The present invention pertains to speed acceleration of a walk-behind hydraulic trencher in a forward direction when it functions only as a transporter and not as a trencher.
A trencher is a chainsaw-like device with blades for digging a trench in the ground to run irrigation lines, cables, etc. The machine is entirely hydraulic. An engine generates hydraulic pressure that is used to run the chain, and also to power the wheels of a vehicle that transports the trencher. In operation, the blade of the trencher is angled from the drive mechanism toward the ground. The blade is dragged along the ground while trenching. This necessarily means that, in the case of smaller trenchers in which the operator is walking, that the operator is walking backwards in advance of the direction of travel of the trencher.
In order to avoid prevent getting run over or otherwise injured by the trencher, such as if the operator tripped, there is a safety standard that specifies the maximum reverse travel speed is an ANSI limit of 1.55 mph. Sometimes trenching is done a fair distance away from the vehicle that transports the trencher and this slow speed means a lot of time is lost from transporting the trencher from the vehicle to the job site. It would thus be beneficial to develop a trencher that meets the ANSI regulations, while allowing the trencher to travel at a faster speed in the forward direction when the blade is disengaged.
The present application overcomes the slow movement by allowing the trencher to move in a forward direction at a much faster speed when the blade is disengaged and the trencher is in “transporting” mode. Interlocks are provided that limit the reverse movement of the traction levers so that when the machine is moving with the trencher chain disengaged, the reverse travel speed is limited to the ANSI requirements. When the auxiliary lever is disengaged from the trenching position, the interlocks are shifted to a second, engaged position, allowing full stroke of the levers in the forward direction but restricted motion of the levers in the rearward direction.
One aspect of the invention provides a trenching device which functions as a transporter in a forward direction while not trenching and as a trencher in a backward direction while not transporting, comprises an auxiliary trenching lever; a reference bar; a set of traction levers; a transporting pump section and a trenching pump section; a trenching motor; a reverse tram interlock shaft; moving cams attached to said reverse tram interlock shaft; tabs positioned on said set of traction levers; a return spring; and a plate with a directional control valve.
Another aspect of the invention provides a trenching device that functions as the transporter when the auxiliary trenching lever is placed in a neutral position and the traction levers are disabled by pulling from a maximum reverse speed position.
Still another aspect of the invention provides a trenching device that functions as the trencher when the auxiliary trenching lever is placed in an engaging position and the traction levers are enabled by pulling to a maximum reverse speed position.
Yet another aspect of the invention is a trenching device that functions as the transporter in the forward direction when a flowrate of a combination of said transporting pump section and the trenching pump section performs transporting only by maximizing a transporting speed.
In one or more embodiments, the flowrate of the transporting pump is 3 GPM and the flowrate of said trenching pump is 13 GPM.
In one or more embodiments, the trenching device is able to obtain a maximum transporting speed with a combined flowrate of 16 GPM of the transporting pump and said trenching pump.
One aspect of the invention provides a trenching device that functions as a trencher in the backward direction when the flowrate of the transporting pump section is limited and the maximum flow to the trenching motor is obtained by the trenching pump only.
Another aspect of the invention is a trencher that, while in a neutral position, has an auxiliary trenching lever that disengages from the reference bar when said reverse tram interlock shaft is pushed by the return spring against the plate with the valve control manifold which is attached to said first auxiliary trenching lever.
Yet another aspect of the invention is a trencher that has a set of traction levers that are limited by pulling the trenching levers from a maximum reverse speed position. The trencher has a reverse tram interlock shaft that is configured to then move to a neutral position by the return spring and lock the moving cams in positions underneath the tabs.
Yet another aspect of the invention is a trenching device that, when functioning as a trencher, has an auxiliary trenching lever that is configured to be engaged with the reference bar when the reverse tram interlock shaft is actuated against a return spring by a plate with a valve control manifold, which is attached to said first trenching lever.
Still another aspect of the invention is a trenching device that functions as a trencher when a set of traction levers are pulled to a maximum reverse speed position by unlocking moving cams from underneath tabs by moving the cams from the tabs through attached ramps.
The maximum reverse travel speed of the trenching device in the reverse direction does not exceed a specified 1.55 MPH rearward ANSI specification
These and other aspects, features and advantages of which embodiments of the invention are capable of will be apparent and elucidated from the following description of embodiments of the present invention, reference being made to the accompanying drawings, in which
Specific embodiments of the invention will now be described with reference to the accompanying drawings. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. The terminology used in the detailed description of the embodiments illustrated in the accompanying drawings is not intended to be limiting of the invention. In the drawings.
