Reverse Transcriptase Mutants with Increased Activity and Thermostability

Information

  • Patent Application
  • 20220135955
  • Publication Number
    20220135955
  • Date Filed
    January 18, 2022
    2 years ago
  • Date Published
    May 05, 2022
    2 years ago
Abstract
The disclosure provides Moloney murine leukemia virus (MMLV) reverse transcriptase (RTase) mutants. The disclosure as provides suitable amino acid positions in MMLV RTase for mutagenesis and methods and kits for using MMLV RTase mutants to synthesize cDNA from RNA templates.
Description
REFERENCE TO AN ELECTRONIC SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically as a text file in ASCII format and is hereby incorporated by reference in its entirety. The name of the ASCII text file is “20-1076-US-CIP_Sequence-Listing_ST25_FINAL.txt.”


FIELD OF THE DISCLOSURE

The disclosure relates to Moloney murine leukemia virus (MMLV) reverse transcriptase (RTase) mutants. The disclosure also relates to suitable amino acid positions in MMLV RTase for mutagenesis and methods for using MMLV RTase mutants to synthesize cDNA from RNA templates.


BACKGROUND

Reverse transcriptase (RTase) enzymes have revolutionized molecular biology. RTase is a critical component of the reverse transcription polymerase chain reaction (RT-PCR) allowing the production of complementary DNA (cDNA) from RNA. The cDNA produced in reverse transcription reactions can be used in a wide range of downstream applications, including quantitative PCR, gene expression analysis, isolated RNA sequencing, gene cloning, and cDNA library creation.


RTases, first derived from retroviruses, facilitate the reverse transcription of RNA into cDNA by utilizing RNA-dependent polymerase and RNase H, a non-sequence-specific endonuclease enzyme that catalyzes cleavage of RNA in an RNA/DNA duplex. This results in virus replication and integration of the viral sequence into host DNA thereby allowing for the proliferation of the virus along with host DNA. Within the laboratory setting, RTases from Moloney murine leukemia virus (MMLV), avian myeloblastosis virus (AMV), and human immunodeficiency virus type 1 (HIV-1) are the most commonly used RTase for cDNA synthesis.


RTases for research applications are often mutated multi-generational MMLV and AMV RTases that have been optimized for laboratory procedures. Mutations in the RTases alter properties of the enzymes, including thermostability, RTase activity, 5′ mRNA coverage, and RNase H activity.


AMV RTases are thermostable and less sensitive to thermal degradation than MMLV RTase and are preferred for RNA having a strong secondary structure. In addition, AMV RTases are often suitable for use with RNA molecules that are five kilobases or longer because of the heat stability of AMV RTases. However, the high temperatures required to resolve strong secondary structures or long RNA strands can negatively impact RNA integrity and fidelity of transcription. AMV also possess an intrinsic RNase activity that degrades RNA in an RNA/DNA hybrid, which can result in reduced total cDNA and reduced full-length cDNA yield.


MMLV RTase is characterized by low RNase H activity and a higher fidelity as compared to AMV RTase. The reduced RNase H activity allows MMLV RTases to be used for the reverse transcription of long RNAs (>5 kb). However, the RNase H activity of MMLV RTase limits the efficiency of synthesizing long cDNA in vitro. Mutations in MMLV RTase have been introduced to reduce RNase H activity. In addition, because the optimal temperature for MMLV RTase activity is ˜37° C., the enzyme lacks the ability to effectively reverse transcribe RNAs with strong secondary structures. The use of MMLV RTase at elevated temperatures can compromise cDNA length and yield as a result of lower enzyme activity. MMLV RTase mutants that substitute Mn2+ for Mg2+ in the reaction mixture attempt to overcome these limitations, but are characterized by inefficiency and error.


Thus, despite the unique properties of AMV and MMLV RTases, there exists a need for an RTase that combines the beneficial attributes of AMV and MMLV RTases. Consistent with this, the present application discloses MMLV RTase mutants, isolated through rational mutagenesis of MMLV RTase, that exhibit increased RTase activity and thermostability as compared to RTases, including RNase H minus constructs, that are currently available in the art.


SUMMARY

The disclosure provides Moloney murine leukemia virus (MMLV) reverse transcriptase (RTase) mutants. The disclosure also provides suitable amino acid positions in MMLV RTase for mutagenesis and methods and kits for using MMLV RTase mutants to synthesize cDNA from RNA templates.


One aspect of the disclosure provides an isolated Moloney murine leukemia virus (MMLV) reverse transcriptase (RTase) mutant comprising the amino acid sequence of SEQ ID NO: 717, wherein the amino acid sequence of the MMLV RTase mutant further comprises at least two amino acid substitutions that are: (a) a glutamine to arginine substitution at position 68 (Q68R); (b) a glutamine to arginine substitution at position 79 (Q79R); (c) a leucine to tyrosine at position 82 (L82Y); (d) a leucine to arginine substitution at position 99 (L99R); (e) a leucine to isoleucine at position 280 (L280I); (f) a glutamic acid to aspartic acid substitution at position 282 (E282D); (g) a glutamine to glutamic acid substitution at position 299 (Q299E); (h) threonine to lysine at position 306 (T306K); (i) a valine to asparagine at position 433 (V433N); (j) a valine to arginine at position 433 (V433R); (k) an isoleucine to glutamic acid at position 593 (1593E); or (1) an isoleucine to tryptophan at position 593 (I593W).


Another aspect of the disclosure provides an isolated nucleic acid molecule comprising a nucleotide sequence encoding an MMLV RTase mutant of the disclosure.


Other aspects of the disclosure provide a composition or a kit comprising an MMLV RTase mutant of the disclosure.


Other aspects of the disclosure provide methods for synthesizing complementary deoxyribonucleic acid (cDNA) or methods for performing reverse transcription-polymerase chain reaction (RT-PCR) using an MMLV RTase mutant of the disclosure.


Specific embodiments of the disclosure will become evident from the following more detailed description and the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1C are schematics showing reverse transcriptase mutagenesis selection by rational design. Amino acid positions for mutagenesis were chosen at the substrate binding site (FIGS. 1A and 1B) or near the substrate binding site (FIG. 1C).



FIG. 2 shows Western blot analysis of test induction results in in BL21(DE3) cells for MMLV RT in TB medium. Lane 1—Precision Plus Protein Unstained Standards (Bio Rad, Cat #161-0363), Lane 2—Time=0 hour, Lane 3—Time=3 hours after induction at 37° C., Lane 4—Time=0 hour, Lane 5—Time=21 hours after induction at 18° C.





DETAILED DESCRIPTION

The disclosure relates to Moloney murine leukemia virus (MMLV) reverse transcriptase (RTase) mutants. The disclosure also relates to suitable amino acid positions in MMLV RTase for mutagenesis and methods and kits for using MMLV RTase mutants to synthesize cDNA from RNA templates.


The MMLV RTase mutants of the disclosure, which have been identified and isolated, at least in part, through rational mutagenesis of a base construct of MMLV RTase, were found to have increased RTase activity and thermostability as compared to wild-type MMLV RTase and certain MMLV RTase mutants, including RNase H minus RTases, that are currently available in the art.


Reference will now be made in detail to exemplary embodiments of the claimed invention. While the claimed invention will be described in conjunction with the exemplary embodiments, it will be understood that it is not intended to limit the claimed invention to those embodiments. To the contrary, it is intended to cover alternatives, modifications, and equivalents, as may be included within the spirit and scope of the claimed invention, as defined by the appended claims.


Those of ordinary skill in the art may make modifications and variations to the embodiments described herein without departing from the spirit or scope of the claimed invention. In addition, although certain methods and materials are described herein, other methods and materials that are similar or equivalent to those described herein can also be used to practice the claimed invention.


In addition, any of the compositions or methods provided, disclosed, or described herein can be combined with one or more of any of the other compositions and methods provided, disclosed, or described herein.


1. Definitions

Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by a person skilled in the art to which the claimed invention belongs. The terminology used herein is for describing particular embodiments only and is not intended to be limiting of the claimed invention. All technical and scientific terms used herein have the same meaning.


The following references provide those of skill in the art with a general understanding of many of the terms used herein (unless defined otherwise herein): Singleton et al., Dictionary of Microbiology and Molecular Biology, 3rd ed. (Wiley, 2006); Walker, The Cambridge Dictionary of Science and Technology (Cambridge University Press, 1990); Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed. (Springer Verlag, 1991); and Hale et al., Harper Collins Dictionary of Biology (HarperCollins Publishers, 1991). Generally, the procedures or methods described herein and the like are common methods used in the art. Such standard techniques can be found in reference manuals such as, for example, Green et al., Molecular Cloning: A Laboratory Manual, 4th ed. (Cold Spring Harbor Laboratory Press, 2012), and Ausubel, Current Protocols in Molecular Biology (John Wiley & Sons Inc., 2004).


The following terms may have meanings ascribed to them below, unless specified otherwise. However, it should be understood that other meanings known or understood by those having ordinary skill in the art are also possible, and within the scope of the claimed invention. All publications, patent applications, patents, and other references mentioned or discussed herein are expressly incorporated by reference in their entireties. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


As used herein, the singular forms “a,” “and,” and “the” include plural references, unless the context clearly dictates otherwise.


As used herein, the term “or” means, and is used interchangeably with, the term “and/or,” unless context clearly indicates otherwise.


As used herein, the term “including” means, and is used interchangeably with, the phrase “including but not limited to.”


As used herein, the term “such as” means, and is used interchangeably with, the phrase “such as, for example” or “such as but not limited.”


Unless specifically stated or obvious from context, as used herein, the term “about” is understood as within a range of normal tolerance in the art, for example, within two standard deviations of the mean. About can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. Unless otherwise clear from context, all numerical values provided herein can be modified by the term about.


Ranges provided herein are understood to be shorthand for all of the values within the range. For example, a range of 1 to 50 is understood to include any number, combination of numbers, or sub-range from the group consisting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50.


As used herein, the terms “nucleic acid molecule” and “polynucleotide” refer to a polymer or large biomolecule comprised of nucleotides. The term “nucleic acid” includes deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and analogs thereof. Non-limiting examples of nucleic acid molecules include DNA (e.g., genomic DNA, cDNA), RNA molecules (e.g., mRNA, rRNA, cRNA, tRNA), and chimeras thereof. A nucleic acid molecule can be obtained by cloning techniques or synthesized, using techniques that are known to those of skill in the art. DNA can be double-stranded or single-stranded (coding strand or non-coding strand, i.e., antisense). A nucleic acid backbone may comprise a variety of linkages known in the art, including one or more of sugar-phosphodiester linkages, peptide-nucleic acid bonds (referred to as “peptide nucleic acids” (PNA)), phosphorothioate linkages, methylphosphonate linkages, or combinations thereof. Sugar moieties of the nucleic acid may be ribose or deoxyribose, or similar compounds having known substitutions, for example, 2′ methoxy substitutions (containing a 2′-O-methylribofuranosyl moiety) and/or 2′ halide substitutions. Nitrogenous bases may be conventional bases (adenine (A), guanine (G), thymine (T), cytosine (C), and uracil (U)), known analogs thereof (e.g., inosine), known derivatives of purine or pyrimidine bases, or “abasic” residues in which the backbone includes no nitrogenous base for one or more residues. A nucleic acid may comprise only conventional sugars, bases, and linkages, as found in RNA and DNA, or may include both conventional components and substitutions (e.g., conventional bases linked via a methoxy backbone, or a nucleic acid including conventional bases and one or more base analogs). An “isolated nucleic acid molecule,” as is generally understood by those of skill in the art and as used herein, refers to a polymer of nucleotides, and includes but is not limited to DNA and RNA.


As used herein, the term “probe” refers to a nucleic acid oligonucleotide that hybridizes specifically to a target sequence in a nucleic acid or its complement, under conditions that promote hybridization, thereby allowing detection of the target sequence or its amplified nucleic acid. Detection may either be direct (i.e., resulting from a probe hybridizing directly to the target or amplified sequence) or indirect (i.e., resulting from a probe hybridizing to an intermediate molecular structure that links the probe to the target or amplified sequence). A probe's “target” generally refers to a sequence within an amplified nucleic acid sequence (i.e., a subset of the amplified sequence) that hybridizes specifically to at least a portion of the probe sequence by standard hydrogen bonding or “base pairing.” Sequences that are “sufficiently complementary” allow stable hybridization of a probe sequence to a target sequence, even if the two sequences are not completely complementary. A probe may be labeled or unlabeled. A probe can be produced by molecular cloning of a specific DNA sequence or it can be synthesized. Probes for use in the methods disclosed herein can be readily designed and used by those of skill in the art.


As used herein, the term “primer” refers to a nucleic acid oligonucleotide that hybridizes specifically to a target sequence in a nucleic acid or its complement, and which is capable of priming the synthesis of a nascent nucleic acid in a template-dependent process. Primers may be provided in double-stranded or single-stranded form. Primers for use in the methods disclosed herein can be readily designed and used by those of skill in the art.


Probes or primers for use in the methods disclosed herein may be of any suitable length, depending on the particular assay format and the particular needs and targeted sequences employed. For example, the probes or primers for use in the methods disclosed herein are at least 10 nucleotides in length, or at least 15, 20, 25, 30, or more than 30 nucleotides in length, and they may be adapted to be especially suited for a chosen nucleic acid amplification system and/or hybridization system used. Longer probes and primers are also within the scope of the disclosure.


A “transcribed polynucleotide” or “nucleotide transcript” is a polynucleotide (e.g., mRNA, hnRNA, cDNA, or analog of such RNA or cDNA) that is complementary to or having a high percentage of identity (e.g., at least 80% identity) with all or a portion of a mature mRNA made by transcription of a marker of the disclosure and normal post-transcriptional processing (e.g., splicing), if any, of the RNA transcript, and reverse transcription of the RNA transcript.


As used herein, the terms “reverse transcriptase,” “RTase,” or “RT” refer to an enzyme that is used to generate complementary (cDNA) from an RNA template in a process known as “reverse transcription.” The term reverse transcriptase, as used herein, also refers to any enzyme that exhibits reverse transcription activity. Reverse transcriptases can be derived from a variety of sources including but not limited to viruses including retroviruses and DNA polymerases exhibiting transcriptase activity. Such retroviruses include but are not limited to Moloney murine leukemia virus (MMLV), avian myeloblastosis virus (AMV), and human immunodeficiency virus (HIV).


Reverse transcriptase activity can be measured by incubating an RTase in a buffer containing an RNA template and deoxynucleotides. One of skill in the art will recognize that a wide range of conditions can be used to perform reverse transcription reactions and multiple methods exist for measuring the quantity of cDNA produced during reverse transcription.


Reverse transcriptases of the disclosure include reverse transcriptases having one or a combination of the properties described herein. Such properties include but are not limited to increased activity, enhanced DNA synthesis, enhanced stability or enhanced thermostability, reduced or eliminated RNase H activity, reduced terminal deoxynucleotidyl transferase activity, increased accuracy or increased fidelity, increased specificity, or altered half-life, for example when compared to a base construct. As used herein, the term “base construct” refers to the initial RTase from which the RTase mutants of the disclosure are prepared (e.g. for example a wild-type RTase or a modified wild-type RTase).


As used herein, the terms “accuracy” and “fidelity” are used interchangeably and refer to ability of an RTase to accurately replicate a desired template; i.e., the ability of the RTase to accurately perform cDNA synthesis in a reverse transcription reaction. The “fidelity” or “accuracy” of a reverse transcriptase can be assessed by determining the frequency of incorrect nucleotide incorporation into the synthesized cDNA molecule, which may be referred to as the enzyme's error rate. As used herein, the term “increased fidelity” refers to RTase mutants of the disclosure that exhibit an error rate lower than that of the base construct. For example, the RTase mutants as disclosed herein can exhibit an error rate that is 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% 100%, or 200% lower than, or at least 2-fold, 3-fold, 4-fold, 5-fold, or 10-fold, or more than 10-fold lower than the error rate of the RTase base construct . . . .


As used herein, the term “specificity” refers to a decrease in mis-priming by an RTase during cDNA synthesis. An RTase mutant's specificity can be assessed by performing a reverse transcription reaction at a particular temperature, including higher temperatures, and comparing the amount of mis-priming in that reaction with the amount of mis-priming in a reaction performed with the wild-type RTase (or the RTase base construct) under identical conditions.


As used herein with respect to the RTase molecules of the disclosure, the terms “stable” and “thermostable” are used interchangeably and refer to an enzyme that is resistant to heat inactivation and remains active at temperatures in excess of 37° C. (e.g., 38° C., 39° C., 40° C., 41° C., 42° C., 43° C., 44° C., 45° C., 46° C., 47° C., 48° C., 49° C., 50° C., 51° C., 52° C., 53° C., 54° C., 55° C., 56° C., 57° C., 58° C., 59° C., 60° C., 61° C., 62° C., 63° C., 64° C., 65° C., 70° C., or higher temperatures). For example, in one embodiment the disclosure provides an RTase mutant having activity with a longer half-life than that of the base construct RTase at an elevated temperature. Thus, RTase mutants with “enhanced thermostability” can refer to RTase mutants of the disclosure that exhibit an increase in thermostability at temperatures of about 50° C. up to about 90° C. as compared to the base construct RTase. In some embodiments, the thermostability of the RTase mutant is at least 1.5 fold or greater as compared to the thermostability of the base construct RTase. Comparisons of cDNA produced by a base construct and RTase mutant are compared using identical reaction conditions for the base construct and RTase mutant reactions. Reaction conditions can include but are not limited to salt concentration, buffer concentration, pH, divalent metal ion concentration, temperature, nucleoside triphosphate concentration, template concentration, RTase concentration, primer concentration, time, and in one-step PCR, the quantitative PCR primer and probe concentrations.


As used herein, the term “enhanced DNA synthesis” refers to an RTase enzyme that produces more DNA (e.g. cDNA) than the base RTase construct. In some embodiments, DNA synthesis can be measured by quantitative PCR at standard reaction conditions, as compared to the base construct RTase. Consistent with assessments of thermostability, quantitative comparisons are made under similar or the same reaction conditions and the amount of cDNA synthesized using the base construct RTase is compared to the amount of cDNA produced using the RTase mutant (see Tables 4-7). In some embodiments, the RTase mutant of the disclosure with enhanced DNA synthesis may produce about 5% to about 200% more cDNA than the base construct RTase. In some embodiments, the RTase mutant of the disclosure with enhanced DNA synthesis has at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, or 200% more than, or at least 2-fold, 3-fold, 4-fold, 5-fold, or 10-fold, or more than 10-fold more DNA synthesis than the RTase base construct DNA synthesis.


Reverse transcriptase activity, as described herein, was evaluated in a one-step or two-step procedure. The one-step procedure combines reverse transcription and quantitative PCR in a single reaction. The method is performed by including Gene Expression Master Mix, RTase, RNA, a fluorescent probe, and primers and probes as described in Example 3. The two-step procedure comprises reverse transcription followed by quantitative PCR. In the reverse transcription step, RTase is added to a mixture containing RNA, gene specific primers, first strand synthesis buffer, and RNase. The resultant cDNA is then quantified in a second step wherein the cDNA is combined with Gene Expression Master Mix, primers and probes, and a fluorescent marker. The cDNA produced in either the one-step and two-step procedures is quantified, and the mean and standard deviation reported as shown herein in Tables 4-7.


As used herein, “RNase H activity” refers to cleavage of RNA in DNA-RNA duplexes via a hydrolytic mechanism to produce 5′ phosphate terminated oligonucleotides. RNase H activity does not include degradation of single-stranded nucleic acids, duplex DNA, or double-stranded RNA. As used herein, the phrase “substantially lacks RNase H activity” means having less than 10%, 5%, 1%, 0.5%, or 0.1% of the activity of a wild type enzyme. As used herein, the phrase “lacks RNase H activity” means having undetectable RNase H activity or having less than about 1%, 0.5%, or 0.1% of the RNase H activity of a wild type enzyme.


As used herein, the term “mutation” refers to a change introduced into the nucleic acid sequence encoding a protein that changes the amino acid sequence of the protein, including but not limited to substitutions, insertions, deletions, point mutations, transpositions, inversions, frame shifts, nonsense mutations, truncations, or other forms of aberrations. A mutation may produce no discernible changes or result in a new property, function, or trait of the mutated protein. An RTase mutant of the disclosure may have one or more mutations in the nucleic acid sequence encoding the RTase mutant resulting in one or more mutations in the amino acid sequence of the RTase mutant. A mutation can result in one or more amino acids being substituted for an alternate amino acid residue, including Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, and/or Val. The resulting amino acid mutations may impart altered functional and biological properties to the RTase mutant including but not limited to increased activity, enhanced DNA synthesis, enhanced stability or enhanced thermostability, reduced or eliminated RNase H activity, reduced terminal deoxynucleotidyl transferase activity, increased accuracy or increased fidelity, increased specificity, or altered half-life.


