov 2002 A1
20050128874 Herkenhoff et al. Jun 2005 A1
20050237063 Wight et al. Oct 2005 A1
20060186887 Strack et al. Aug 2006 A1
20070280047 MacGregor et al. Dec 2007 A1
20070288211 MacGregor et al. Dec 2007 A1
20080007265 Milne et al. Jan 2008 A1
20080008920 Alexandrovichserov et al. Jan 2008 A1
20080029420 Tong Feb 2008 A1
20080105425 MacGregor et al. May 2008 A1
20080106265 Campbell May 2008 A1
20090005997 Willen Jan 2009 A1
20090083006 Mackie Mar 2009 A1
20090204330 Thomsen et al. Aug 2009 A1
20090243613 Lu et al. Oct 2009 A1
20090254320 Lovatini et al. Oct 2009 A1
20090265111 Helwig et al. Oct 2009 A1
20090306900 Jing et al. Dec 2009 A1
20090309599 Ziolkowski Dec 2009 A1
20100014384 Colombo et al. Jan 2010 A1
20100017131 Glinsky et al. Jan 2010 A1
20100017132 Glinsky et al. Jan 2010 A1
20100085055 Barsukov et al. Apr 2010 A1
20100179761 Burtz et al. Jul 2010 A1
20100225322 Kramer Sep 2010 A1
20100244843 Francesca Spiotta Sep 2010 A1
20110098929 Tabanou et al. Apr 2011 A1
20110098996 Nichols et al. Apr 2011 A1
20130185033 Tompkins et al. Jul 2013 A1
Foreign Referenced Citations (15)
Number Date Country
2 402 745 Aug 2005 GB
2 410 635 Dec 2006 GB
WO 199807050 Feb 1998 WO
WO 2004109338 Dec 2004 WO
WO 2005085909 Sep 2005 WO
WO 2006052145 May 2006 WO
WO 2006073315 Jul 2006 WO
WO 2006135568 Dec 2006 WO
WO 2008008124 Jan 2008 WO
WO 2008033184 Mar 2008 WO
WO 2008054880 May 2008 WO
WO 2008062024 May 2008 WO
WO 2008085063 Jul 2008 WO
WO 2011050139 Apr 2011 WO
WO 2012129654 Oct 2012 WO
Non-Patent Literature Citations (5)
Entry
Ito, T. et al. (2009), “Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai, north-eastern Japan,” Exploration Geophysics 40(1), pp. 1-6.
Newman, G.A. et al. (1995), “Frequency-doman modeling of airborne electromagnetic responses using staggered finite differences,” Geophysical Prospecting 43, pp. 1021-1042.
Newman, G.A. et al. (2010), “Imaging CSEM data in the presence of electrical anisotropy,” Geophysics 75, pp. F51-F61.
Smith, R.S. et al. (2001), “A comparison of data from airborne, semi-airborne, and ground electromagnetic systems,” Geophysics 66(5), pp. 1379-1385.
Valleau, n. C. (2000), “HEM data processing—a practical overview,” Exploration Geophysics 31, pp. 584-594.
Related Publications (1)
Number Date Country
20140312905 A1 Oct 2014 US
Provisional Applications (1)
Number Date Country
61814589 Apr 2013 US