The trenching device of the present application operates in two modes, hereinafter, Mode 1 and Mode 2. In Mode 1, trenching blades of the trenching device are lifted up above the ground, the trenching device stops trenching in a reverse direction and functions only as a forward and backward transporting unit. In Mode 2, the trenching blades of the trenching device are lowered to allow initial penetration into the ground surface. Then the trenching blade is pulled through the ground rather than pushed to avoid digging itself straight into the ground. In this mode, the trenching device starts trenching in a reverse direction, and stops functioning as a forward transporting unit. Thus, in Mode 1, the device can go forward or reverse. In Mode 2, the device can only move in reverse.
In Mode 2, the hydraulic motor powering the trenching blade requires more hydraulic fluid than the hydraulic motor powering the wheels or tracks that transport the device. In one embodiment, 13 GPM are allocated to trenching while only 3 GPM are allocated to transporting. However, in Mode 1, some or all of the hydraulic fluid that is allocated to trenching in Mode 2 may be diverted to the hydraulic motor used for transporting, thereby increasing the maximum possible transporting speed.
However, for transport speed of the trenching device in a reverse direction, there is a safety standard that specifies the maximum reverse transport speed, which is an ANSI limit of 1.55 mph, whether the device is in Mode 1 or Mode 2 (transporting or trenching). This safety feature was put in place so that even if the operator trips and falls while walking in a reverse direction, the trenching device may not runover the operator because of its slower reverse transporting speed. However, there is no speed limit when the trenching device is used as a transporter in a forward direction.
The trenching device of the present application comprises a control assembly (100), a trenching assembly (not shown) and a drive assembly (not shown). The trenching assembly comprises trenching blades to dig trenches. A person of skill in the art would know the general configurations and operations of a trenching assembly. In one embodiment the drive assembly comprises a trencher motor or an engine to provide power to a 3 GPM transporting pump section and a 13 GPM trenching pump section. The control assembly controls the flow rates of the hydraulic fluids through the 3 GPM transporting pump section and 13 GPM trenching pump section to maneuver the drive assembly which eventually controls the functioning of the trenching device either as a forward transporter or as a reverse trencher.
Referring now to the figures, and first to
With the auxiliary trenching lever (102) in the disengaged position, the flow rates of the 3 GPM transporting pump section and the 13 GPM trenching pump section provide a combined 16 GPM flow of the hydraulic fluids to the traction motor. This allows the maximum transporting speed in a forward direction. As explained above, the speed in the reverse direction is mechanically limited by the restricted movement of the traction levers due to the interference between the tabs and the cams.
To achieve Mode 2, the operator engages the auxiliary trenching lever (102) with the reference bar (104). When the auxiliary trenching lever (102) engages the reference bar (104), the plate (110) which is attached to the auxiliary trenching lever (102) moves the reverse tram interlock shaft (108) against the return spring (106). This movement unlocks the set of traction levers (112) by moving the two cams (114) through attached ramps (118) from the positions underneath the two tabs (116) to the positions next to the two tabs. Both cams (114) feature ramps (118), so that when moving from Mode 1 to Mode 2, the cams (114) are able to ramp past the tabs (116).
This operation enables the set of traction levers (112) to be fully pulled to the maximum reverse speed position. When the set of traction levers (112) are pulled to the maximum reverse speed position, the trenching device starts trenching in the ground. At this moment, the flow rates of the 3 GPM transporting pump section is limited, so as not to exceed the specified 1.55 MPH rearward ANSI specification. The 13 GPM trenching pump section provides a maximum flow of the hydraulic fluids to the trencher motor which powers the trenching chain to trench the ground in a reverse direction.
Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.
This application claims benefit of and priority to U.S. Provisional Application Ser. No. 62/784,313 filed Dec. 21, 2018 entitled Reverse Tram Interlock, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3876020 | Barsby | Apr 1975 | A |
4036321 | Habiger | Jul 1977 | A |
6415532 | Bricko et al. | Jul 2002 | B1 |
6460640 | Keagle et al. | Oct 2002 | B1 |
7930843 | Hartwick | Apr 2011 | B2 |
9719468 | Kakuk et al. | Aug 2017 | B2 |
20070227803 | Sewell et al. | Oct 2007 | A1 |
20080090699 | Welch | Apr 2008 | A1 |
20080197588 | Azure et al. | Aug 2008 | A1 |
20090000156 | Hartwick et al. | Jan 2009 | A1 |
20090077836 | Azure et al. | Mar 2009 | A1 |
20110078929 | Hartwick et al. | Apr 2011 | A1 |
20200032480 | Kukuk et al. | Jan 2020 | A1 |
20200032483 | Ready-Campbell et al. | Jan 2020 | A1 |
Number | Date | Country | |
---|---|---|---|
20200199845 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
62784313 | Dec 2018 | US |