As used herein, the terms “detecting,” “detection,” “determining,” and the like refer to assays performed for identification of the quantity of cDNA synthesis as a marker of RTase activity. The amount of marker expression or activity detected in the sample can be the same as, decreased, or increased as compared to the amount of marker expression or activity detected using the RTase base construct. One of skill in the art will understand that amount of cDNA can be quantified using multiple techniques.


The term “increased,” as used herein with regard to RTase activity, refers to the level of RTase activity of an RTase mutant as compared to the RTase base construct. An RTase mutant has “increased” RTase activity if the level of its RTase activity, as measured by the quantity of cDNA synthesized or as measured by other methods known in the art, is more than the RTase base construct activity. For example, the RTase activity of the RTase mutant is increased if the RTase activity is at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% more than, or at least 2-fold, 3-fold, 4-fold, 5-fold, or 10-fold, or more than 10-fold more than the RTase base construct activity.


The term “decreased,” as used herein with regard to RTase activity, refers to the level of RTase activity of an RTase mutant as compared to the RTase base construct. An RTase mutant has “decreased” RTase activity if the level of its RTase activity, as measured by the quantity of cDNA synthesized or as measured by other methods known in the art is less than the RTase base construct activity. For example, the RTase activity of the RTase mutant is decreased if the RTase activity is at least 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, or 5% less than, or at least 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, or more than 10-fold less than the RTase base construct activity.


As used herein, the term “amplification” refers to any known in vitro procedure for obtaining multiple copies of a target nucleic acid sequence or its complement or fragments thereof. In vitro amplification refers to production of an amplified nucleic acid that may contain less than the complete target region sequence or its complement. Known in vitro amplification methods include, for example, transcription-mediated amplification, replicase-mediated amplification, polymerase chain reaction (PCR) amplification, ligase chain reaction (LCR) amplification, and strand-displacement amplification (SDA, including multiple strand-displacement amplification method (MSDA)). Replicase-mediated amplification uses self-replicating RNA molecules, and a replicase such as Q-β-replicase. PCR amplification uses DNA polymerase, primers, and thermal cycling to synthesize multiple copies of the two complementary strands of DNA or cDNA. PCR involves denaturation of a double-stranded DNA molecule, followed by annealing of DNA primers directed to the sequence of interest, and amplification/extension of the newly formed DNA strand. LCR amplification uses at least four separate oligonucleotides to amplify a target and its complementary strand by using multiple cycles of hybridization, ligation, and denaturation. SDA is a method in which a primer contains a recognition site for a restriction endonuclease that permits the endonuclease to nick one strand of a hemimodified DNA duplex that includes the target sequence, followed by amplification in a series of primer extension and strand displacement steps. Other strand-displacement amplification methods known in the art (e.g., MSDA) do not require endonuclease nicking. Those of skill in the art will understand that the oligonucleotide primer sequences of the disclosure may be readily used in any in vitro amplification method based on primer extension by a polymerase. As commonly known in the art, oligonucleotides are designed to bind to a complementary sequence under selected conditions.


As used herein, “real time PCR” or “quantitative PCR” refers to a PCR method wherein the amount of product being formed can be monitored using florescent probes and quantified by tracking the fluorescent signal produced, above a threshold level. Real time PCR can be performed in a one-step reaction that includes the reverse transcription step in a simultaneous reaction (i.e., real time PCR or RT-PCR) or in a two-step reaction in which the reverse transcription step and PCR steps are performed consecutively.


As used herein, the term “complementary” refers to the broad concept of sequence complementarity between regions of two nucleic acid strands or between two regions of the same nucleic acid strand. A first region of a nucleic acid is complementary to a second region of the same or a different nucleic acid if, when the two regions are arranged in an antiparallel fashion, at least one nucleotide of the first region is capable of base pairing with a nucleotide of the second region. In some embodiments, the first region comprises a first portion and the second region comprises a second portion, whereby, when the first and second portions are arranged in an antiparallel fashion, at least about 50%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% of the nucleotides of the first portion are capable of base pairing with nucleotides in the second portion. In another embodiment, all nucleotides of the first portion are capable of base pairing with nucleotides in the second portion.


Polypeptide and polynucleotide sequences may be aligned, and percentages of identical amino acids or nucleotides in a specified region may be determined against another polypeptide or polynucleotide sequence, using computer algorithms that are publicly available. The percent identity of a polynucleotide or polypeptide sequence is determined by aligning polynucleotide and polypeptide sequences using appropriate algorithms, such as BLASTN or BLASTP, respectively, set to default parameters; identifying the number of identical nucleic or amino acids over the aligned portions; dividing the number of identical nucleic or amino acids by the total number of nucleic or amino acids of the polynucleotide or polypeptide of the disclosure; and then multiplying by 100 to determine the percent identity.


As used herein, the terms “sample” and “biological sample” include a specimen or culture obtained from any source. Biological samples can be obtained from cerebrospinal fluid, lacrimal fluid, blood (including any blood product, such as whole blood, plasma, serum, or specific types of cells of the blood), urine, saliva, and the like. Biological samples also include tissue samples, such as biopsy tissues or pathological tissues that have previously been fixed (e.g., formaline snap frozen, cytological processing).


2. Reverse Transcriptases

The disclosure relates to Moloney murine leukemia virus (MMLV) reverse transcriptase (RTase) mutants. The MMLV RTase mutants of the disclosure are prepared by modifying the sequence of an MMLV RTase base construct (SEQ ID NO: 637). In one embodiment, the MMLV RTase mutant of the disclosure comprises the amino acid sequence of SEQ ID NO: 637, wherein the amino acid sequence of the MMLV RTase mutant further comprises at least one amino acid substitution that is: (a) an isoleucine to arginine, lysine, or methionine substitution at position 61 (I61R, I61K, or I61M); (b) a glutamine to arginine, lysine, or isoleucine substitution at position 68 (Q68R, Q68K, or Q68I); (c) a glutamine to arginine, histidine, or isoleucine substitution at position 79 (Q79R, Q79H, or Q79I); (d) a leucine to arginine, lysine, or asparagine substitution at position 99 (L99R, L99K, or L99N); (e) a glutamic acid to aspartic acid, methionine, or typtophan substitution at position 282 (E282D, E282M, or E282W); and/or (f) an arginine to alanine substitution at position 298 (R298A).


In another embodiment, the MMLV RTase mutant of the disclosure comprises the amino acid sequence of SEQ ID NO: 637, wherein the amino acid sequence of the MMLV RTase mutant further comprises at least two amino acid substitutions that are: (a) an isoleucine to arginine substitution at position 61 and a glutamic acid to aspartic acid substitution at position 282 (I61R/E282D); (b) a leucine to arginine at substitution position 99 and a glutamic acid to aspartic acid substitution at position 282 (L99R/E282D); (c) a glutamine to arginine substitution at position 68 and a glutamic acid to aspartic acid substitution at position 282 (Q68R/E282D); (d) a glutamine to arginine substitution at position 79 and a glutamic acid to aspartic acid substitution at position 282 (Q79R/E282D); (e) a glutamic acid to aspartic acid substitution at position 282 and an arginine to alanine substitution at position 298 (E282D/R298A); (f) an isoleucine to arginine substitution at position 61 and a leucine to arginine substitution at position 99 (I61R/L99R); (g) an isoleucine to arginine substitution at position 61 and a glutamine to arginine substitution at position 68 (I61R/Q68R); (h) an isoleucine to arginine substitution at position 61 and a glutamine to arginine substitution at position 79 (I61R/Q79R); (i) an isoleucine to arginine substitution at position 61 and an arginine to alanine substitution at position 298 (I61R/R298A); (j) a glutamine to arginine substitution at position 68 and a leucine to arginine substitution at position 99 (Q68R/L99R); (k) a glutamine to arginine substitution at position 79 and a leucine to arginine substitution at position 99 (Q79R/L99R); (1) a leucine to arginine at substitution position 99 and an arginine to alanine substitution at position 298 (L99R/R298A); (m) a glutamine to arginine substitution at position 68 and a glutamine to arginine substitution at position 79 (Q68R/Q79R); (n) a glutamine to arginine substitution at position 68 and an arginine to alanine substitution at position 298 (Q68R/R298A); or (o) a glutamine to arginine substitution at position 79 and an arginine to alanine substitution at position 298 (Q79R/R298A).


In another embodiment, the MMLV RTase mutant of the disclosure comprises the amino acid sequence of SEQ ID NO: 637, wherein the amino acid sequence of the MMLV RTase mutant further comprises at least three amino acid substitutions that are: (a) a glutamine to arginine substitution at position 68, a leucine to arginine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (Q68R/L99R/E282D); (b) a glutamine to arginine substitution at position 79, a leucine to arginine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (Q79R/L99R/E282D); (c) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 68, and a glutamic acid to aspartic acid substitution at position 282 (Q68R/Q79R/E282D); or (d) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 68, and a leucine to arginine substitution at position 99 (Q68R/Q79R/L99R).


In another embodiment, the MMLV RTase mutant of the disclosure comprises the amino acid sequence of SEQ ID NO: 637, wherein the amino acid sequence of the MMLV RTase mutant further comprises at least four amino acid substitutions that are: (a) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to arginine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (Q68R/Q79R/L99R/E282D); (b) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to lysine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (Q68R/Q79R/L99K/E282D); (c) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to asparagine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (Q68R/Q79R/L99N/E282D); (d) a glutamine to isoleucine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to arginine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (Q68I/Q79R/L99R/E282D); (e) a glutamine to lysine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to arginine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (Q68K/Q79R/L99R/E282D); (f) a glutamine to arginine substitution at position 68, a glutamine to histidine substitution at position 79, a leucine to arginine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (Q68R/Q79H/L99R/E282D); (g) a glutamine to arginine substitution at position 68, a glutamine to isoleucine substitution at position 79, a leucine to arginine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (Q68R/Q79I/L99R/E282D); (h) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to arginine substitution at position 99, and a glutamic acid to methionine substitution at position 282 (Q68R/Q79R/L99R/E282M); (i) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to arginine substitution at position 99, and a glutamic acid to tryptophan substitution at position 282 (Q68R/Q79R/L99R/E282W); or (j) a glutamine to isoleucine substitution at position 68, a glutamine to histidine substitution at position 79, a leucine to lysine substitution at position 99, and a glutamic acid to methionine substitution at position 282 (Q68I/Q79H/L99K/E282M).


In another embodiment, the MMLV RTase mutant of the disclosure comprises the amino acid sequence of SEQ ID NO: 637, wherein the amino acid sequence of the MMLV RTase mutant further comprises at least five amino acid substitutions that are: (a) an isoleucine to lysine substitution at position 61, a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to arginine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (I61K/Q68R/Q79R/L99R/E282D); (b) an isoleucine to methionine substitution at position 61, a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to arginine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (I61M/Q68R/Q79R/L99R/E282D); or (c) an isoleucine to methionine substitution at position 61, a glutamine to isoleucine substitution at position 68, a glutamine to histidine substitution at position 79, a leucine to lysine substitution at position 99, and a glutamic acid to methionine substitution at position 282 (I61M/Q68IR/Q79H/L99K/E282M).


In another embodiment, the MMLV RTase mutant of the disclosure comprises the amino acid sequence of SEQ ID NO: 637, wherein the amino acid sequence of the MMLV RTase mutant further comprises at least five or more amino acid substitutions that are: (a) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to arginine substitution at position 99, a glutamic acid to aspartic acid substitution at position 282, a glutamine to glutamic acid substitution at position 299, a valine to arginine substitution at position 433, and a isoleucine to glutamic acid at position 593 (Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E): (b) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to arginine substitution at position 82, a leucine to arginine substitution at position 99, a glutamic acid to aspartic acid substitution at position 282, a glutamine to glutamic acid substitution at position 299, a valine to arginine substitution at position 433, and a isoleucine to glutamic acid at position 593 (Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E); (c) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to arginine substitution at position 82, a leucine to arginine substitution at position 99, a glutamic acid to aspartic acid substitution at position 282, a glutamine to glutamic acid substitution at position 299, a threonine to glutamic acid substitution at position 332, and a isoleucine to glutamic acid at position 593 (Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E); (d) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to arginine substitution at position 82, a leucine to arginine substitution at position 99, a glutamic acid to aspartic acid substitution at position 282, a glutamine to glutamic acid substitution at position 299, a threonine to glutamic acid substitution at position 332, a valine to arginine substitution at position 433, and a isoleucine to glutamic acid at position 593 (Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/I593E).


In another embodiment, the MMLV RTase mutant of the disclosure comprises the amino acid sequence of SEQ ID NO: 717, wherein the amino acid sequence of the MMLV RTase mutant further comprises at least two amino acid substitutions that are: (a) a glutamine to arginine substitution at position 68 (Q68R); (b) a glutamine to arginine substitution at position 79 (Q79R); (c) a leucine to tyrosine at position 82 (L82Y); (d) a leucine to arginine substitution at position 99 (L99R); (e) a leucine to isoleucine at position 280 (L280I); (f) a glutamic acid to aspartic acid substitution at position 282 (E282D); (g) a glutamine to glutamic acid substitution at position 299 (Q299E); (h) threonine to lysine at position 306 (T306K); (i) a valine to asparagine at position 433 (V433N); (j) a valine to arginine at position 433 (V433R); (k) an isoleucine to glutamic acid at position 593 (I593E); or (1) an isoleucine to tryptophan at position 593 (I593W).


In another embodiment, the MMLV RTase mutant of the disclosure comprises the amino acid sequence of SEQ ID NO: 717, wherein the amino acid sequence of the MMLV RTase mutant further comprises the amino acid substitutions: (a) a glutamine to arginine substitution at position 68 (Q68R); (b) a glutamine to arginine substitution at position 79 (Q79R); (c) a leucine to tyrosine substitution at position 82 (L82Y); (d) a leucine to arginine substitution at position 99 (L99R); (e) a leucine to isoleucine substitution at position 280 (L280I); (f) a glutamic acid to aspartic acid substitution at position 282 (E282D); (g) a glutamine to glutamic acid substitution at position 299 (Q299E); (h) a threonine to lysine substitution at position 306 (T306K); (i) a valine to asparagine substitution at position 433 (V433N); and (j) an isoleucine to tryptophan substitution at position 593 (I593W).


In another embodiment, the MMLV RTase mutant of the disclosure comprises the amino acid sequence of SEQ ID NO: 717, wherein the amino acid sequence of the MMLV RTase mutant further comprises the amino acid substitutions: (a) a glutamine to arginine substitution at position 68 (Q68R); (b) a glutamine to arginine substitution at position 79 (Q79R); (c) a leucine to tyrosine substitution at position 82 (L82Y); (d) a leucine to arginine substitution at position 99 (L99R); (e) a leucine to isoleucine substitution at position 280 (L280I); (f) a glutamic acid to aspartic acid substitution at position 282 (E282D); (g) a glutamine to glutamic acid substitution at position 299 (Q299E); (h) a threonine to lysine substitution at position 306 (T306K); (i) a valine to arginine substitution at position 433 (V433R); and (j) an isoleucine to glutamic acid substitution at position 593 (I593E).


In one embodiment the RTase mutant amino acid sequence comprises a mutant selected from Tables 3, 8, 9, 12, 21, 22, or 38. In one aspect, the RTase mutant amino acid sequence comprises a mutant selected from the amino acid sequences of SEQ ID NO: 638, SEQ ID NO: 639, SEQ ID NO: 640, SEQ ID NO: 641, SEQ ID NO: 642, SEQ ID NO: 643, SEQ ID NO: 644, SEQ ID NO: 645, SEQ ID NO: 646, SEQ ID NO: 647, SEQ ID NO: 648, SEQ ID NO: 649, SEQ ID NO: 650, SEQ ID NO: 651, SEQ ID NO: 652, SEQ ID NO: 653, SEQ ID NO: 654, SEQ ID NO: 655, SEQ ID NO: 656, SEQ ID NO: 657, SEQ ID NO: 658, SEQ ID NO: 659, SEQ ID NO: 660, SEQ ID NO: 661, SEQ ID NO: 662, SEQ ID NO: 663, SEQ ID NO: 664, SEQ ID NO: 665, SEQ ID NO: 666, SEQ ID NO: 667, SEQ ID NO: 668, SEQ ID NO: 669, SEQ ID NO: 679, SEQ ID NO: 671, SEQ ID NO: 672, SEQ ID NO: 673, SEQ ID NO: 674, SEQ ID NO: 675, SEQ ID NO: 676, SEQ ID NO: 677, SEQ ID NO: 678, SEQ ID NO: 679, SEQ ID NO: 670, SEQ ID NO: 671, SEQ ID NO: 672, SEQ ID NO: 673, SEQ ID NO: 674, SEQ ID NO: 675, SEQ ID NO: 676, SEQ ID NO: 677, SEQ ID NO: 678, SEQ ID NO: 679, SEQ ID NO: 680, SEQ ID NO: 681, SEQ ID NO: 682, SEQ ID NO: 683, SEQ ID NO: 684, SEQ ID NO: 685, SEQ ID NO: 686, SEQ ID NO: 687, SEQ ID NO: 688, SEQ ID NO: 689, SEQ ID NO: 690, SEQ ID NO: 691, SEQ ID NO: 692, SEQ ID NO: 693, SEQ ID NO: 694, SEQ ID NO: 695, SEQ ID NO: 696, SEQ ID NO: 697, SEQ ID NO: 698, SEQ ID NO: 699, SEQ ID NO: 716, SEQ ID NO: 717, SEQ ID NO: 718, SEQ ID NO: 719, SEQ ID NO: 720, SEQ ID NO: 721, SEQ ID NO: 722, SEQ ID NO: 723, SEQ ID NO: 724, SEQ ID NO: 725, SEQ ID NO: 726, SEQ ID NO: 727, SEQ ID NO: 728, SEQ ID NO: 729, SEQ ID NO: 730, or SEQ ID NO: 731.


In one embodiment the RTase mutant amino acid sequence comprises a C-terminal extension. In one aspect the C-terminal extension comprises a peptide sequence. In another embodiment an isolated polypeptide encodes a RTase mutant with a C-terminal extension


The claimed invention is based, at least in part, on the discovery that certain single and double amino acid mutations introduced into an MMLV RTase sequence, as disclosed herein, result in an MMLV RTase with increased or enhanced thermostability and/or RTase activity. Accordingly, methods for synthesizing the MMLV RTase mutants and methods for performing reverse transcription-polymerase chain reaction (RT-PCR) are also provided herein. Further provided are kits comprising the isolated MMLV RTase single, double, triple, or more mutations.


In certain embodiments, the mutated RTase is derived from the retrovirus Moloney murine leukemia virus (MMLV). In other embodiments, a mutated RTase of the disclosure could be derived from the RTase from a retrovirus other than MMLV, such as avian myeloblastosis virus (AMV) or human immunodeficiency virus type 1 (HIV-1), by introducing the same mutations into an RTase base construct obtained from the other retrovirus.


In certain embodiments, the RTase mutants of the disclosure are obtained by genetic engineering techniques that are well known in the art. For example, site-directed and random mutagenesis can be used to generate the RTase mutants of the disclosure.


In one embodiment of the disclosure, an RTase mutant of the disclosure is part of a composition.


3. Mutagenesis

The RTase mutants of the disclosure can be prepared by standard methods disclosed herein or known in the art. In one embodiment, the nucleic acid sequence of the RTase base construct (SEQ ID NO: 637) is modified to create a nucleic acid sequence encoding an RTase mutant. One of skill in the art will recognize that colonies with the appropriate strains can be used to grow and express an RTase mutant of interest, and following cell harvest and protein isolation, the RTase mutant can be used in cDNA synthesis techniques. Non-limiting examples of mutagenesis and cDNA synthesis are described herein in Examples 1-3.


As used herein, the term “mutagenesis” refers to the introduction of a genetic change in the nucleic acid sequence of a cell, wherein the alteration is then inherited by each cell. One of skill in the art will understand that mutations in a given nucleic acid sequence can be introduced using a variety of methods. One of skill in the art will further recognize that mutagenesis methods seek to mutate a target gene or target polynucleotide. The target gene may encode any one or more desired proteins. Mutagenesis methods commonly use a synthetic oligonucleotide that carries the desired sequence modification. The mutagenic oligonucleotide is incorporated into the DNA sequence using in vitro enzymatic DNA synthesis and is propagated in a mutant or wild-type bacterium.


Site directed mutagenesis, wherein targeted mutations are introduced into one or more desired positions of a template polynucleotide, may be achieved using primer extension mutagenesis. This technique requires the use of a specific primer that contains one or more desired mutations relative to the template polynucleotide. The mutagenesis primer can be a synthetic oligonucleotide or a PCR product. The mutated primer may include one or more substitutions, deletions, additions, or combinations thereof.


Mutated reverse transcriptases may also be generated using random mutagenesis, wherein mutations are introduced into the mutagenesis primer during synthesis. Randomly mutagenized oligonucleotides may also be used as mutagenesis primers.


In another embodiment, the mutated reverse transcriptases of the disclosure can be developed using error-prone rolling circle amplification (RCA). In this technique, the fidelity of a DNA polymerase is decreased by performing the RCA in the presence of MnCl2 or by decreasing the amount of input DNA.


4. cDNA Synthesis

The disclosure also relates to the activity of MMLV RTases, as measured by the quantity of cDNA produced by the MMLV RTases disclosed herein. cDNA can be prepared using one-step or two-step procedures and can be obtained from a variety of template molecules. As used herein, the term “template molecule” refers to a biological molecule that carries the genetic code for use in making a new nucleic acid strand. For example, in DNA replication, the unwound double helix and each single-stranded DNA molecule is used as a template to synthesize a complementary strand. Reverse transcription generates cDNA from RNA. One of skill in the art will understand that cDNA molecules may be prepared from a variety of nucleic acid template molecules. In one embodiment, the nucleic acid template can be single-stranded or double-stranded DNA. In one embodiment, RNA can be used in cDNA synthesis. In certain embodiments, the MMLV RTase mutants of the disclosure exhibit increased or enhanced thermostability and/or RTase activity as compared to an RTase base construct. In other embodiments, the MMLV RTase mutants of the disclosure exhibit altered half-life, reduced or eliminated RNase H activity, reduced terminal deoxynucleotidyl transferase activity, increased accuracy or fidelity, or increased specificity.


The disclosure also provides methods for synthesizing cDNA using the MMLV RTase mutants of the disclosure that have single or double amino acid mutations. The MMLV RTase mutants of the disclosure may be used in methods that produce a first strand cDNA or a first and second strand cDNA. One of skill in the art will understand that first and second strand cDNA may form a double-stranded DNA molecule, which may include a full-length cDNA sequence and cDNA libraries.


The cDNA molecules that have been reverse transcribed by the MMLV RTase mutants of the disclosure may be isolated, or the reaction mixture containing the cDNA molecules may be directly used in downstream applications or for further analysis or manipulation. Amplification methods that may be used to practice the methods of the disclosure are described herein and are well known in the art. Reverse transcription reactions may be carried out using non-specific primers, such as an anchored oligo-dT primer, or random sequence primers, or using a target-specific primer complementary to the RNA for each genetic probe being monitored, or using thermostable DNA polymerases (such as AMV RTase or MMLV RTase).


Amplification methods utilize pairs of primers that selectively hybridize to nucleic acids corresponding to a specific nucleotide sequence of interest that are contacted with the isolated nucleic acid under conditions that permit selective hybridization. Once hybridized, the nucleic acid:primer complex is contacted with one or more enzymes that facilitate template-dependent nucleic acid synthesis. Multiple rounds of amplification, also referred to as “cycles,” are conducted until a sufficient amount of amplification product is produced. Next, the amplification product is detected. In certain methods, the detection may be performed by visual means. Alternatively, the detection may involve indirect identification of the product via chemiluminescence, radioactive scintigraphy of incorporated radiolabel or fluorescent label, or even via a system using electrical or thermal impulse signals.


Methods based on ligation of two (or more) oligonucleotides in the presence of a nucleic acid having the sequence of the resulting “di-oligonucleotide,” thereby amplifying the di-oligonucleotide, also may be used in the amplification step of the disclosure.


In some embodiments of the disclosure, the detection process can utilize a hybridization technique, for example, wherein a specific primer or probe is selected to anneal to a target biomarker of interest, and thereafter detection of selective hybridization is made. As commonly known in the art, the oligonucleotide probes and primers can be designed by taking into consideration the melting point of hybridization thereof with its targeted sequence.


One of skill in the art will recognize that cDNA molecules made using the MMLV RTase mutants of the disclosure can be used in a variety of additional downstream applications. For example, amplification methods may include one-step PCR, two-step PCR, real-time or quantitative PCR, hot-start PCR, nested PCR, touch down PCR, differential display PCR (DDRT-PCR), microarray technologies, inverse PCR, Rapid amplification of PCR ends (RACE or anchored PCR), multiplex PCR, and site directed PCR mutagenesis. Synthesized cDNA and cDNA libraries created with the MMLV RTase mutants of the disclosure can be used in cloning and/or sequencing for further characterization. One of skill in the art will recognize that nucleic acid amplification using cDNA prepared with the MMLV RTase mutants of the disclosure may include additional techniques not listed herein.


To enable hybridization to occur under the methods presented above, oligonucleotide primers and probes should comprise an oligonucleotide sequence that has at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identity to a portion of the sequence of interest.


5. Biological Samples

The MMLV RTase mutants and associated methods of the disclosure may be practiced with any suitable biological sample from which RNA or DNA can be isolated. In one embodiment of the disclosure, the biological sample may be a bodily fluid or tissue obtained from either a diseased or a healthy subject. In some embodiments of the disclosure, the biological sample may be a bodily fluid, including but not limited to whole blood, plasma, serum, feces, or urine. In another embodiment, the methods of the disclosure may be practiced with any suitable samples that are freshly isolated or that have been frozen or stored after having been collected from a subject, for example, with a known diagnosis, treatment, and/or outcome history. Samples may be collected by any non-invasive means, such as, for example, fine needle aspiration or needle biopsy, or alternatively, by an invasive method, including, for example, surgical biopsy. In such embodiments, RNA or DNA can be extracted from a biological sample (e.g., blood serum) before analysis. Methods of RNA and DNA extraction are well known in the art.


A number of kits for use in extracting RNA (i.e., total RNA or mRNA) from bodily fluids or tissues (e.g., blood serum) and are known in the art and commercially available. One of ordinary skill in the art can easily select an appropriate kit for a particular situation.


In certain embodiments of the disclosure, after extraction, mRNA is amplified, and transcribed into cDNA, which can then serve as template for multiple rounds of transcription by the appropriate RNA polymerase. Amplification methods that may be used to practice the methods of the disclosure are described herein and are well known in the art. Reverse transcription reactions may be carried out using non-specific primers, such as an anchored oligo-dT primer, or random sequence primers, or using a target-specific primer complementary to the RNA for each genetic probe being monitored, or using thermostable DNA polymerases, such as MMLV RTase or the MMLV RTase mutants of the disclosure.


In certain embodiments, the RNA isolated from a biological sample (e.g., after amplification and/or conversion to cDNA or cRNA) is labeled with a detectable agent before being analyzed. The role of a detectable agent is to facilitate detection of RNA or to allow visualization of hybridized nucleic acid fragments (e.g., nucleic acid fragments hybridized to genetic probes in an array-based assay). In some embodiments, the detectable agent is selected such that it generates a signal which can be measured and whose intensity is related to the amount of labeled nucleic acids present in the sample being analyzed.


Methods for labeling nucleic acid molecules are well known in the art. A review of labeling protocols and label detection techniques can be found in Kricka, Ann. Clin. Biochem. 39: 114-29 (2002); van Gijlswijk et al., Expert Rev. Mol. Diagn. 1: 81-91 (2001); and Joos et al., J. Biotechnol. 35: 135-53 (1994). Standard nucleic acid labeling methods include incorporation of radioactive agents; direct attachment of fluorescent dyes or of enzymes; chemical modifications of nucleic acid fragments making them detectable immunochemically or by other affinity reactions; and enzyme-mediated labeling methods, such as random priming, nick translation, PCR, and tailing with terminal transferase.


Any of a wide variety of detectable agents can be used to practice the methods of the disclosure. Suitable detectable agents include but are not limited to various ligands, radionuclides, fluorescent dyes, chemiluminescent agents, microparticles (such as, for example, quantum dots, nanocrystals, and phosphors), enzymes (such as, for example, those used in an ELISA, i.e., horseradish peroxidase, beta-galactosidase, luciferase, and alkaline phosphatase), colorimetric labels, magnetic labels, biotin, digoxigenin, or other haptens and proteins for which antisera or monoclonal antibodies are available.


6. Kits

The disclosure also provides kits for use in reverse transcription or related technologies. These kits include one or more of the following: an MMLV RTase mutant enzyme, reagents and buffers for conducting a reverse transcriptase reaction, a box, vial tubes, ampules, and the like. Kits can also include instructions for use of the kit for practicing any of the methods disclosed herein or other methods known to those of skill in the art.


EXAMPLES

The claimed invention is further illustrated by the following Examples, which should not be construed as limiting. Those of skill in the art will recognize that the claimed invention may be practiced with variations of the disclosed structures, materials, compositions, and methods, and such variations are regarded as within the scope of the claimed invention.


The RTases described herein were overexpressed in E. coli, purified to homogeneity, and tested for their ability to enhance RNA detection in the context of reverse transcriptase quantitative PCR (RT-qPCR).


Example 1. Preparation of Reverse Transcriptase Mutants by Site Directed Mutagenesis

a. Cloning of MMLV RTase Mutants Created from Base Construct (RNase H Minus Construct)


MM4LV RTase mutants were prepared by first introducing three mutations (D524G, E562Q, and D583N) into the amino acid sequence of the wild-type, or naturally occurring, MMLV RTase to prepare an MMLV RTase base construct (SEQ TD NO: 637). The three mutations, which are contained in the SuperScript II RTase (Invitrogen), have been shown to reduce RNase H activity (see U.S. Pat. No. 5,405,776). The MMLV RTase base construct was optimized for E. coli expression and obtained as gBlocks® Gene Fragments (Integrated DNA Technologies) or by custom gene synthesis with the appropriate purification tag. Subsequent genes were amplified using standard PCR conditions and primers (see Tables 1 and 21). Amplified DNA was subjected to purification using a QIAquick PCR Purification kit (Qiagen, Catalog #28104), followed by gene fragment assembly into a pET28b expression plasmid. Plasmid DNA was isolated and sequenced to verify the desired sequence following transformation into E. coli cells. MMLV RTase mutations were selected by rational design (FIGS. 1A-1C) and introduced by site-directed mutagenesis, using standard PCR conditions and primers (see Tables 1 and 21). Resulting plasmids were transformed into E. coli BL21(DE3) cells for expression.









TABLE 1







Sequences of primers used for cloning of


MMLV RTase base constructs and mutants


into pET28b.









SEQ




ID

Primer Sequence


NO:
Primer Name
(5′-3′)












1
pET28b 5′
GGTATATCTCCTTCT



Reverse
TAAAGTTAAACAAAA




TTATTTCTAGAGGGG




AAT





2
pET28b 3′
GATCCGGCTGCTAAC



Forward
AAAGCC





3
MMLV 5′ Primer
TTTTGTTTAACTTTA




AGAAGGAGATATACC




ATGGGCAGCAGCCAT




CATCATC





4
MMLV 3′ Primer
GCAGCCAACTCAGCT




TCCTTTCGGGCTTTG




TTAAAAATGCTCGCT




AGTGTAGGGAGAGC





5
MMLV K53A Top
AAGCACCGTTGATCA



SDM
TCCCGTTAGCGGCAA




CGTCTACACCTGTCT




CTATCAAAC





6
MMLV K53R Top
AAGCACCGTTGATCA



SDM
TCCCGTTACGTGCAA




CGTCTACACCTGTCT




CTATCAAAC





7
MMLV K53E Top
AAGCACCGTTGATCA



SDM
TCCCGTTAGAAGCAA




CGTCTACACCTGTCT




CTATCAAAC





8
MMLV T55A Top
CCGTTGATCATCCCG



SDM
TTAAAGGCAGCGTCT




ACACCTGTCTCTATC




AAACAGTACCCC





9
MMLV T55R Top
CCGTTGATCATCCCG



SDM
TTAAAGGCACGTTCT




ACACCTGTCTCTATC




AAACAGTACCCC





10
MMLV T55E Top
CCGTTGATCATCCCG



SDM
TTAAAGGCAGAATCT




ACACCTGTCTCTATC




AAACAGTACCCC





11
MMLV T57A Top
ATCATCCCGTTAAAG



SDM
GCAACGTCTGCGCCT




GTCTCTATCAAACAG




TACCCCATGAG





12
MMLV T57R Top
ATCATCCCGTTAAAG



SDM
GCAACGTCTCGTCCT




GTCTCTATCAAACAG




TACCCCATGAG





13
MMLV T57E Top
ATCATCCCGTTAAAG



SDM
GCAACGTCTGAACCT




GTCTCTATCAAACAG




TACCCCATGAG





14
MMLV V59A Top
CCGTTAAAGGCAACG



SDM
TCTACACCTGCGTCT




ATCAAACAGTACCCC




ATGAGTCAAGAGG





15
MMLV V59R Top
CCGTTAAAGGCAACG



SDM
TCTACACCTCGTTCT




ATCAAACAGTACCCC




ATGAGTCAAGAGG





16
MMLV V59E Top
CCGTTAAAGGCAACG



SDM
TCTACACCTGAATCT




ATCAAACAGTACCCC




ATGAGTCAAGAGG





17
MMLV 161A Top
TAAAGGCAACGTCTA



SDM
CACCTGTCTCTGCGA




AACAGTACCCCATGA




GTCAAGAGG





18
MMLV I61R Top
TAAAGGCAACGTCTA



SDM
CACCTGTCTCTCGTA




AACAGTACCCCATGA




GTCAAGAGG





19
MMLV 16IE Top
TAAAGGCAACGTCTA



SDM
CACCTGTCTCTGAAA




AACAGTACCCCATGA




GTCAAGAGG





20
MMLV K62A Top
GGCAACGTCTACACC



SDM
TGTCTCTATCGCGCA




GTACCCCATGAGTCA




AGAGGC





21
MMLV K62R Top
GGCAACGTCTACACC



SDM
TGTCTCTATCCGTCA




GTACCCCATGAGTCA




AGAGGC





22
MMLV K62E Top
GGCAACGTCTACACC



SDM
TGTCTCTATCGAACA




GTACCCCATGAGTCA




AGAGGC





23
MMLV Q68A Top
CTGTCTCTATCAAAC



SDM
AGTACCCCATGAGTG




CGGAGGCCCGCCTGG




G





24
MMLV Q68R Top
CTGTCTCTATCAAAC



SDM
AGTACCCCATGAGTC




GTGAGGCCCGCCTGG




G





25
MMLV Q68E Top
CTGTCTCTATCAAAC



SDM
AGTACCCCATGAGTG




AAGAGGCCCGCCTGG




G





26
MMLV K75A Top
GGCCCGCCTGGGGAT



SDM
TGCGCCACATATTCA




GCGCTTGCTGGACCA





27
MMLV K75R Top
GGCCCGCCTGGGGAT



SDM
TCGTCCACATATTCA




GCGCTTGCTGGACCA





28
MMLV K75E Top
GGCCCGCCTGGGGAT



SDM
TGAACCACATATTCA




GCGCTTGCTGGACCA





29
MMLV Q79A Top
CGCCTGGGGATTAAG



SDM
CCACATATTGCGCGC




TTGCTGGACCAGGGG





30
MMLV Q79R Top
CGCCTGGGGATTAAG



SDM
CCACATATTCGTCGC




TTGCTGGACCAGGGG





31
MMLV Q79E Top
CGCCTGGGGATTAAG



SDM
CCACATATTGAACGC




TTGCTGGACCAGGGG





32
MMLV L99A Top
CCGTGGAACACCCCC



SDM
CTTGCGCCCGTGAAA




AAGCCAGGTACAAAC





33
MMLV L99R Top
CCGTGGAACACCCCC



SDM
CTTCGTCCCGTGAAA




AAGCCAGGTACAAAC





34
MMLV L99E Top
CCGTGGAACACCCCC



SDM
CTTGAACCCGTGAAA




AAGCCAGGTACAAAC





35
MMLV V101A Top
CACCCCCCTTCTGCC



SDM
CGCGAAAAAGCCAGG




TACAAACGATTATCG




TCC





36
MMLV V101R Top
CACCCCCCTTCTGCC



SDM
CCGTAAAAAGCCAGG




TACAAACGATTATCG




TCC





37
MMLV V101E Top
CACCCCCCTTCTGCC



SDM
CGAAAAAAAGCCAGG




TACAAACGATTATCG




TCC





38
MMLV K102A Top
CCCCCTTCTGCCCGT



SDM
GGCGAAGCCAGGTAC




AAACGATTATCGTCC





39
MMLV K102R Top
CCCCCTTCTGCCCGT



SDM
GCGTAAGCCAGGTAC




AAACGATTATCGTCC





40
MMLV K102E Top
CCCCCTTCTGCCCGT



SDM
GGAAAAGCCAGGTAC




AAACGATTATCGTCC





41
MMLV K103A Top
CCCCCTTCTGCCCGT



SDM
GAAAGCGCCAGGTAC




AAACGATTATCGTCC




AGTT





42
MMLV K103R Top
CCCCCTTCTGCCCGT



SDM
GAAACGTCCAGGTAC




AAACGATTATCGTCC




AGTT





43
MMLV K103E Top
CCCCCTTCTGCCCGT



SDM
GAAAGAACCAGGTAC




AAACGATTATCGTCC




AGTT





44
MMLV T106A Top
GCCCGTGAAAAAGCC



SDM
AGGTGCGAACGATTA




TCGTCCAGTTCAAGA




TCTTCG





45
MMLV T106R Top
GCCCGTGAAAAAGCC



SDM
AGGTCGTAACGATTA




TCGTCCAGTTCAAGA




TCTTCG





46
MMLV T106E Top
GCCCGTGAAAAAGCC



SDM
AGGTGAAAACGATTA




TCGTCCAGTTCAAGA




TCTTCG





47
MMLV N107A Top
CCCGTGAAAAAGCCA



SDM
GGTACAGCGGATTAT




CGTCCAGTTCAAGAT




CTTCGCG





48
MMLV N107R Top
CCCGTGAAAAAGCCA



SDM
GGTACACGTGATTAT




CGTCCAGTTCAAGAT




CTTCGCG





49
MMLV N107E
CCCGTGAAAAAGCCAGGTAC



Top SDM
AGAAGATTATCGTCCAGTTC




AAGATCTTCGCG





50
MMLV Y109A
CGTGAAAAAGCCAGGTACAA



Top SDM
ACGATGCGCGTCCAGTTCAA




GATCTTCGCG





51
MMLV Y109R
CGTGAAAAAGCCAGGTACAA



Top SDM
ACGATCGTCGTCCAGTTCAA




GATCTTCGCG





52
MMLV Y109E
CGTGAAAAAGCCAGGTACAA



Top SDM
ACGATGAACGTCCAGTTCAA




GATCTTCGCG





53
MMLVR110A
CGTGAAAAAGCCAGGTACAA



Top SDM
ACGATTATGCGCCAGTTCAA




GATCTTCGCGAGG





54
MMLVR110K
CGTGAAAAAGCCAGGTACAA



Top SDM
ACGATTATAAACCAGTTCAA




GATCTTCGCGAGG





55
MMLV R110E
CGTGAAAAAGCCAGGTACAA



Top SDM
ACGATTATGAACCAGTTCAA




GATCTTCGCGAGG





56
MMLV V112A
GCCAGGTACAAACGATTATC



Top SDM
GTCCAGCGCAAGATCTTCGC




GAGGTCAACAAAC





57
MMLV VI12R
GCCAGGTACAAACGATTATC



Top SDM
GTCCACGTCAAGATCTTCGC




GAGGTCAACAAAC





58
MMLV V112E
GCCAGGTACAAACGATTATC



Top SDM
GTCCAGAACAAGATCTTCGC




GAGGTCAACAAAC





59
MMLV K120A
AGTTCAAGATCTTCGCGAGG



Top SDM
TCAACGCGCGCGTAGAAGAC




ATCCATCCGAC





60
MMLV K120R
AGTTCAAGATCTTCGCGAGG



Top SDM
TCAACCGTCGCGTAGAAGAC




ATCCATCCGAC





61
MMLV K120E
AGTTCAAGATCTTCGCGAGG



Top SDM
TCAACGAACGCGTAGAAGAC




ATCCATCCGAC





62
MMLV El23A
GCGAGGTCAACAAACGCGTA



Top SDM
GCGGACATCCATCCGACTGT




ACCTAATCC





63
MMLV E123R
GCGAGGTCAACAAACGCGTA



Top SDM
CGTGACATCCATCCGACTGT




ACCTAATCC





64
MMLV E123D
GCGAGGTCAACAAACGCGTA



Top SDM
GATGACATCCATCCGACTGT




ACCTAATCC





65
MMLV T128V
ACGCGTAGAAGACATCCATC



Top SDM
CGGTGGTACCTAATCCTTAT




AATCTGTTATCAGGCCTGC





66
MMLV T128R
ACGCGTAGAAGACATCCATC



Top SDM
CGCGTGTACCTAATCCTTAT




AATCTGTTATCAGGCCTGC





67
MMLV T128E
ACGCGTAGAAGACATCCATC



Top SDM
CGGAAGTACCTAATCCTTAT




AATCTGTTATCAGGCCTGC





68
MMLV K193A
CGTCTGCCCCAGGGCTTTGC



Top SDM
GAACAGCCCCACATTGTTCG




ATGAA





69
MMLV K193R
CGTCTGCCCCAGGGCTTTCG



Top SDM
TAACAGCCCCACATTGTTCG




ATGAA





70
MMLV K193E
CGTCTGCCCCAGGGCTTTGA



Top SDM
AAACAGCCCCACATTGTTCG




ATGAA





71
MMLV E282A
AGAAGGTCAACGTTGGCTGA



Top SDM
CTGCGGCGCGTAAGGAGACC




GTAATG





72
MMLV E282R
AGAAGGTCAACGTTGGCTGA



Top SDM
CTCGTGCGCGTAAGGAGACC




GTAATG





73
MMLV E282D
AGAAGGTCAACGTTGGCTGA



Top SDM
CTGATGCGCGTAAGGAGACC




GTAATG





74
MMLV A283V
GAAGGTCAACGTTGGCTGAC



Top SDM
TGAAGTGCGTAAGGAGACCG




TAATGGGGC





75
MMLV A283R
GAAGGTCAACGTTGGCTGAC



Top SDM
TGAACGTCGTAAGGAGACCG




TAATGGGGC





76
MMLV A283E
GAAGGTCAACGTTGGCTGAC



Top SDM
TGAAGAACGTAAGGAGACCG




TAATGGGGC





77
MMLV Q291A
GCGTAAGGAGACCGTAATGG



Top SDM
GGGCGCCTACGCCTAAGACG




CCACG





78
MMLV Q291R
GCGTAAGGAGACCGTAATGG



Top SDM
GGCGTCCTACGCCTAAGACG




CCACG





79
MMLV Q291E
GCGTAAGGAGACCGTAATGG



Top SDM
GGGAACCTACGCCTAAGACG




CCACG





80
MMLV
GAGACCGTAATGGGGCAGCC



T293A
TGCGCCTAAGACGCCACGCC



Top SDM
AGTTG





81
MMLV
GAGACCGTAATGGGGCAGCC



T293R
TCGTCCTAAGACGCCACGCC



Top SDM
AGTTG





82
MMLV
GAGACCGTAATGGGGCAGCC



T293E
TGAACCTAAGACGCCACGCC



Top SDM
AGTTG





83
MMLV K295A
GTAATGGGGCAGCCTACGCC



Top SDM
TGCGACGCCACGCCAGTTGC




GTGAA





84
MMLV K295R
GTAATGGGGCAGCCTACGCC



Top SDM
TCGTACGCCACGCCAGTTGC




GTGAA





85
MMLV K295E
GTAATGGGGCAGCCTACGCC



Top SDM
TGAAACGCCACGCCAGTTGC




GTGAA





86
MMLV
TGGGGCAGCCTACGCCTAAG



T296A
GCGCCACGCCAGTTGCGTGA



Top SDM
ATTTT





87
MMLV
TGGGGCAGCCTACGCCTAAG



T296R
CGTCCACGCCAGTTGCGTGA



Top SDM
ATTTT





88
MMLV
TGGGGCAGCCTACGCCTAAG



T296E
GAACCACGCCAGTTGCGTGA



Top SDM
ATTTT





89
MMLV R298A
GCCTACGCCTAAGACGCCAG



Top SDM
CGCAGTTGCGTGAATTTTTG




GGCACAG





90
MMLV R298K
GCCTACGCCTAAGACGCCAA



Top SDM
AACAGTTGCGTGAATTTTTG




GGCACAG





91
MMLV R298E
GCCTACGCCTAAGACGCCAG



Top SDM
AACAGTTGCGTGAATTTTTG




GGCACAG





92
MMLV R30IA
CCTAAGACGCCACGCCAGTT



Top SDM
GGCGGAATTTTTGGGCACAG




CGGGA





93
MMLV R301K
CCTAAGACGCCACGCCAGTT



Top SDM
GAAAGAATTTTTGGGCACAG




CGGGA





94
MMLV R301E
CCTAAGACGCCACGCCAGTT



Top SDM
GGAAGAATTTTTGGGCACAG




CGGGA





95
MMLV K329A
GCACCCCTGTACCCCTTAAC



Top SDM
AGCGACAGGGACGCTTTTCA




ACTGG





96
MMLV K329R
GCACCCCTGTACCCCTTAAC



Top SDM
ACGTACAGGGACGCTTTTCA




ACTGG





97
MMLV K329E
GCACCCCTGTACCCCTTAAC



Top SDM
AGAAACAGGGACGCTTTTCA




ACTGG





98
MMLV K53A
GTTTGATAGAGACAGGTGTA



Btm SDM
GACGTTGCCGCTAACGGGAT




GATCAACGGTGCTT





99
MMLV K53R
GTTTGATAGAGACAGGTGTA



Btm SDM
GACGTTGCACGTAACGGGAT




GATCAACGGTGCTT





100
MMLV K53E
GTTTGATAGAGACAGGTGTA



Btm SDM
GACGTTGCTTCTAACGGGAT




GATCAACGGTGCTT





101
MMLV
GGGGTACTGTTTGATAGAGA



T55A
CAGGTGTAGACGCTGCCTTT



Btm SDM
AACGGGATGATCAACGG





102
MMLV
GGGGTACTGTTTGATAGAGA



T55R
CAGGTGTAGAACGTGCCTTT



Btm SDM
AACGGGATGATCAACGG





103
MMLV
GGGGTACTGTTTGATAGAGA



T55E
CAGGTGTAGATTCTGCCTTT



Btm SDM
AACGGGATGATCAACGG





104
MMLV
CTCATGGGGTACTGTTTGAT



T57A
AGAGACAGGCGCAGACGTTG



Btm SDM
CCTTTAACGGGATGAT





105
MMLV
CTCATGGGGTACTGTTTGAT



T57R
AGAGACAGGACGAGACGTTG



Btm SDM
CCTTTAACGGGATGAT





106
MMLV
CTCATGGGGTACTGTTTGAT



T57E
AGAGACAGGTTCAGACGTTG



Btm SDM
CCTTTAACGGGATGAT





107
MMLV V59A
CCTCTTGACTCATGGGGTAC



Btm SDM
TGTTTGATAGACGCAGGTGT




AGACGTTGCCTTTAACGG





108
MMLV V59R
CCTCTTGACTCATGGGGTAC



Btm SDM
TGTTTGATAGAACGAGGTGT




AGACGTTGCCTTTAACGG





109
MMLV V59E
CCTCTTGACTCATGGGGTAC



Btm SDM
TGTTTGATAGATTCAGGTGT




AGACGTTGCCTTTAACGG





110
MMLV 161A
CCTCTTGACTCATGGGGTAC



Btm SDM
TGTTTCGCAGAGACAGGTGT




AGACGTTGCCTTTA





111
MMLV 161R
CCTCTTGACTCATGGGGTAC



Btm SDM
TGTTTACGAGAGACAGGTGT




AGACGTTGCCTTTA





112
MMLV 16IE
CCTCTTGACTCATGGGGTAC



Btm SDM
TGTTTTTCAGAGACAGGTGT




AGACGTTGCCTTTA





113
MMLV K62A
GCCTCTTGACTCATGGGGTA



Btm SDM
CTGCGCGATAGAGACAGGTG




TAGACGTTGCC





114
MMLV K62R
GCCTCTTGACTCATGGGGTA



Btm SDM
CTGACGGATAGAGACAGGTG




TAGACGTTGCC





115
MMLV K62E
GCCTCTTGACTCATGGGGTA



Btm SDM
CTGTTCGATAGAGACAGGTG




TAGACGTTGCC





116
MMLV Q68A
CTGTCTCTATCAAACAGTAC



Btm SDM
CCCATGAGTGCGGAGGCCCG




CCTGGG





117
MMLV Q68R
CTGTCTCTATCAAACAGTAC



Btm SDM
CCCATGAGTCGTGAGGCCCG




CCTGGG





118
MMLV Q68E
CTGTCTCTATCAAACAGTAC



Btm SDM
CCCATGAGTGAAGAGGCCCG




CCTGGG





119
MMLV K75A
TGGTCCAGCAAGCGCTGAAT



Btm SDM
ATGTGGCGCAATCCCCAGGC




GGGCC





120
MMLV K75R
TGGTCCAGCAAGCGCTGAAT



Btm SDM
ATGTGGACGAATCCCCAGGC




GGGCC





121
MMLV K75E
TGGTCCAGCAAGCGCTGAAT



Btm SDM
ATGTGGTTCAATCCCCAGGC




GGGCC





122
MMLV Q79A
CCCCTGGTCCAGCAAGCGCG



Btm SDM
CAATATGTGGCTTAATCCCC




AGGCG





123
MMLV Q79R
CCCCTGGTCCAGCAAGCGAC



Btm SDM
GAATATGTGGCTTAATCCCC




AGGCG





124
MMLV Q79E
CCCCTGGTCCAGCAAGCGTT



Btm SDM
CAATATGTGGCTTAATCCCC




AGGCG





125
MMLV L99A
GTTTGTACCTGGCTTTTTCA



Btm SDM
CGGGCGCAAGGGGGGTGTTC




CACGG





126
MMLV L99R
GTTTGTACCTGGCTTTTTCA



Btm SDM
CGGGACGAAGGGGGGTGTTC




CACGG





127
MMLV L99E
GTTTGTACCTGGCTTTTTCA



Btm SDM
CGGGTTCAAGGGGGGTGTTC




CACGG





128
MMLV V101A
GGACGATAATCGTTTGTACC



Btm SDM
TGGCTTTTTCGCGGGCAGAA




GGGGGGTG





129
MMLV VI01R
GGACGATAATCGTTTGTACC



Btm SDM
TGGCTTTTTACGGGGCAGAA




GGGGGGTG





130
MMLV V101E
GGACGATAATCGTTTGTACC



Btm SDM
TGGCTTTTTTTCGGGCAGAA




GGGGGGTG





131
MMLV K102A
GGACGATAATCGTTTGTACC



Btm SDM
TGGCTTCGCCACGGGCAGAA




GGGGG





132
MMLV K102R
GGACGATAATCGTTTGTACC



Btm SDM
TGGCTTACGCACGGGCAGAA




GGGGG





133
MMLV K102E
GGACGATAATCGTTTGTACC



Btm SDM
TGGCTTTTCCACGGGCAGAA




GGGGG





134
MMLV K103 A
AACTGGACGATAATCGTTTG



Btm SDM
TACCTGGCGCTTTCACGGGC




AGAAGGGGG





135
MMLV K103R
AACTGGACGATAATCGTTTG



Btm SDM
TACCTGGACGTTTCACGGGC




AGAAGGGGG





136
MMLV K103E
AACTGGACGATAATCGTTTG



Btm SDM
TACCTGGTTCTTTCACGGGC




AGAAGGGGG





137
MMLV
CGAAGATCTTGAACTGGACG



T106A
ATAATCGTTCGCACCTGGCT



Btm SDM
TTTTCACGGGC





138
MMLV
CGAAGATCTTGAACTGGACG



T106R
ATAATCGTTACGACCTGGCT



Btm SDM
TTTTCACGGGC





139
MMLV
CGAAGATCTTGAACTGGACG



T106E
ATAATCGTTTTCACCTGGCT



Btm SDM
TTTTCACGGGC





140
MMLVN107A
CGCGAAGATCTTGAACTGGA



Btm SDM
CGATAATCCGCTGTACCTGG




CTTTTTCACGGG





141
MMLV N107R
CGCGAAGATCTTGAACTGGA



Btm SDM
CGATAATCACGTGTACCTGG




CTTTTTCACGGG





142
MMLV N107E
CGCGAAGATCTTGAACTGGA



Btm SDM
CGATAATCTTCTGTACCTGG




CTTTTTCACGGG





143
MMLV Y109A
CGCGAAGATCTTGAACTGGA



Btm SDM
CGCGCATCGTTTGTACCTGG




CTTTTTCACG





144
MMLV Y109R
CGCGAAGATCTTGAACTGGA



Btm SDM
CGACGATCGTTTGTACCTGG




CTTTTTCACG





145
MMLV Y109E
CGCGAAGATCTTGAACTGGA



Btm SDM
CGTTCATCGTTTGTACCTGG




CTTTTTCACG





146
MMLVR110A
CCTCGCGAAGATCTTGAACT



Btm SDM
GGCGCATAATCGTTTGTACC




TGGCTTTTTCACG





147
MMLV R110K
CCTCGCGAAGATCTTGAACT



Btm SDM
GGTTTATAATCGTTTGTACC




TGGCTTTTTCACG





148
MMLVR110E
CCTCGCGAAGATCTTGAACT



Btm SDM
GGTTCATAATCGTTTGTACC




TGGCTTTTTCACG





149
MMLV V112A
GTTTGTTGACCTCGCGAAGA



Btm SDM
TCTTGCGCTGGACGATAATC




GTTTGTACCTGGC





150
MMLV V112R
GTTTGTTGACCTCGCGAAGA



Btm SDM
TCTTGACGTGGACGATAATC




GTTTGTACCTGGC





151
MMLV VI12E
GTTTGTTGACCTCGCGAAGA



Btm SDM
TCTTGTTCTGGACGATAATC




GTTTGTACCTGGC





152
MMLV K120A
GTCGGATGGATGTCTTCTAC



Btm SDM
GCGCGCGTTGACCTCGCGAA




GATCTTGAACT





153
MMLV K120R
GTCGGATGGATGTCTTCTAC



Btm SDM
GCGACGGTTGACCTCGCGAA




GATCTTGAACT





154
MMLV K120E
GTCGGATGGATGTCTTCTAC



Btm SDM
GCGTTCGTTGACCTCGCGAA




GATCTTGAACT





155
MMLV E123A
GGATTAGGTACAGTCGGATG



Btm SDM
GATGTCCGCTACGCGTTTGT




TGACCTCGC





156
MMLV E123R
GGATTAGGTACAGTCGGATG



Btm SDM
GATGTCACGTACGCGTTTGT




TGACCTCGC





157
MMLV E123D
GGATTAGGTACAGTCGGATG



Btm SDM
GATGTCATCTACGCGTTTGT




TGACCTCGC





158
MMLV
GCAGGCCTGATAACAGATTA



T128V
TAAGGATTAGGTACCACCGG



Btm SDM
ATGGATGTCTTCTACGCGT





159
MMLV
GCAGGCCTGATAACAGATTA



T128R
TAAGGATTAGGTACACGCGG



Btm SDM
ATGGATGTCTTCTACGCGT





160
MMLV
GCAGGCCTGATAACAGATTA



T128E
TAAGGATTAGGTACTTCCGG



Btm SDM
ATGGATGTCTTCTACGCGT





161
MMLV K193A
TTCATCGAACAATGTGGGGC



Btm SDM
TGTTCGCAAAGCCCTGGGGC




AGACG





162
MMLV K193R
TTCATCGAACAATGTGGGGC



Btm SDM
TGTTACGAAAGCCCTGGGGC




AGACG





163
MMLV K193E
TTCATCGAACAATGTGGGGC



Btm SDM
TGTTTTCAAAGCCCTGGGGC




AGACG





164
MMLV E282A
CATTACGGTCTCCTTACGCG



Btm SDM
CCGCAGTCAGCCAACGTTGA




CCTTCT





165
MMLV E282R
CATTACGGTCTCCTTACGCG



Btm SDM
CACGAGTCAGCCAACGTTGA




CCTTCT





166
MMLV E282D
CATTACGGTCTCCTTACGCG



Btm SDM
CATCAGTCAGCCAACGTTGA




CCTTCT





167
MMLV A283V
GCCCCATTACGGTCTCCTTA



Btm SDM
CGCACTTCAGTCAGCCAACG




TTGACCTTC





168
MMLV A283R
GCCCCATTACGGTCTCCTTA



Btm SDM
CGACGTTCAGTCAGCCAACG




TTGACCTTC





169
MMLV A283E
GCCCCATTACGGTCTCCTTA



Btm SDM
CGTTCTTCAGTCAGCCAACG




TTGACCTTC





170
MMLV Q29IA
CGTGGCGTCTTAGGCGTAGG



Btm SDM
CGCCCCCATTACGGTCTCCT




TACGC





171
MMLV Q291R
CGTGGCGTCTTAGGCGTAGG



Btm SDM
ACGCCCCATTACGGTCTCCT




TACGC





172
MMLV Q291E
CGTGGCGTCTTAGGCGTAGG



Btm SDM
TTCCCCCATTACGGTCTCCT




TACGC





173
MMLV T293A
CAACTGGCGTGGCGTCTTAG



Btm SDM
GCGCAGGCTGCCCCATTACG




GTCTC





174
MMLV T293R
CAACTGGCGTGGCGTCTTAG



Btm SDM
GACGAGGCTGCCCCATTACG




GTCTC





175
MMLV T293E
CAACTGGCGTGGCGTCTTAG



Btm SDM
GTTCAGGCTGCCCCATTACG




GTCTC





176
MMLV K295A
TTCACGCAACTGGCGTGGCG



Btm SDM
TCGCAGGCGTAGGCTGCCCC




ATTAC





177
MMLV K295R
TTCACGCAACTGGCGTGGCG



Btm SDM
TACGAGGCGTAGGCTGCCCC




ATTAC





178
MMLV K295E
TTCACGCAACTGGCGTGGCG



Btm SDM
TTTCAGGCGTAGGCTGCCCC




ATTAC





179
MMLV T296A
AAAATTCACGCAACTGGCGT



Btm SDM
GGCGCCTTAGGCGTAGGCTG




CCCCA





180
MMLV T296R
AAAATTCACGCAACTGGCGT



Btm SDM
GGACGCTTAGGCGTAGGCTG




CCCCA





181
MMLV T296E
AAAATTCACGCAACTGGCGT



Btm SDM
GGTTCCTTAGGCGTAGGCTG




CCCCA





182
MMLV R298A
CTGTGCCCAAAAATTCACGC



Btm SDM
AACTGCGCTGGCGTCTTAGG




CGTAGGC





183
MMLV R298K
CTGTGCCCAAAAATTCACGC



Btm SDM
AACTGTTTTGGCGTCTTAGG




CGTAGGC





184
MMLV R298E
CTGTGCCCAAAAATTCACGC



Btm SDM
AACTGTTCTGGCGTCTTAGG




CGTAGGC





185
MMLV R301A
TCCCGCTGTGCCCAAAAATT



Btm SDM
CCGCCAACTGGCGTGGCGTC




TTAGG





186
MMLV R301K
TCCCGCTGTGCCCAAAAATT



Btm SDM
CTTTCAACTGGCGTGGCGTC




TTAGG





187
MMLV R301E
TCCCGCTGTGCCCAAAAATT



Btm SDM
CTTCCAACTGGCGTGGCGTC




TTAGG





188
MMLV K329A
CCAGTTGAAAAGCGTCCCTG



Btm SDM
TCGCTGTTAAGGGGTACAGG




GGTGC





189
MMLV K329R
CCAGTTGAAAAGCGTCCCTG



Btm SDM
TACGTGTTAAGGGGTACAGG




GGTGC





190
MMLV K329E
CCAGTTGAAAAGCGTCCCTG



Btm SDM
TTTCTGTTAAGGGGTACAGG




GGTGC





191
MMLV I61G
TAAAGGCAACGTCTACACCT



Top SDM
GTCTCTGGCAAACAGTACCC




CATGAGTCAAGAGG





192
MMLV 161G
CCTCTTGACTCATGGGGTAC



Btm SDM
TGTTTGCCAGAGACAGGTGT




AGACGTTGCCTTTA





193
MMLV 161L
TAAAGGCAACGTCTACACCT



Top SDM
GTCTCTCTGAAACAGTACCC




CATGAGTCAAGAGG





194
MMLV 161L
CCTCTTGACTCATGGGGTAC



Btm SDM
TGTTTCAGAGAGACAGGTGT




AGACGTTGCCTTTA





195
MMLV 16IV
TAAAGGCAACGTCTACACCT



Top SDM
GTCTCTGTGAAACAGTACCC




CATGAGTCAAGAGG





196
MMLV 16IV
CCTCTTGACTCATGGGGTAC



Btm SDM
TGTTTCACAGAGACAGGTGT




AGACGTTGCCTTTA





197
MMLV 16IP
TAAAGGCAACGTCTACACCT



Top SDM
GTCTCTCCGAAACAGTACCC




CATGAGTCAAGAGG





198
MMLV 16IP
CCTCTTGACTCATGGGGTAC



Btm SDM
TGTTTCGGAGAGACAGGTGT




AGACGTTGCCTTTA





199
MMLV 161M
TAAAGGCAACGTCTACACCT



Top SDM
GTCTCTATGAAACAGTACCC




CATGAGTCAAGAGG





200
MMLV 161M
CCTCTTGACTCATGGGGTAC



Btm SDM
TGTTTCATAGAGACAGGTGT




AGACGTTGCCTTTA





201
MMLV 16IS
TAAAGGCAACGTCTACACCT



Top SDM
GTCTCTAGCAAACAGTACCC




CATGAGTCAAGAGG





202
MMLV 16IS
CCTCTTGACTCATGGGGTAC



Btm SDM
TGTTTGCTAGAGACAGGTGT




AGACGTTGCCTTTA





203
MMLV 16IT
TAAAGGCAACGTCTACACCT



Top SDM
GTCTCTACCAAACAGTACCC




CATGAGTCAAGAGG





204
MMLV 16IT
CCTCTTGACTCATGGGGTAC



Btm SDM
TGTTTGGTAGAGACAGGTGT




AGACGTTGCCTTTA





205
MMLV 161C
TAAAGGCAACGTCTACACCT



Top SDM
GTCTCTTGCAAACAGTACCC




CATGAGTCAAGAGG





206
MMLV 161C
CCTCTTGACTCATGGGGTAC



Btm SDM
TGTTTGCAAGAGACAGGTGT




AGACGTTGCCTTTA





207
MMLV 16IF
TAAAGGCAACGTCTACACCT



Top SDM
GTCTCTTTTAAACAGTACCC




CATGAGTCAAGAGG





208
MMLV 161F
CCTCTTGACTCATGGGGTAC



Btm
TGTTTAAAAGAGACA



SDM
GGTGTAGACGTTGCCTTTA





209
MMLV 161Y
TAAAGGCAACGTCTACACCT



Top SDM
GTCTCTTATAAACAGTACCC




CATGAGTCAAGAGG





210
MMLV 161Y
CCTCTTGACTCATGGGGTAC



Btm SDM
TGTTTATAAGAGACAGGTGT




AGACGTTGCCTTTA





211
MMLV 161H
TAAAGGCAACGTCTACACCT



Top SDM
GTCTCTCATAAACAGTACCC




CATGAGTCAAGAGG





212
MMLV 161H
CCTCTTGACTCATGGGGTAC



Btm SDM
TGTTTATGAGAGACAGGTGT




AGACGTTGCCTTTA





213
MMLV I61W
TAAAGGCAACGTCTACACCT



Top SDM
GTCTCTTGGAAACAGTACCC




CATGAGTCAAGAGG





214
MMLV 161W
CCTCTTGACTCATGGGGTAC



Btm SDM
TGTTTCCAAGAGACAGGTGT




AGACGTTGCCTTTA





215
MMLV 161D
TAAAGGCAACGTCTACACCT



Top SDM
GTCTCTGATAAACAGTACCC




CATGAGTCAAGAGG





216
MMLV 16ID
CCTCTTGACTCATGGGGTAC



Btm SDM
TGTTTATCAGAGACAGGTGT




AGACGTTGCCTTTA





217
MMLV 16IN
TAAAGGCAACGTCTACACCT



Top SDM
GTCTCTAACAAACAGTACCC




CATGAGTCAAGAGG





218
MMLV 16IN
CCTCTTGACTCATGGGGTAC



Btm SDM
TGTTTGTTAGAGACAGGTGT




AGACGTTGCCTTTA





219
MMLV 16IQ
TAAAGGCAACGTCTACACCT



Top SDM
GTCTCTCAGAAACAGTACCC




CATGAGTCAAGAGG





220
MMLV 16IQ
CCTCTTGACTCATGGGGTAC



Btm SDM
TGTTTCTGAGAGACAGGTGT




AGACGTTGCCTTTA





221
MMLV 161K
TAAAGGCAACGTCTACACCT



Top SDM
GTCTCTAAAAAACAGTACCC




CATGAGTCAAGAGG





222
MMLV 16IK
CCTCTTGACTCATGGGGTAC



Btm SDM
TGTTTTTTAGAGACAGGTGT




AGACGTTGCCTTTA





223
MMLV Q68G
CTGTCTCTATCAAACAGTAC



Top SDM
CCCATGAGTGGCGAGGCCCG




CCTGGG





224
MMLV Q68G
CCCAGGCGGGCCTCGCCACT



Btm SDM
CATGGGGTACTGTTTGATAG




AGACAG





225
MMLV Q68L
CTGTCTCTATCAAACAGTAC



Top SDM
CCCATGAGTCTGGAGGCCCG




CCTGGG





226
MMLV Q68L
CCCAGGCGGGCCTCCAGACT



Btm SDM
CATGGGGTACTGTTTGATAG




AGACAG





227
MMLV Q68I
CTGTCTCTATCAAACAGTAC



Top SDM
CCCATGAGTATTGAGGCCCG




CCTGGG





228
MMLV Q68I
CCCAGGCGGGCCTCAATACT



Btm
CATGGGGTACTGTTT



SDM
GATAGAGACAG





229
MMLV Q68V
CTGTCTCTATCAAACAGTAC



Top SDM
CCCATGAGTGTGGAGGCCCG




CCTGGG





230
MMLV Q68V
CCCAGGCGGGCCTCCACACT



Btm SDM
CATGGGGTACTGTTTGATAG




AGACAG





231
MMLV Q68P
CTGTCTCTATCAAACAGTAC



Top SDM
CCCATGAGTCCGGAGGCCCG




CCTGGG





232
MMLV Q68P
CCCAGGCGGGCCTCCGGACT



Btm SDM
CATGGGGTACTGTTTGATAG




AGACAG





233
MMLV Q68M
CTGTCTCTATCAAACAGTAC



Top SDM
CCCATGAGTATGGAGGCCCG




CCTGGG





234
MMLV Q68M
CCCAGGCGGGCCTCCATACT



Btm SDM
CATGGGGTACTGTTTGATAG




AGACAG





235
MMLV Q68S
CTGTCTCTATCAAACAGTAC



Top SDM
CCCATGAGTAGCGAGGCCCG




CCTGGG





236
MMLV Q68S
CCCAGGCGGGCCTCGCTACT



Btm SDM
CATGGGGTACTGTTTGATAG




AGACAG





237
MMLV Q68T
CTGTCTCTATCAAACAGTAC



Top SDM
CCCATGAGTACCGAGGCCCG




CCTGGG





238
MMLV Q68T
CCCAGGCGGGCCTCGGTACT



Btm SDM
CATGGGGTACTGTTTGATAG




AGACAG





239
MMLV Q68C
CTGTCTCTATCAAACAGTAC



Top SDM
CCCATGAGTTGCGAGGCCCG




CCTGGG





240
MMLV Q68C
CCCAGGCGGGCCTCGCAACT



Btm SDM
CATGGGGTACTGTTTGATAG




AGACAG





241
MMLV Q68F
CTGTCTCTATCAAACAGTAC



Top SDM
CCCATGAGTTTTGAGGCCCG




CCTGGG





242
MMLV Q68F
CCCAGGCGGGCCTCAAAACT



Btm SDM
CATGGGGTACTGTTTGATAG




AGACAG





243
MMLV Q68Y
CTGTCTCTATCAAACAGTAC



Top SDM
CCCATGAGTTATGAGGCCCG




CCTGGG





244
MMLV Q68Y
CCCAGGCGGGCCTCATAACT



Btm SDM
CATGGGGTACTGTTTGATAG




AGACAG





245
MMLV Q68H
CTGTCTCTATCAAACAGTAC



Top SDM
CCCATGAGTCATGAGGCCCG




CCTGGG





246
MMLV Q68H
CCCAGGCGGGCCTCATGACT



Btm SDM
CATGGGGTACTGTTTGATAG




AGACAG





247
MMLV Q68W
CTGTCTCTATCAAACAGTAC



Top SDM
CCCATGAGTTGGGAGGCCCG




CCTGGG





248
MMLV Q68W
CCCAGGCGGGCCTCCCAACT



Btm
CATGGGGTACTGTTT



SDM
GATAGAGACAG





249
MMLV Q68D
CTGTCTCTATCAAACAGTAC



Top SDM
CCCATGAGTGATGAGGCCCG




CCTGGG





250
MMLV Q68D
CCCAGGCGGGCCTCATCACT



Btm SDM
CATGGGGTACTGTTTGATAG




AGACAG





251
MMLV Q68N
CTGTCTCTATCAAACAGTAC



Top SDM
CCCATGAGTAACGAGGCCCG




CCTGGG





252
MMLV Q68N
CCCAGGCGGGCCTCGTTACT



Btm SDM
CATGGGGTACTGTTTGATAG




AGACAG





253
MMLV Q68K
CTGTCTCTATCAAACAGTAC



Top SDM
CCCATGAGTAAAGAGGCCCG




CCTGGG





254
MMLV Q68K
CCCAGGCGGGCCTCTTTACT



Btm SDM
CATGGGGTACTGTTTGATAG




AGACAG





255
MMLV Q79G
CGCCTGGGGATTAAGCCACA



Top SDM
TATTGGCCGCTTGCTGGACC




AGGGG





256
MMLV Q79G
CCCCTGGTCCAGCAAGCGGC



Btm SDM
CAATATGTGGCTTAATCCCC




AGGCG





257
MMLV Q79L
CGCCTGGGGATTAAGCCACA



Top SDM
TATTCTGCGCTTGCTGGACC




AGGGG





258
MMLV Q79L
CCCCTGGTCCAGCAAGCGCA



Btm SDM
GAATATGTGGCTTAATCCCC




AGGCG





259
MMLV Q79I
CGCCTGGGGATTAAGCCACA



Top SDM
TATTATTCGCTTGCTGGACC




AGGGG





260
MMLV Q79I
CCCCTGGTCCAGCAAGCGAA



Btm SDM
TAATATGTGGCTTAATCCCC




AGGCG





261
MMLV Q79V
CGCCTGGGGATTAAGCCACA



Top SDM
TATTGTGCGCTTGCTGGACC




AGGGG





262
MMLV Q79V
CCCCTGGTCCAGCAAGCGCA



Btm SDM
CAATATGTGGCTTAATCCCC




AGGCG





263
MMLV Q79P
CGCCTGGGGATTAAGCCACA



Top SDM
TATTCCGCGCTTGCTGGACC




AGGGG





264
MMLV Q79P
CCCCTGGTCCAGCAAGCGCG



Btm SDM
GAATATGTGGCTTAATCCCC




AGGCG





265
MMLV Q79M
CGCCTGGGGATTAAGCCACA



Top SDM
TATTATGCGCTTGCTGGACC




AGGGG





266
MMLV Q79M
CCCCTGGTCCAGCAAGCGCA



Btm SDM
TAATATGTGGCTTAATCCCC




AGGCG





267
MMLV Q79S
CGCCTGGGGATTAAGCCACA



Top SDM
TATTAGCCGCTTGCTGGACC




AGGGG





268
MMLV Q79S
CCCCTGGTCCAGCAAGCGGC



Btm
TAATATGTGGCTTAA



SDM
TCCCCAGGCG





269
MMLV Q79T
CGCCTGGGGATTAAGCCACA



Top SDM
TATTACCCGCTTGCTGGACC




AGGGG





270
MMLV Q79T
CCCCTGGTCCAGCAAGCGGG



Btm SDM
TAATATGTGGCTTAATCCCC




AGGCG





271
MMLV Q79C
CGCCTGGGGATTAAGCCACA



Top SDM
TATTTGCCGCTTGCTGGACC




AGGGG





272
MMLV Q79C
CCCCTGGTCCAGCAAGCGGC



Btm SDM
AAATATGTGGCTTAATCCCC




AGGCG





273
MMLV Q79F
CGCCTGGGGATTAAGCCACA



Top SDM
TATTTTTCGCTTGCTGGACC




AGGGG





274
MMLV Q79F
CCCCTGGTCCAGCAAGCGAA



Btm SDM
AAATATGTGGCTTAATCCCC




AGGCG





275
MMLV Q79Y
CGCCTGGGGATTAAGCCACA



Top SDM
TATTTATCGCTTGCTGGACC




AGGGG





276
MMLV Q79Y
CCCCTGGTCCAGCAAGCGAT



Btm SDM
AAATATGTGGCTTAATCCCC




AGGCG





277
MMLV Q79H
CGCCTGGGGATTAAGCCACA



Top SDM
TATTCATCGCTTGCTGGACC




AGGGG





278
MMLV Q79H
CCCCTGGTCCAGCAAGCGAT



Btm SDM
GAATATGTGGCTTAATCCCC




AGGCG





279
MMLV Q79W
CGCCTGGGGATTAAGCCACA



Top SDM
TATTTGGCGCTTGCTGGACC




AGGGG





280
MMLV Q79W
CCCCTGGTCCAGCAAGCGCC



Btm SDM
AAATATGTGGCTTAATCCCC




AGGCG





281
MMLV Q79D
CGCCTGGGGATTAAGCCACA



Top SDM
TATTGATCGCTTGCTGGACC




AGGGG





282
MMLV Q79D
CCCCTGGTCCAGCAAGCGAT



Btm SDM
CAATATGTGGCTTAATCCCC




AGGCG





283
MMLV Q79N
CGCCTGGGGATTAAGCCACA



Top SDM
TATTAACCGCTTGCTGGACC




AGGGG





284
MMLV Q79N
CCCCTGGTCCAGCAAGCGGT



Btm SDM
TAATATGTGGCTTAATCCCC




AGGCG





285
MMLV Q79K
CGCCTGGGGATTAAGCCACA



Top SDM
TATTAAACGCTTGCTGGACC




AGGGG





286
MMLV Q79K
CCCCTGGTCCAGCAAGCGTT



Btm SDM
TAATATGTGGCTTAATCCCC




AGGCG





287
MMLV L99G
CCGTGGAACACCCCCCTTGG



Top SDM
CCCCGTGAAAAAGCCAGGTA




CAAAC





288
MMLV L99G
GTTTGTACCTGGCTTTTTCA



Btm
CGGGGCCAAGGGGGG



SDM
TGTTCCACGG





289
MMLV L99I
CCGTGGAACACCCCCCTTAT



Top SDM
TCCCGTGAAAAAGCCAGGTA




CAAAC





290
MMLV L99I
GTTTGTACCTGGCTTTTTCA



Btm SDM
CGGGAATAAGGGGGGTGTTC




CACGG





291
MMLV L99V
CCGTGGAACACCCCCCTTGT



Top SDM
GCCCGTGAAAAAGCCAGGTA




CAAAC





292
MMLV L99V
GTTTGTACCTGGCTTTTTCA



Btm SDM
CGGGCACAAGGGGGGTGTTC




CACGG





293
MMLV L99P
CCGTGGAACACCCCCCTTCC



Top SDM
GCCCGTGAAAAAGCCAGGTA




CAAAC





294
MMLV L99P
GTTTGTACCTGGCTTTTTCA



Btm SDM
CGGGCGGAAGGGGGGTGTTC




CACGG





295
MMLV L99M
CCGTGGAACACCCCCCTTAT



Top SDM
GCCCGTGAAAAAGCCAGGTA




CAAAC





296
MMLV L99M
GTTTGTACCTGGCTTTTTCA



Btm SDM
CGGGCATAAGGGGGGTGTTC




CACGG





297
MMLV L99S
CCGTGGAACACCCCCCTTAG



Top SDM
CCCCGTGAAAAAGCCAGGTA




CAAAC





298
MMLV L99S
GTTTGTACCTGGCTTTTTCA



Btm SDM
CGGGGCTAAGGGGGGTGTTC




CACGG





299
MMLV L99T
CCGTGGAACACCCCCCTTAC



Top SDM
CCCCGTGAAAAAGCCAGGTA




CAAAC





300
MMLV L99T
GTTTGTACCTGGCTTTTTCA



Btm SDM
CGGGGGTAAGGGGGGTGTTC




CACGG





301
MMLV L99C
CCGTGGAACACCCCCCTTTG



Top SDM
CCCCGTGAAAAAGCCAGGTA




CAAAC





302
MMLV L99C
GTTTGTACCTGGCTTTTTCA



Btm SDM
CGGGGCAAAGGGGGGTGTTC




CACGG





303
MMLV L99F
CCGTGGAACACCCCCCTTTT



Top SDM
TCCCGTGAAAAAGCCAGGTA




CAAAC





304
MMLV L99F
GTTTGTACCTGGCTTTTTCA



Btm SDM
CGGGAAAAAGGGGGGTGTTC




CACGG





305
MMLV L99Y
CCGTGGAACACCCCCCTTTA



Top SDM
TCCCGTGAAAAAGCCAGGTA




CAAAC





306
MMLV L99Y
GTTTGTACCTGGCTTTTTCA



Btm SDM
CGGGATAAAGGGGGGTGTTC




CACGG





307
MMLV L99H
CCGTGGAACACCCCCCTTCA



Top SDM
TCCCGTGAAAAAGCCAGGTA




CAAAC





308
MMLV L99H
GTTTGTACCTGGCTTTTTCA



Btm
CGGGATGAAGGGGGG



SDM
TGTTCCACGG





309
MMLV L99W
CCGTGGAACACCCCCCTTTG



Top SDM
GCCCGTGAAAAAGCCAGGTA




CAAAC





310
MMLV L99W
GTTTGTACCTGGCTTTTTCA



Btm SDM
CGGGCCAAAGGGGGGTGTTC




CACGG





311
MMLV L99D
CCGTGGAACACCCCCCTTGA



Top SDM
TCCCGTGAAAAAGCCAGGTA




CAAAC





312
MMLV L99D
GTTTGTACCTGGCTTTTTCA



Btm SDM
CGGGATCAAGGGGGGTGTTC




CACGG





313
MMLV L99N
CCGTGGAACACCCCCCTTAA



Top SDM
CCCCGTGAAAAAGCCAGGTA




CAAAC





314
MMLV L99N
GTTTGTACCTGGCTTTTTCA



Btm SDM
CGGGGTTAAGGGGGGTGTTC




CACGG





315
MMLV L99Q
CCGTGGAACACCCCCCTTCA



Top SDM
GCCCGTGAAAAAGCCAGGTA




CAAAC





316
MMLV L99Q
GTTTGTACCTGGCTTTTTCA



Btm SDM
CGGGCTGAAGGGGGGTGTTC




CACGG





317
MMLV L99K
CCGTGGAACACCCCCCTTAA



Top SDM
ACCCGTGAAAAAGCCAGGTA




CAAAC





318
MMLV L99K
GTTTGTACCTGGCTTTTTCA



Btm SDM
CGGGTTTAAGGGGGGTGTTC




CACGG





319
MMLV E282G
AGAAGGTCAACGTTGGCTGA



Top SDM
CTGGCGCGCGTAAGGAGACC




GTAATG





320
MMLV E282G
CATTACGGTCTCCTTACGCG



Btm SDM
CGCCAGTCAGCCAACGTTGA




CCTTCT





321
MMLV E282L
AGAAGGTCAACGTTGGCTGA



Top SDM
CTCTGGCGCGTAAGGAGACC




GTAATG





322
MMLV E282L
CATTACGGTCTCCTTACGCG



Btm SDM
CCAGAGTCAGCCAACGTTGA




CCTTCT





323
MMLV E282I
AGAAGGTCAACGTTGGCTGA



Top SDM
CTATTGCGCGTAAGGAGACC




GTAATG





324
MMLV E282I
CATTACGGTCTCCTTACGCG



Btm SDM
CAATAGTCAGCCAACGTTGA




CCTTCT





325
MMLV E282V
AGAAGGTCAACGTTGGCTGA



Top SDM
CTGTGGCGCGTAAGGAGACC




GTAATG





326
MMLV E282V
CATTACGGTCTCCTTACGCG



Btm SDM
CCACAGTCAGCCAACGTTGA




CCTTCT





327
MMLV E282R
AGAAGGTCAACGTTGGCTGA



Top SDM
CTCCGGCGCGTAAGGAGACC




GTAATG





328
MMLV E282P
CATTACGGTCTCCTTACGCG



Btm
CCGGAGTCAGCCAAC



SDM
GTTGACCTTCT





329
MMLV E282M
AGAAGGTCAACGTTGGCTGA



Top SDM
CTATGGCGCGTAAGGAGACC




GTAATG





330
MMLV E282M
CATTACGGTCTCCTTACGCG



Btm SDM
CCATAGTCAGCCAACGTTGA




CCTTCT





331
MMLV E282S
AGAAGGTCAACGTTGGCTGA



Top SDM
CTAGCGCGCGTAAGGAGACC




GTAATG





332
MMLV E282S
CATTACGGTCTCCTTACGCG



Btm SDM
CGCTAGTCAGCCAACGTTGA




CCTTCT





333
MMLV E282T
AGAAGGTCAACGTTGGCTGA



Top SDM
CTACCGCGCGTAAGGAGACC




GTAATG





334
MMLV E282T
CATTACGGTCTCCTTACGCG



Btm SDM
CGGTAGTCAGCCAACGTTGA




CCTTCT





335
MMLV E282C
AGAAGGTCAACGTTGGCTGA



Top SDM
CTTGCGCGCGTAAGGAGACC




GTAATG





336
MMLV E282C
CATTACGGTCTCCTTACGCG



Btm SDM
CGCAAGTCAGCCAACGTTGA




CCTTCT





337
MMLV E282F
AGAAGGTCAACGTTGGCTGA



Top SDM
CTTTTGCGCGTAAGGAGACC




GTAATG





338
MMLV E282F
CATTACGGTCTCCTTACGCG



Btm SDM
CAAAAGTCAGCCAACGTTGA




CCTTCT





339
MMLV E282Y
AGAAGGTCAACGTTGGCTGA



Top SDM
CTTATGCGCGTAAGGAGACC




GTAATG





340
MMLV E282Y
CATTACGGTCTCCTTACGCG



Btm SDM
CATAAGTCAGCCAACGTTGA




CCTTCT





341
MMLV E282H
AGAAGGTCAACGTTGGCTGA



Top SDM
CTCATGCGCGTAAGGAGACC




GTAATG





342
MMLV E282H
CATTACGGTCTCCTTACGCG



Btm SDM
CATGAGTCAGCCAACGTTGA




CCTTCT





343
MMLV E282W
AGAAGGTCAACGTTGGCTGA



Top SDM
CTTGGGCGCGTAAGGAGACC




GTAATG





344
MMLV E282W
CATTACGGTCTCCTTACGCG



Btm SDM
CCCAAGTCAGCCAACGTTGA




CCTTCT





345
MMLV E282N
AGAAGGTCAACGTTGGCTGA



Top SDM
CTAACGCGCGTAAGGAGACC




GTAATG





346
MMLV E282N
CATTACGGTCTCCTTACGCG



Btm SDM
CGTTAGTCAGCCAACGTTGA




CCTTCT





347
MMLV E282Q
AGAAGGTCAACGTTGGCTGA



Top SDM
CTCAGGCGCGTAAGGAGACC




GTAATG





348
MMLV E282Q
CATTACGGTCTCCTTACGCG



Btm
CCTGAGTCAGCCAAC



SDM
GTTGACCTTCT





349
MMLV E282K
AGAAGGTCAACGTTGGCTGA



Top SDM
CTAAAGCGCGTAAGGAGACC




GTAATG





350
MMLV E282K
CATTACGGTCTCCTTACGCG



Btm SDM
CTTTAGTCAGCCAACGTTGA




CCTTCT





351
MMLV R298G
GCCTACGCCTAAGACGCCAG



Top SDM
GCCAGTTGCGTGAATTTTTG




GGCACAG





352
MMLV R298G
CTGTGCCCAAAAATTCACGC



Btm SDM
AACTGGCCTGGCGTCTTAGG




CGTAGGC





353
MMLV R298L
GCCTACGCCTAAGACGCCAC



Top SDM
TGCAGTTGCGTGAATTTTTG




GGCACAG





354
MMLV R298L
CTGTGCCCAAAAATTCACGC



Btm SDM
AACTGCAGTGGCGTCTTAGG




CGTAGGC





355
MMLV R298I
GCCTACGCCTAAGACGCCAA



Top SDM
TTCAGTTGCGTGAATTTTTG




GGCACAG





356
MMLV R298I
CTGTGCCCAAAAATTCACGC



Btm SDM
AACTGAATTGGCGTCTTAGG




CGTAGGC





357
MMLV R298V
GCCTACGCCTAAGACGCCAG



Top SDM
TGCAGTTGCGTGAATTTTTG




GGCACAG





358
MMLV R298V
CTGTGCCCAAAAATTCACGC



Btm SDM
AACTGCACTGGCGTCTTAGG




CGTAGGC





359
MMLV R298P
GCCTACGCCTAAGACGCCAC



Top SDM
CGCAGTTGCGTGAATTTTTG




GGCACAG





360
MMLV R298P
CTGTGCCCAAAAATTCACGC



Btm SDM
AACTGCGGTGGCGTCTTAGG




CGTAGGC





361
MMLV R298M
GCCTACGCCTAAGACGCCAA



Top SDM
TGCAGTTGCGTGAATTTTTG




GGCACAG





362
MMLV R298M
CTGTGCCCAAAAATTCACGC



Btm SDM
AACTGCATTGGCGTCTTAGG




CGTAGGC





363
MMLV R298S
GCCTACGCCTAAGACGCCAA



Top SDM
GCCAGTTGCGTGAATTTTTG




GGCACAG





364
MMLV R298S
CTGTGCCCAAAAATTCACGC



Btm SDM
AACTGGCTTGGCGTCTTAGG




CGTAGGC





365
MMLV R298T
GCCTACGCCTAAGACGCCAA



Top SDM
CCCAGTTGCGTGAATTTTTG




GGCACAG





366
MMLV R298T
CTGTGCCCAAAAATTCACGC



Btm SDM
AACTGGGTTGGCGTCTTAGG




CGTAGGC





367
MMLV R298C
GCCTACGCCTAAGACGCCAT



Top SDM
GCCAGTTGCGTGAATTTTTG




GGCACAG





368
MMLV R298C
CTGTGCCCAAAAATTCACGC



Btm
AACTGGCATGGCGTC



SDM
TTAGGCGTAGGC





369
MMLV R298F
GCCTACGCCTAAGACGCCAT



Top SDM
TTCAGTTGCGTGAATTTTTG




GGCACAG





370
MMLV R298F
CTGTGCCCAAAAATTCACGC



Btm SDM
AACTGAAATGGCGTCTTAGG




CGTAGGC





371
MMLV R298Y
GCCTACGCCTAAGACGCCAT



Top SDM
ATCAGTTGCGTGAATTTTTG




GGCACAG





372
MMLV R298Y
CTGTGCCCAAAAATTCACGC



Btm SDM
AACTGATATGGCGTCTTAGG




CGTAGGC





373
MMLV R298H
GCCTACGCCTAAGACGCCAC



Top SDM
ATCAGTTGCGTGAATTTTTG




GGCACAG





374
MMLV R298H
CTGTGCCCAAAAATTCACGC



Btm SDM
AACTGATGTGGCGTCTTAGG




CGTAGGC





375
MMLV R298W
GCCTACGCCTAAGACGCCAT



Top SDM
GGCAGTTGCGTGAATTTTTG




GGCACAG





376
MMLV R298W
CTGTGCCCAAAAATTCACGC



Btm SDM
AACTGCCATGGCGTCTTAGG




CGTAGGC





377
MMLV R298D
GCCTACGCCTAAGACGCCAG



Top SDM
ATCAGTTGCGTGAATTTTTG




GGCACAG





378
MMLV R298D
CTGTGCCCAAAAATTCACGC



Btm SDM
AACTGATCTGGCGTCTTAGG




CGTAGGC





379
MMLV R298N
GCCTACGCCTAAGACGCCAA



Top SDM
ACCAGTTGCGTGAATTTTTG




GGCACAG





380
MMLV R298N
CTGTGCCCAAAAATTCACGC



Btm SDM
AACTGGTTTGGCGTCTTAGG




CGTAGGC





381
MMLV R298Q
GCCTACGCCTAAGACGCCAC



Top SDM
AGCAGTTGCGTGAATTTTTG




GGCACAG





382
MMLV R298Q
CTGTGCCCAAAAATTCACGC



Btm SDM
AACTGCTGTGGCGTCTTAGG




CGTAGGC





383
MMLV I61R/Q68R
AGGCAACGTCTACACCTGTC



Top SDM
TCTCGTAAACAGTACCCCAT




GAGTCGTGAGGCCCGCCTGG




GG





384
MMLV I61R/Q68R
CCCCAGGCGGGCCTCACGAC



Btm SDM
TCATGGGGTACTGTTTACGA




GAGACAGGTGTAGACGTTGC




CT





385
MMLV I61K/Q68R
AGGCAACGTCTACACCTGTC



Top SDM
TCTAAAAAACAGTACCCCAT




GAGTCGTGAGG





386
MMLV I61K/Q68R
CCTCACGACTCATGGGGTAC



Btm SDM
TGTTTTTTAGAGACAGGTGT




AGACGTTGCCT





387
MMLV I61M/Q68R
AGGCAACGTCTACACCTGTC



Top SDM
TCTATGAAACAGTACCCCAT




GAGTCGTGAGG





388
MMLV I61M/Q68R
CCTCACGACTCATGGGGTAC




TGTTTCATAGAGACA



Btm SDM
GGTGTAGACGTTGCCT





389
MMLV I61M/Q68I
AGGCAACGTCTACACCTGTC



Top SDM
TCTATGAAACAGTACCCCAT




GAGTATTGAGGCC





390
MMLV I61M/Q68I
GGCCTCAATACTCATGGGGT



Btm SDM
ACTGTTTCATAGAGACAGGT




GTAGACGTTGCCT





393
MMLV 5′ Primer
GTCTCTATCAAACAGTACCC




CATGGCGCAAGAGGCCCGCC




TGGG





394
MMLV 3’ Primer
GTCTCTATCAAACAGTACCC




CATGCGTCAAGAGGCCCGCC




TGGG





395
MMLV G73A
CATGAGTCAAGAGGCCCGCG



Top SDM
AGGGGATTAAGCCACATATT




CAGCG





396
MMLV G73R
GAGTCAAGAGGCCCGCCTGG



Top SDM
CGATTAAGCCACATATTCAG




CGCTTGC





397
MMLV G73E
GAGTCAAGAGGCCCGCCTGC



Top SDM
GTATTAAGCCACATATTCAG




CGCTTGC





398
MMLV P76A
GAGTCAAGAGGCCCGCCTGG



Top SDM
AGATTAAGCCACATATTCAG




CGCTTGC





399
MMLV P76R
GGCCCGCCTGGGGATTAAGG



Top SDM
CGCATATTCAGCGCTTGCTG




GACC





400
MMLV P76E
GGCCCGCCTGGGGATTAAGC



Top SDM
GTCATATTCAGCGCTTGCTG




GACC





401
MMLV H77A
GGCCCGCCTGGGGATTAAGG



Top SDM
AGCATATTCAGCGCTTGCTG




GACC





402
MMLV H77R
CCGCCTGGGGATTAAGCCAG



Top SDM
CGATTCAGCGCTTGCTGGAC




CAG





403
MMLV H77E
CCGCCTGGGGATTAAGCCAC



Top SDM
GTATTCAGCGCTTGCTGGAC




CAG





404
MMLV L82A
CCGCCTGGGGATTAAGCCAG



Top SDM
AGATTCAGCGCTTGCTGGAC




CAG





405
MMLV L82R
GATTAAGCCACATATTCAGC



Top SDM
GCTTGGCGGACCAGGGGATC




TTGGTCC





406
MMLV L82E
GATTAAGCCACATATTCAGC



Top SDM
GCTTGCGTGACCAGGGGATC




TTGGTCC





407
MMLV D83A
GATTAAGCCACATATTCAGC



Top SDM
GCTTGGAGGACCAGGGGATC




TTGGTCC





408
MMLV D83R
GCCACATATTCAGCGCTTGC



Top SDM
TGGCGCAGGGGATCTTGGTC




CCATG





409
MMLV D83E
GCCACATATTCAGCGCTTGC



Top SDM
TGCGTCAGGGGATCTTGGTC




CCATG





410
MMLV I125A
GCCACATATTCAGCGCTTGC



Top
TGGAGCAGGGGATCT



SDM
TGGTCCCATG





411
MMLV I125R
AGGTCAACAAACGCGTAGAA



Top SDM
GACGCGCATCCGACTGTACC




TAATCCTTATAAT





412
MMLV I125E
AGGTCAACAAACGCGTAGAA



Top SDM
GACCGTCATCCGACTGTACC




TAATCCTTATAAT





413
MMLV V129A
AGGTCAACAAACGCGTAGAA



Top SDM
GACGAGCATCCGACTGTACC




TAATCCTTATAAT





414
MMLV V129R
GCGTAGAAGACATCCATCCG



Top SDM
ACTGCGCCTAATCCTTATAA




TCTGTTATCAGGC





415
MMLV V129E
GCGTAGAAGACATCCATCCG



Top SDM
ACTCGTCCTAATCCTTATAA




TCTGTTATCAGGC





416
MMLV LI 98A
GCGTAGAAGACATCCATCCG



Top SDM
ACTGAGCCTAATCCTTATAA




TCTGTTATCAGGC





417
MMLV LI98R
AGGGCTTTAAAAACAGCCCC



Top SDM
ACAGCGTTCGATGAAGCACT




TCACCGTGA





418
MMLV L198E
AGGGCTTTAAAAACAGCCCC



Top SDM
ACACGTTTCGATGAAGCACT




TCACCGTGA





419
MMLV E201A
AGGGCTTTAAAAACAGCCCC



Top SDM
ACAGAGTTCGATGAAGCACT




TCACCGTGA





420
MMLV E201R
TTTAAAAACAGCCCCACATT



Top SDM
GTTCGATGCGGCACTTCACC




GTGACTTAGCAG





421
MMLV E201D
TTTAAAAACAGCCCCACATT



Top SDM
GTTCGATCGTGCACTTCACC




GTGACTTAGCAG





422
MMLV R205A
TTTAAAAACAGCCCCACATT



Top SDM
GTTCGATGATGCACTTCACC




GTGACTTAGCAG





423
MMLV R205K
CACATTGTTCGATGAAGCAC



Top SDM
TTCACGCGGACTTAGCAGAC




TTCCGTATCCA





424
MMLV R205E
CACATTGTTCGATGAAGCAC



Top SDM
TTCACAAAGACTTAGCAGAC




TTCCGTATCCA





425
MMLV D209A
GATGAAGCACTTCACCGTGA



Top SDM
CTTAGAGGACTTCCGTATCC




AACACCCAG





426
MMLV D209R
AAGCACTTCACCGTGACTTA



Top SDM
GCAGCGTTCCGTATCCAACA




CCCAGACTT





427
MMLV D209E
AAGCACTTCACCGTGACTTA



Top SDM
GCACGTTTCCGTATCCAACA




CCCAGACTT





428
MMLV F210A
AAGCACTTCACCGTGACTTA



Top SDM
GCAGAGTTCCGTATCCAACA




CCCAGACTT





429
MMLV F2I0R
CACTTCACCGTGACTTAGCA



Top SDM
GACGCGCGTATCCAACACCC




AGACTTAATTC





430
MMLV F210E
CACTTCACCGTGACTTAGCA



Top
GACCGTCGTATCCAA



SDM
CACCCAGACTTAATTC





431
MMLV R211A
CACTTCACCGTGACTTAGCA



Top SDM
GACGAGCGTATCCAACACCC




AGACTTAATTC





432
MMLV R211K
TTCACCGTGACTTAGCAGAC



Top SDM
TTCGCGATCCAACACCCAGA




CTTAATTCTGTTA





433
MMLV R21 IE
TTCACCGTGACTTAGCAGAC



Top SDM
TTCAAAATCCAACACCCAGA




CTTAATTCTGTTA





434
MMLV 1212A
TTCACCGTGACTTAGCAGAC



Top SDM
TTCGAGATCCAACACCCAGA




CTTAATTCTGTTA





435
MMLV I212R
CCGTGACTTAGCAGACTTCC



Top SDM
GTGCGCAACACCCAGACTTA




ATTCTGTTACAG





436
MMLV I212E
CCGTGACTTAGCAGACTTCC



Top SDM
GTCGTCAACACCCAGACTTA




ATTCTGTTACAG





437
MMLV Q213A
CCGTGACTTAGCAGACTTCC



Top SDM
GTGAGCAACACCCAGACTTA




ATTCTGTTACAG





438
MMLV Q213R
GTGACTTAGCAGACTTCCGT



Top SDM
ATCGCGCACCCAGACTTAAT




TCTGTTACAGTAT





439
MMLV Q213E
GTGACTTAGCAGACTTCCGT



Top SDM
ATCCGTCACCCAGACTTAAT




TCTGTTACAGTAT





440
MMLV K348A
GTGACTTAGCAGACTTCCGT



Top SDM
ATCGAGCACCCAGACTTAAT




TCTGTTACAGTAT





441
MMLV K348R
AGCAAAAGGCGTATCAGGAG



Top SDM
ATCGCGCAAGCTTTGTTGAC




CGCACCC





442
MMLV K348E
AGCAAAAGGCGTATCAGGAG



Top SDM
ATCCGTCAAGCTTTGTTGAC




CGCACCC





443
MMLV L352A
AGCAAAAGGCGTATCAGGAG



Top SDM
ATCGAGCAAGCTTTGTTGAC




CGCACCC





444
MMLV L352R
CGTATCAGGAGATCAAACAA



Top SDM
GCTTTGGCGACCGCACCCGC




GTTGGG





445
MMLV L352E
CGTATCAGGAGATCAAACAA



Top SDM
GCTTTGCGTACCGCACCCGC




GTTGGG





446
MMLV K285A
CGTATCAGGAGATCAAACAA



Top SDM
GCTTTGGAGACCGCACCCGC




GTTGGG





447
MMLV K285R
GTTGGCTGACTGAAGCGCGT



Top SDM
GCGGAGACCGTAATGGGGCA




GC





448
MMLV K285E
GTTGGCTGACTGAAGCGCGT



Top SDM
CGTGAGACCGTAATGGGGCA




GC





449
MMLV Q299A
GTTGGCTGACTGAAGCGCGT



Top SDM
GAGGAGACCGTAATGGGGCA




GC





450
MMLV Q299R
TACGCCTAAGACGCCACGCG




CGTTGCGTGAATTTT



Top SDM
TGGGCACAGC





451
MMLV Q299E
TACGCCTAAGACGCCACGCC



Top SDM
GTTTGCGTGAATTTTTGGGC




ACAGC





452
MMLV G308A
TACGCCTAAGACGCCACGCG



Top SDM
AGTTGCGTGAATTTTTGGGC




ACAGC





453
MMLV G308R
GCGTGAATTTTTGGGCACAG



Top SDM
CGGCGTTCTGTCGTTTATGG




ATTCCTGGG





454
MMLV G308E
GCGTGAATTTTTGGGCACAG



Top SDM
CGCGTTTCTGTCGTTTATGG




ATTCCTGGG





455
MMLV R311A
GCGTGAATTTTTGGGCACAG



Top SDM
CGGAGTTCTGTCGTTTATGG




ATTCCTGGG





456
MMLV R311K
GGGCACAGCGGGATTCTGTG



Top SDM
CGTTATGGATTCCTGGGTTC




GCTGA





457
MMLV R311E
GGGCACAGCGGGATTCTGTA



Top SDM
AATTATGGATTCCTGGGTTC




GCTGA





458
MMLV Y271A
GGGCACAGCGGGATTCTGTG



Top SDM
AGTTATGGATTCCTGGGTTC




GCTGA





459
MMLV Y271R
GTCAAAAACAGGTAAAGTAC



Top SDM
CTTGGGGCGTTGCTGAAAGA




AGGTCAACGTTGG





460
MMLV Y271E
GTCAAAAACAGGTAAAGTAC



Top SDM
CTTGGGCGTTTGCTGAAAGA




AGGTCAACGTTGG





461
MMLV L280A
GTCAAAAACAGGTAAAGTAC



Top SDM
CTTGGGGAGTTGCTGAAAGA




AGGTCAACGTTGG





462
MMLV L280R
TGCTGAAAGAAGGTCAACGT



Top SDM
TGGGCGACTGAAGCGCGTAA




GGAGACC





463
MMLV L280E
TGCTGAAAGAAGGTCAACGT



Top SDM
TGGCGTACTGAAGCGCGTAA




GGAGACC





464
MMLV L357A
TGCTGAAAGAAGGTCAACGT



Top SDM
TGGGAGACTGAAGCGCGTAA




GGAGACC





465
MMLV L357R
TTTGTTGACCGCACCCGCGG



Top SDM
CGGGTCTTCCGGATTTAACC




AAGCC





466
MMLV L357E
TTTGTTGACCGCACCCGCGC



Top SDM
GTGGTCTTCCGGATTTAACC




AAGCC





467
MMLV T328A
TTTGTTGACCGCACCCGCGG



Top SDM
AGGGTCTTCCGGATTTAACC




AAGCC





468
MMLV T328R
CTGCACCCCTGTACCCCTTA



Top SDM
GCGAAAACAGGGACGCTTTT




CAACTGG





469
MMLV T328E
CTGCACCCCTGTACCCCTTA



Top SDM
CGTAAAACAGGGACGCTTTT




CAACTGG





470
MMLV G331A
CTGCACCCCTGTACCCCTTA




GAGAAAACAGGGACG



Top SDM
CTTTTCAACTGG





471
MMLV G331R
CCCCTGTACCCCTTAACAAA



Top SDM
AACAGCGACGCTTTTCAACT




GGGGGCC





472
MMLV G331E
CCCCTGTACCCCTTAACAAA



Top SDM
AACACGTACGCTTTTCAACT




GGGGGCC





473
MMLV T332A
CCCCTGTACCCCTTAACT'L



Top SDM
AAAACAGAGACGCTTTTCAA




CTGGGGGCC





474
MMLV T332R
CTGTACCCCTTAACAAAAAC



Top SDM
AGGGGCGCTTTTCAACTGGG




GGCCAGAC





475
MMLV T332E
CTGTACCCCTTAACAAAAAC



Top SDM
AGGGCGTCTTTTCAACTGGG




GGCCAGAC





476
MMLV N335A
CTGTACCCCTTAACAAAAAC



Top SDM
AGGGGAGCTTTTCAACTGGG




GGCCAGAC


All
MMLV N335R
CCTTAACAAAAACAGGGACG



Top SDM
CTTTTCGCGTGGGGGCCAGA




CCAGCAAA





478
MMLV N335E
CCTTAACAAAAACAGGGACG



Top SDM
CTTTTCCGTTGGGGGCCAGA




CCAGCAAA





479
MMLV E367A
CTTCCGGATTTAACCAAGCC



Top SDM
CTTTGCGCTGTTCGTTGATG




AAAAACAGGGATAT





480
MMLV E367R
CTTCCGGATTTAACCAAGCC



Top SDM
CTTTCGTCTGTTCGTTGATG




AAAAACAGGGATAT





481
MMLV E367D
CTTCCGGATTTAACCAAGCC



Top SDM
CTTTGATCTGTTCGTTGATG




AAAAACAGGGATAT





482
MMLV F369A
GATTTAACCAAGCCCTTTGA



Top SDM
GCTGGCGGTTGATGAAAAAC




AGGGATATGCAAAAG





483
MMLV F369R
GATTTAACCAAGCCCTTTGA



Top SDM
GCTGCGTGTTGATGAAAAAC




AGGGATATGCAAAAG





484
MMLV F369E
GATTTAACCAAGCCCTTTGA



Top SDM
GCTGGAGGTTGATGAAAAAC




AGGGATATGCAAAAG





485
MMLV R389A
CCCAAAAGTTAGGCCCGTGG



Top SDM
GCGCGCCCTGTTGCTTACTT




GAGTAA





486
MMLV R389K
CCCAAAAGTTAGGCCCGTGG



Top SDM
AAACGCCCTGTTGCTTACTT




GAGTAA





487
MMLV R389E
CCCAAAAGTTAGGCCCGTGG



Top SDM
GAGCGCCCTGTTGCTTACTT




GAGTAA





488
MMLV V433A
AGTTGACGATGGGTCAACCC



Top SDM
TTAGCGATCTTGGCTCCACA




TGCTGTAGA





489
MMLV V433R
AGTTGACGATGGGTCAACCC



Top SDM
TTACGTATCTTGGCTCCACA




TGCTGTAGA





490
MMLV V433E
AGTTGACGATGGGTCAACCC



Top
TTAGAGATCTTGGCT



SDM
CCACATGCTGTAGA





491
MMLV V476A
GGATCGTGTACAATTTGGAC



Top SDM
CAGTTGCGGCTTTGAATCCA




GCTACTTTGCTTC





492
MMLV V476R
GGATCGTGTACAATTTGGAC



Top SDM
CAGTTCGTGCTTTGAATCCA




GCTACTTTGCTTC





493
MMLV V476E
GGATCGTGTACAATTTGGAC



Top SDM
CAGTTGAGGCTTTGAATCCA




GCTACTTTGCTTC





494
MMLV 1593A
CGTTATGCTTTTGCAACAGC



Top SDM
GCATGCGCATGGCGAAATTT




ACCGCCGC





495
MMLV 1593R
CGTTATGCTTTTGCAACAGC



Top SDM
GCATCGTCATGGCGAAATTT




ACCGCCGC





496
MMLV I593E
CGTTATGCTTTTGCAACAGC



Top SDM
GCATGAGCATGGCGAAATTT




ACCGCCGC





497
MMLV E596A
GCAACAGCGCATATCCATGG



Top SDM
CGCGATTTACCGCCGCCGTG




GTC





498
MMLV E596R
GCAACAGCGCATATCCATGG



Top SDM
CCGTATTTACCGCCGCCGTG




GTC





499
MMLV E596D
GCAACAGCGCATATCCATGG



Top SDM
CGATATTTACCGCCGCCGTG




GTC





500
MMLV 1597A
CAACAGCGCATATCCATGGC



Top SDM
GAAGCGTACCGCCGCCGTGG




TCTG





501
MMLV 1597R
CAACAGCGCATATCCATGGC



Top SDM
GAACGTTACCGCCGCCGTGG




TCTG





502
MMLV I597E
CAACAGCGCATATCCATGGC



Top SDM
GAAGAGTACCGCCGCCGTGG




TCTG





503
MMLV R650A
AGCGGAGGCTCGTGGAAACG



Top SDM
CGATGGCGGACCAAGCTGCC




C





504
MMLV R650K
AGCGGAGGCTCGTGGAAACA



Top SDM
AAATGGCGGACCAAGCTGCC




C





505
MMLV R650E
AGCGGAGGCTCGTGGAAACG



Top SDM
AGATGGCGGACCAAGCTGCC




C





506
MMLV Q654A
GTGGAAACCGTATGGCGGAC



Top SDM
GCGGCTGCCCGTAAGGCGGC





507
MMLV Q654R
GTGGAAACCGTATGGCGGAC



Top SDM
CGTGCTGCCCGTAAGGCGGC





508
MMLV Q654E
GTGGAAACCGTATGGCGGAC



Top SDM
GAGGCTGCCCGTAAGGCGGC





509
MMLV R657A
TATGGCGGACCAAGCTGCCG



Top SDM
CGAAGGCGGCGATCACAGAG




AC





510
MMLV R657K
TATGGCGGACCAAGCTGCCA




AAAAGGCGGCGATCA



Top SDM
CAGAGAC





511
MMLV R657E
TATGGCGGACCAAGCTGCCG



Top SDM
AGAAGGCGGCGATCACAGAG




AC





512
MMLV G73A
GCAAGCGCTGAATATGTGGC



Btm SDM
TTAATCGCCAGGCGGGCCTC




TTGACTC





513
MMLV G73R
GCAAGCGCTGAATATGTGGC



Btm SDM
TTAATACGCAGGCGGGCCTC




TTGACTC





514
MMLV G73E
GCAAGCGCTGAATATGTGGC



Btm SDM
TTAATCTCCAGGCGGGCCTC




TTGACTC





515
MMLV P76A
GGTCCAGCAAGCGCTGAATA



Btm SDM
TGCGCCTTAATCCCCAGGCG




GGCC





516
MMLV P76R
GGTCCAGCAAGCGCTGAATA



Btm SDM
TGACGCTTAATCCCCAGGCG




GGCC





517
MMLV P76E
GGTCCAGCAAGCGCTGAATA



Btm SDM
TGCTCCTTAATCCCCAGGCG




GGCC





518
MMLV H77A
CTGGTCCAGCAAGCGCTGAA



Btm SDM
TCGCTGGCTTAATCCCCAGG




CGG





519
MMLV H77R
CTGGTCCAGCAAGCGCTGAA



Btm SDM
TACGTGGCTTAATCCCCAGG




CGG





520
MMLV H77E
CTGGTCCAGCAAGCGCTGAA



Btm SDM
TCTCTGGCTTAATCCCCAGG




CGG





521
MMLV L82A
GGACCAAGATCCCCTGGTCC



Btm SDM
GCCAAGCGCTGAATATGTGG




CTTAATC





522
MMLV L82R
GGACCAAGATCCCCTGGTCA



Btm SDM
CGCAAGCGCTGAATATGTGG




CTTAATC





523
MMLV L82E
GGACCAAGATCCCCTGGTCC



Btm SDM
TCCAAGCGCTGAATATGTGG




CTTAATC





524
MMLV D83A
CATGGGACCAAGATCCCCTG



Btm SDM
CGCCAGCAAGCGCTGAATAT




GTGGC





525
MMLV D83R
CATGGGACCAAGATCCCCTG



Btm SDM
ACGCAGCAAGCGCTGAATAT




GTGGC





526
MMLV D83E
CATGGGACCAAGATCCCCTG



Btm SDM
CTCCAGCAAGCGCTGAATAT




GTGGC





527
MMLV I125A
ATTATAAGGATTAGGTACAG



Btm SDM
TCGGATGCGCGTCTTCTACG




CGTTTGTTGACCT





528
MMLV I125R
ATTATAAGGATTAGGTACAG



Btm SDM
TCGGATGACGGTCTTCTACG




CGTTTGTTGACCT





529
MMLV I125E
ATTATAAGGATTAGGTACAG



Btm SDM
TCGGATGCTCGTCTTCTACG




CGTTTGTTGACCT





530
MMLV VI29A
GCCTGATAACAGATTATAAG




GATTAGGCGCAGTCG



Btm SDM
GATGGATGTCTTCTACGC





531
MMLV V129R
GCCTGATAACAGATTATAAG



Btm SDM
GATTAGGACGAGTCGGATGG




ATGTCTTCTACGC





532
MMLV V129E
GCCTGATAACAGATTATAAG



Btm SDM
GATTAGGCTCAGTCGGATGG




ATGTCTTCTACGC





533
MMLV L198A
TCACGGTGAAGTGCTTCATC



Btm SDM
GAACGCTGTGGGGCTGTTTT




TAAAGCCCT





534
MMLV L198R
TCACGGTGAAGTGCTTCATC



Btm SDM
GAAACGTGTGGGGCTGTTTT




TAAAGCCCT





535
MMLV L198E
TCACGGTGAAGTGCTTCATC



Btm SDM
GAACTCTGTGGGGCTGTTTT




TAAAGCCCT





536
MMLV E201A
CTGCTAAGTCACGGTGAAGT



Btm SDM
GCCGCATCGAACAATGTGGG




GCTGTTTTTAAA





537
MMLV E201R
CTGCTAAGTCACGGTGAAGT



Btm SDM
GCACGATCGAACAATGTGGG




GCTGTTTTTAAA





538
MMLV E201D
CTGCTAAGTCACGGTGAAGT



Btm SDM
GCATCATCGAACAATGTGGG




GCTGTTTTTAAA





539
MMLV R205A
TGGATACGGAAGTCTGCTAA



Btm SDM
GTCCGCGTGAAGTGCTTCAT




CGAACAATGTG





540
MMLV R205K
TGGATACGGAAGTCTGCTAA



Btm SDM
GTCTTTGTGAAGTGCTTCAT




CGAACAATGTG





541
MMLV R205E
TGGATACGGAAGTCTGCTAA



Btm SDM
GTCCTCGTGAAGTGCTTCAT




CGAACAATGTG





542
MMLV D209A
AAGTCTGGGTGTTGGATACG



Btm SDM
GAACGCTGCTAAGTCACGGT




GAAGTGCTT





543
MMLV D209R
AAGTCTGGGTGTTGGATACG



Btm SDM
GAAACGTGCTAAGTCACGGT




GAAGTGCTT





544
MMLV D209E
AAGTCTGGGTGTTGGATACG



Btm SDM
GAACTCTGCTAAGTCACGGT




GAAGTGCTT





545
MMLV F210A
GAATTAAGTCTGGGTGTTGG



Btm SDM
ATACGCGCGTCTGCTAAGTC




ACGGTGAAGTG





546
MMLV F210R
GAATTAAGTCTGGGTGTTGG



Btm SDM
ATACGACGGTCTGCTAAGTC




ACGGTGAAGTG





547
MMLV F210E
GAATTAAGTCTGGGTGTTGG



Btm SDM
ATACGCTCGTCTGCTAAGTC




ACGGTGAAGTG





548
MMLV R211A
TAACAGAATTAAGTCTGGGT



Btm SDM
GTTGGATCGCGAAGTCTGCT




AAGTCACGGTGAA





549
MMLV R211K
TAACAGAATTAAGTCTGGGT



Btm SDM
GTTGGATTTTGAAGTCTGCT




AAGTCACGGTGAA





550
MMLV R211E
TAACAGAATTAAGTCTGGGT



Btm SDM
GTTGGATCTCGAAGT




CTGCTAAGTCACGGTGAA





551
MMLV I2I2A
CTGTAACAGAATTAAGTCTG



Btm SDM
GGTGTTGCGCACGGAAGTCT




GCTAAGTCACGG





552
MMLV 1212R
CTGTAACAGAATTAAGTCTG



Btm SDM
GGTGTTGACGACGGAAGTCT




GCTAAGTCACGG





553
MMLV 1212E
CTGTAACAGAATTAAGTCTG



Btm SDM
GGTGTTGCTCACGGAAGTCT




GCTAAGTCACGG





554
MMLV Q213A
ATACTGTAACAGAATTAAGT



Btm SDM
CTGGGTGCGCGATACGGAAG




TCTGCTAAGTCAC





555
MMLV Q213R
ATACTGTAACAGAATTAAGT



Btm SDM
CTGGGTGACGGATACGGAAG




TCTGCTAAGTCAC





556
MMLV Q213E
ATACTGTAACAGAATTAAGT



Btm SDM
CTGGGTGCTCGATACGGAAG




TCTGCTAAGTCAC





557
MMLV K348A
GGGTGCGGTCAACAAAGCTT



Btm SDM
GCGCGATCTCCTGATACGCC




TTTTGCT





558
MMLV K348R
GGGTGCGGTCAACAAAGCTT



Btm SDM
GACGGATCTCCTGATACGCC




TTTTGCT





559
MMLV K348E
GGGTGCGGTCAACAAAGCTT



Btm SDM
GCTCGATCTCCTGATACGCC




TTTTGCT





560
MMLV L352A
CCCAACGCGGGTGCGGTCGC



Btm SDM
CAAAGCTTGTTTGATCTCCT




GATACG





561
MMLV L352R
CCCAACGCGGGTGCGGTACG



Btm SDM
CAAAGCTTGTTTGATCTCCT




GATACG





562
MMLV L352E
CCCAACGCGGGTGCGGTCTC



Btm SDM
CAAAGCTTGTTTGATCTCCT




GATACG





563
MMLV K285A
GCTGCCCCATTACGGTCTCC



Btm SDM
GCACGCGCTTCAGTCAGCCA




AC





564
MMLV K285R
GCTGCCCCATTACGGTCTCA



Btm SDM
CGACGCGCTTCAGTCAGCCA




AC





565
MMLV K285E
GCTGCCCCATTACGGTCTCC



Btm SDM
TCACGCGCTTCAGTCAGCCA




AC





566
MMLV Q299A
GCTGTGCCCAAAAATTCACG



Btm SDM
CAACGCGCGTGGCGTCTTAG




GCGTA





567
MMLV Q299R
GCTGTGCCCAAAAATTCACG



Btm SDM
CAAACGGCGTGGCGTCTTAG




GCGTA





568
MMLV Q299E
GCTGTGCCCAAAAATTCACG



Btm SDM
CAACTCGCGTGGCGTCTTAG




GCGTA





569
MMLV G308A
CCCAGGAATCCATAAACGAC



Btm SDM
AGAACGCCGCTGTGCCCAAA




AATTCACGC





570
MMLV G308R
CCCAGGAATCCATAAACGAC




AGAAACGCGCTGTGC



Btm SDM
CCAAAAATTCACGC





571
MMLV G308E
CCCAGGAATCCATAAACGAC



Btm SDM
AGAACTCCGCTGTGCCCAAA




AATTCACGC





572
MMLV R311A
TCAGCGAACCCAGGAATCCA



Btm SDM
TAACGCACAGAATCCCGCTG




TGCCC





573
MMLV R311K
TCAGCGAACCCAGGAATCCA



Btm SDM
TAATTTACAGAATCCCGCTG




TGCCC





574
MMLV R311E
TCAGCGAACCCAGGAATCCA



Btm SDM
TAACTCACAGAATCCCGCTG




TGCCC





575
MMLV Y271A
CCAACGTTGACCTTCTTTCA



Btm SDM
GCAACGCCCCAAGGTACTTT




ACCTGTTTTTGAC





576
MMLV Y271R
CCAACGTTGACCTTCTTTCA



Btm SDM
GCAAACGCCCAAGGTACTTT




ACCTGTTTTTGAC





577
MMLV Y271E
CCAACGTTGACCTTCTTTCA



Btm SDM
GCAACTCCCCAAGGTACTTT




ACCTGTTTTTGAC





578
MMLV L280A
GGTCTCCTTACGCGCTTCAG



Btm SDM
TCGCCCAACGTTGACCTTCT




TTCAGCA





579
MMLV L280R
GGTCTCCTTACGCGCTTCAG



Btm SDM
TACGCCAACGTTGACCTTCT




TTCAGCA





580
MMLV L280E
GGTCTCCTTACGCGCTTCAG



Btm SDM
TCTCCCAACGTTGACCTTCT




TTCAGCA





581
MMLV L357A
GGCTTGGTTAAATCCGGAAG



Btm SDM
ACCCGCCGCGGGTGCGGTCA




ACAAA





582
MMLV L357R
GGCTTGGTTAAATCCGGAAG



Btm SDM
ACCACGCGCGGGTGCGGTCA




ACAAA





583
MMLV L357E
GGCTTGGTTAAATCCGGAAG



Btm SDM
ACCCTCCGCGGGTGCGGTCA




ACAAA





584
MMLV T328A
CCAGTTGAAAAGCGTCCCTG



Btm SDM
TTTTCGCTAAGGGGTACAGG




GGTGCAG





585
MMLV T328R
CCAGTTGAAAAGCGTCCCTG



Btm SDM
TTTTACGTAAGGGGTACAGG




GGTGCAG





586
MMLV T328E
CCAGTTGAAAAGCGTCCCTG



Btm SDM
TTTTCTCTAAGGGGTACAGG




GGTGCAG





587
MMLV G331A
GGCCCCCAGTTGAAAAGCGT



Btm SDM
CGCTGTTTTTGTTAAGGGGT




ACAGGGG





588
MMLV G331R
GGCCCCCAGTTGAAAAGCGT



Btm SDM
ACGTGTTTTTGTTAAGGGGT




ACAGGGG





589
MMLV G331E
GGCCCCCAGTTGAAAAGCGT



Btm SDM
CTCTGTTTTTGTTAAGGGGT




ACAGGGG





590
MMLV T332A
GTCTGGCCCCCAGTTGAAAA




GCGCCCCTGTTTTTG



Btm SDM
TTAAGGGGTACAG





591
MMLV T332R
GTCTGGCCCCCAGTTGAAAA



Btm SDM
GACGCCCTGTTTTTGTTAAG




GGGTACAG





592
MMLV T332E
GTCTGGCCCCCAGTTGAAAA



Btm SDM
GCTCCCCTGTTTTTGTTAAG




GGGTACAG





593
MMLV N335A
TTTGCTGGTCTGGCCCCCAC



Btm SDM
GCGAAAAGCGTCCCTGTTTT




TGTTAAGG





594
MMLV N335R
TTTGCTGGTCTGGCCCCCAA



Btm SDM
CGGAAAAGCGTCCCTGTTTT




TGTTAAGG





595
MMLV N335E
TTTGCTGGTCTGGCCCCCAC



Btm SDM
TCGAAAAGCGTCCCTGTTTT




TGTTAAGG





596
MMLV E367A
ATATCCCTGTTTTTCATCAA



Btm SDM
CGAACAGCGCAAAGGGCTTG




GTTAAATCCGGAAG





597
MMLV E367R
ATATCCCTGTTTTTCATCAA



Btm SDM
CGAACAGACGAAAGGGCTTG




GTTAAATCCGGAAG





598
MMLV E367D
ATATCCCTGTTTTTCATCAA



Btm SDM
CGAACAGATCAAAGGGCTTG




GTTAAATCCGGAAG





599
MMLV F369A
CTTTTGCATATCCCTGTTTT



Btm SDM
TCATCAACCGCCAGCTCAAA




GGGCTTGGTTAAATC





600
MMLV F369R
CTTTTGCATATCCCTGTTTT



Btm SDM
TCATCAACACGCAGCTCAAA




GGGCTTGGTTAAATC





601
MMLV F369E
CTTTTGCATATCCCTGTTTT



Btm SDM
TCATCAACCTCCAGCTCAAA




GGGCTTGGTTAAATC





602
MMLV R389A
TTACTCAAGTAAGCAACAGG



Btm SDM
GCGCGCCCACGGGCCTAACT




TTTGGG





603
MMLV R389K
TTACTCAAGTAAGCAACAGG



Btm SDM
GCGTTTCCACGGGCCTAACT




TTTGGG





604
MMLV R389E
TTACTCAAGTAAGCAACAGG



Btm SDM
GCGCTCCCACGGGCCTAACT




TTTGGG





605
MMLV V433A
TCTACAGCATGTGGAGCCAA



Btm SDM
GATCGCTAAGGGTTGACCCA




TCGTCAACT





606
MMLV V433R
TCTACAGCATGTGGAGCCAA



Btm SDM
GATACGTAAGGGTTGACCCA




TCGTCAACT





607
MMLV V433E
TCTACAGCATGTGGAGCCAA



Btm SDM
GATCTCTAAGGGTTGACCCA




TCGTCAACT





608
MMLV V476A
GAAGCAAAGTAGCTGGATTC



Btm SDM
AAAGCCGCAACTGGTCCAAA




TTGTACACGATCC





609
MMLV V476R
GAAGCAAAGTAGCTGGATTC



Btm SDM
AAAGCACGAACTGGTCCAAA




TTGTACACGATCC





610
MMLV V476E
GAAGCAAAGTAGCTGGATTC



Btm SDM
AAAGCCTCAACTGGT




CCAAATTGTACACGATCC





611
MMLV 1593A
GCGGCGGTAAATTTCGCCAT



Btm SDM
GCGCATGCGCTGTTGCAAAA




GCATAACG





612
MMLV I593R
GCGGCGGTAAATTTCGCCAT



Btm SDM
GACGATGCGCTGTTGCAAAA




GCATAACG





613
MMLV I593E
GCGGCGGTAAATTTCGCCAT



Btm SDM
GCTCATGCGCTGTTGCAAAA




GCATAACG





614
MMLV E596A
GACCACGGCGGCGGTAAATC



Btm SDM
GCGCCATGGATATGCGCTGT




TGC





615
MMLV E596R
GACCACGGCGGCGGTAAATA



Btm SDM
CGGCCATGGATATGCGCTGT




TGC





616
MMLV E596D
GACCACGGCGGCGGTAAATA



Btm SDM
TCGCCATGGATATGCGCTGT




TGC





617
MMLV 1597A
CAGACCACGGCGGCGGTACG



Btm SDM
CTTCGCCATGGATATGCGCT




GTTG





618
MMLV I597R
CAGACCACGGCGGCGGTAAC



Btm SDM
GTTCGCCATGGATATGCGCT




GTTG





619
MMLV I597E
CAGACCACGGCGGCGGTACT



Btm SDM
CTTCGCCATGGATATGCGCT




GTTG





620
MMLV R650A
GGGCAGCTTGGTCCGCCATC



Btm SDM
GCGTTTCCACGAGCCTCCGC




T





621
MMLV R650K
GGGCAGCTTGGTCCGCCATT



Btm SDM
TTGTTTCCACGAGCCTCCGC




T





622
MMLV R650E
GGGCAGCTTGGTCCGCCATC



Btm SDM
TCGTTTCCACGAGCCTCCGC




T





623
MMLV Q654A
GCCGCCTTACGGGCAGCCGC



Btm SDM
GTCCGCCATACGGTTTCCAC





624
MMLV Q654R
GCCGCCTTACGGGCAGCACG



Btm SDM
GTCCGCCATACGGTTTCCAC





625
MMLV Q654E
GCCGCCTTACGGGCAGCCTC



Btm SDM
GTCCGCCATACGGTTTCCAC





626
MMLV R657A
GTCTCTGTGATCGCCGCCTT



Btm SDM
CGCGGCAGCTTGGTCCGCCA




TA





627
MMLV R657K
GTCTCTGTGATCGCCGCCTT



Btm SDM
TTTGGCAGCTTGGTCCGCCA




TA





628
MMLV R657E
GTCTCTGTGATCGCCGCCTT



Btm SDM
CTCGGCAGCTTGGTCCGCCA




TA





629
MMLV L280R
ATTTGCTGAAAGAAGGTCAA



Top SDM V2
CGTTGGCGTACTGATGCGCG




TAAGGAGACC





630
MMLV L280R
GGTCTCCTTACGCGCATCAG



Btm SDM V2
TACGCCAACGTTGACCTTCT




TTCAGCAAAT





631
MMLV L82R
GGGATTAAGCCACATATTCG



Top SDM V2
TCGCTTGCGTGACCAGGGGA




TCTTGGTCCC





632
MMLV L82R
GGGACCAAGATCCCCTGGTC



Btm SDM V2
ACGCAAGCGACGAATATGTG




GCTTAATCCC









Example 2: Preparation of Reverse Transcriptase Mutants for Screening Increased Activity and Thermostability

a. Overexpression of MMLV RTase and Mutant Variants


A test induction was used to determine optimum growing conditions. A colony, with the appropriate strain, was used to inoculate Terrific Broth (TB) media (50 mL) with kanamycin (0.05 mg/mL) and grown at 37° C. until an OD of approximately 0.9 was reached. The 50 mL culture was divided in half to accommodate two induction temperatures. IPTG (1M; 12.5 μL) was used to induce protein expression, followed by growth at two induction temperatures for 21 hours. Aliquots (normalized to an OD of 1.25) were taken at 3 and 21 hours, cells were harvested at 13,000×g for one minute, and harvested cells were stored at −20° C. Cells were resuspended in 1× SDS-PAGE running buffer (270 μL) and 5× SDS-PAGE loading dye (70 μL). Samples were boiled for 5 minutes, sonicated, and loaded (15 μL) onto a 4-20% Mini-PROTEAN® TGX Stain-Free™ Protein Gel (Bio Rad, Cat #4568094). SDS-PAGE images are shown in FIG. 2.


b. Expression and Purification of MMLV RTase and Mutant Variants


A colony with the appropriate strain was used to inoculate TB media (1 mL, in a 96-well deep well plate) with kanamycin (0.05 mg/mL) and grown at 37° C. until an OD of approximately 0.9 was achieved followed by cooling of the plate on ice for 5 minutes. Protein expression was induced by the addition of 100 mM IPTG (5 μL), followed by growth at 18° C. for 21 hours. Cells were harvested by spinning samples at 4,700×g for 10 minutes.


Cell pellets were re-suspended in a lysis buffer (50 mM NaPO4, pH 7.8, 5% glycerol, 300 mM NaCl, and 10 mM imidazole) and lysed by the addition of 1× BugBuster® (Millipore Sigma, Cat #70921) and incubation on an end-over-end mixer for 15 minutes at room temperature. Cell debris was removed by centrifuging the lysate at 16,000×g for 20 minutes at 4° C.


Cleared lysates were applied to a HisPur™ Ni-NTA spin plate (ThermoFisher, Cat #88230). Resin was equilibrated with Screening His-Bind buffer (50 mM NaPO4, pH 7.8, 5% glycerol, 300 mM NaCl, and 10 mM imidazole) and samples loaded. Samples were washed three times with Screening His-Wash buffer (50 mM NaPO4, pH 7.8, 5% glycerol, 300 mM NaCl, and 25 mM imidazole) and eluted using Screening His-Elution buffer (50 mM NaPO4, pH 7.8, 5% glycerol, 300 mM NaCl, and 250 mM imidazole). Purified proteins were normalized to a set concentration (100 nM) for testing purposes.


Example 3: Evaluation of Reverse Transcriptase Mutants

a. Evaluation of Ability of RTase Mutants to Synthesize DNA


The ability of mutant RTase to synthesize cDNA from purified total RNA (DNased, isolated from HeLa cells) was compared to an MMLV RTase base construct (RNase H minus construct). Mutant MMLV RTases were tested in two formats: (1) standard two-step cDNA synthesis with gene specific primers, followed by qPCR, and (2) one-step addition of the RTase in Integrated DNA Technologies PrimeTime® Gene Expression Master Mix (GEM).


b. Standard Two-Step Procedure


RTases (2 μL, 100 nM) were added to a reaction mixture containing RNA (50 ng), dNTPs (100 μM), gene specific primer set (500 nM; see Table 2), first strand synthesis buffer (1×, 50 mM Tris-HCl, pH 8.3, 75 mM KCl, 3 mM MgCl2, 10 mM DTT), and SuperaseIN (0.17 U/μL) in a 50 μL volume. The reaction was allowed to proceed at 50° C. for 15 minutes, followed by incubation at 80° C. for 10 minutes.


cDNA synthesized by RTase mutants was quantified by qPCR amplification using an assay that identified the SFRS9 gene in human cells. The assay master mix composition included GEM (1×), ROX (50 nM), SFRS9 primer set (500 nM; see Table 2), and SFRS9 probe (250 nM; see Table 2). Assay master mix and synthesized cDNA were mixed at a 4:1 ratio for a final volume of 20 μL. The reaction was run on qPCR (QuantStudio) for 40 cycles under the following cycle conditions: 95° C. hold for 3 minutes, 95° C. for 15 seconds, and 60° C. for one minute.









TABLE 2







Sequences of primers and


probes used for qPCR assays.









SEQ
Primer
Primer Sequence


ID NO:
Name
(5′-3′)





633
Hs SFRS9
GTCGAGTATCTCAGAAAAGAAGACA



Forward




Primer






634
Hs SFRS9
CTCGGATGTAGGAAGTTTCACC



Reverse




Primer






635
Hs SFRS9
/5SUN/ATGCCCTGC/



Probe-
ZEN/GTAAACTGGATGACA



SUN
/3IABkFQ/










c. One-Step Procedure in GEM


RTases (1 μL, 100 nM) were added to a reaction mixture containing RNA (10 ng), GEM (1×), ROX (50 nM), SFRS9 primer set (500 nM; see Table 2), and SFRS9 probe (250 nM; see Table 2) in a final volume of 20 μL. The reaction was run on a qPCR machine (QuantStudio) for 40 cycles using the following cycle conditions: 60° C. hold for 15 minutes, 95° C. hold for 3 minutes, 95° C. for 15 seconds, and 60° C. for one minute.


d. MMLV RTase Base Construct and Single Mutant Variants


As described in Example 1, MMLV RTase single mutant variants were prepared by introducing selected mutations into the MMLV RTase base construct by site-directed mutagenesis, using standard PCR conditions and primers. The sequences of the MMLV RTase base construct and single mutant variants are shown in Table 3. One of skill in the art will understand that the MMLV RTase amino acid sequences set forth in SEQ ID NO: 637 and SEQ ID NO: 717 (the latter of which is described in Example 6 below) are truncated forms of the full-length amino acid sequence of wild-type, or naturally occurring, MMLV RTase. In addition, a person having ordinary skill in the art will understand that a methionine residue is required to recombinantly produce the MMLV RTase base construct and mutants of the disclosure, and as such, that the MMLV RTase sequences disclosed herein (see, e.g., Table 3 below, Table 8 in Example 4, Tables 9 and 12 in Example 5, Table 22 in Example 6, and Table 38 in Example 9) include a methionine residue at the N-terminal end of the amino acid sequence. However, with respect to the present disclosure and for the purpose of identifying and numbering residues in the MMLV RTase amino acid sequence where mutations have been introduced, this methionine residue is considered to be amino acid residue 0 (i.e., is not counted) and the second amino acid residue (e.g., threonine in the MMLV RTase base construct set forth in SEQ ID NO: 637 and SEQ ID NO: 717) is considered to be amino acid residue 1.









TABLE 3







Sequences of MMLV RTase base construct


and single mutant MMLV RTase


constructs.











SEQ





ID

Construct Sequence



NO:
Construct
(DNA: 5′-3′ or AA)






636
MMLV RTase
ATGACTTTAAATATTGAGGA





TGAGCATCGTTTACATGAGA





CATCAAAAGAACCCGACGTG





AGCTTAGGGTCAACGTGGCT





TTCTGACTTCCCCCAGGCGT





GGGCGGAGACTGGCGGAATG





GGGTTAGCTGTCCGCCAAGC





ACCGTTGATCATCCCGTTAA





AGGCAACGTCTACACCTGTC





TCTATCAAACAGTACCCCAT





GAGTCAAGAGGCCCGCCTGG





GGATTAAGCCACATATTCAG





CGCTTGCTGGACCAGGGGAT





CTTGGTCCCATGTCAATCTC





CGTGGAACACCCCCCTTCTG





CCCGTGAAAAAGCCAGGTAC





AAACGATTATCGTCCAGTTC





AAGATCTTCGCGAGGTCAAC





AAACGCGTAGAAGACATCCA





TCCGACTGTACCTAATCCTT





ATAATCTGTTATCAGGCCTG





CCCCCATCGCACCAATGGTA





TACAGTATTAGACTTGAAAG





ACGCGTTCTTTTGCCTGCGT





CTGCACCCAACGTCTCAGCC





GCTGTTTGCGTTCGAATGGC





GTGATCCTGAAATGGGAATT





TCGGGTCAGTTAACCTGGAC





TCGTCTGCCCCAGGGCTTTA





AAAACAGCCCCACATTGTTC





GATGAAGCACTTCACCGTGA





CTTAGCAGACTTCCGTATCC





AACACCCAGACTTAATTCTG





TTACAGTATGTTGACGACCT





TTTGTTGGCGGCAACGTCTG





AACTTGACTGTCAGCAAGGC





ACACGCGCGTTATTACAAAC





GTTAGGTAACTTAGGATATC





GTGCGTCCGCGAAAAAGGCG





CAAATTTGTCAAAAACAGGT





AAAGTACCTTGGGTATTTGC





TGAAAGAAGGTCAACGTTGG





CTGACTGAAGCGCGTAAGGA





GACCGTAATGGGGCAGCCTA





CGCCTAAGACGCCACGCCAG





TTGCGTGAATTTTTGGGCAC





AGCGGGATTCTGTCGTTTAT





GGATTCCTGGGTTCGCTGAA





ATGGCTGCACCCCTGTACCC





CTTAACAAAAACAGGGACGC





TTTTCAACTGGGGGCCAGAC





CAGCAAAAGGCGTATCAGGA





GATCAAACAAGCTTTGTTGA





CCGCACCCGCGTTGGGTCTT





CCGGATTTAACCAAGCCCTT





TGAGCTGTTCGTTGATGAAA





AACAGGGATATGCAAAAGGA





GTATTAACCCAAAAGTTAGG





CCCGTGGCGTCGCCCTGTTG





CTTACTTGAGTAAAAAATTG





GATCCTGTCGCAGCAGGATG





GCCACCGTGCTTGCGTATGG





TCGCGGCAATTGCCGTTTTG





ACAAAGGATGCAGGTAAGTT





GACGATGGGTCAACCCTTAG





TAATCTTGGCTCCACATGCT





GTAGAAGCGTTAGTAAAGCA





GCCCCCAGACCGCTGGCTTT





CTAATGCGCGCATGACCCAC





TATCAGGCGCTTCTGCTTGA





TACGGATCGTGTACAATTTG





GACCAGTTGTAGCTTTGAAT





CCAGCTACTTTGCTTCCCCT





TCCAGAAGAAGGACTTCAGC





ACAATTGTTTAGATATTCTG





GCCGAGGCACATGGGACGCG





CCCTGATTTGACGGATCAGC





CACTGCCTGATGCCGACCAT





ACATGGTATACTGGCGGCAG





TAGTCTTCTTCAAGAGGGGC





AACGCAAGGCGGGAGCAGCC





GTCACTACGGAGACCGAAGT





TATCTGGGCCAAAGCGTTAC





CCGCGGGAACATCCGCGCAA





CGTGCACAGTTAATCGCTCT





GACACAGGCCCTGAAGATGG





CAGAGGGCAAAAAGTTGAAT





GTCTACACCAACTCACGTTA





TGCTTTTGCAACAGCGCATA





TCCATGGCGAAATTTACCGC





CGCCGTGGTCTGCTGACTAG





TGAGGGTAAGGAAATTAAAA





ATAAAGATGAGATTCTTGCG





TTGTTAAAAGCTTTATTCTT





ACCAAAACGCCTTTCGATCA





TTCATTGCCCGGGGCATCAA





AAGGGTCACTCAGCGGAGGC





TCGTGGAAACCGTATGGCGG





ACCAAGCTGCCCGTAAGGCG





GCGATCACAGAGACCCCGGA





TACATCAACGCTGTTGATCG





AAAACAGCTCTCCCTACACT





AGCGAGCATTTTTAA






637
MMLV RTase
MTLNIEDEHRLHETSKEPDV





SLGSTWLSDFPQAWAETGGM





GLAVRQAPLIIPLKATSTPV





SIKQYPMSQEARLGIKPHIQ





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPWALNP





ATLLPLPEEGLQHNCLDILA





EAHGTRPDLTDQPLPDADHT





WYTGGSSLLQEGQRKAGAAV





TTETEVIWAKALPAGTSAQR





AQLIALTQALKMAEGKKLNV





YTNSRYAFATAHIHGEIYRR





RGLLTSEGKEIKNKDEILAL





LKALFLPKRLSIIHCPGHQK





GHSAEARGNRMADQAARKAA





ITETPDTSTLLIENSSPYTS





EHF






638
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with 161R
SLGSTWLSDFPQAWAETGGM




mutation
GLAVRQAPLIIPLKATSTPV





SRKQYPMSQEARLGIKPHIQ





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPT





LFDEALHRDLADFRIQHPDL





ILLQYVDDLLLAATSELDCQ





QGTRALLQTLGNLGYRASAK





KAQICQKQVKYLGYLLKEGQ





RWLTEARKETVMGQPTPKTP





RQLREFLGTAGFCRLWIPGF





AEMAAPLYPLTKTGTLFNWG





PDQQKAYQEIKQALLTAPAL





GLPDLTKPFELFVDEKQGYA





KGVLTQKLGPWRRPVAYLSK





KLDPVAAGWPPCLRMVAAIA





VLTKDAGKLTMGQPLVILAP





HAVEALVKQPPDRWLSNARM





THYQALLLDTDRVQFGPWAL





NPATLLPLPEEGLQHNCLDI





LAEAHGTRPDLTDQPLPDAD





HTWYTGGSSLLQEGQRKAGA





AVTTETEVIWAKALPAGTSA





QRAQLIALTQALKMAEGKKL





NVYTNSRYAFATAHIHGEIY





RRRGLLTSEGKEIKNKDEIL





ALLKALFLPKRLSIIHCPGH





QKGHSAEARGNRMADQAARK





AAITETPDTSTLLIENSSPY





TSEHF






639
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with Q68R
SLGSTWLSDFPQAWAETGGM




mutation
GLAVRQAPLIIPLKATSTPV





SIKQYPMSREARLGIKPHIQ





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPWALNP





ATLLPLPEEGLQHNCLDILA





EAHGTRPDLTDQPLPDADHT





WYTGGSSLLQEGQRKAGAAV





TTETEVIWAKALPAGTSAQR





AQLIALTQALKMAEGKKLNV





YTNSRYAFATAHIHGEIYRR





RGLLTSEGKEIKNKDEILAL





LKALFLPKRLSIIHCPGHQK





GHSAEARGNRMADQAARKAA





ITETPDTSTLLIENSSPYTS





EHF






640
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with Q79R
SLGSTWLSDFPQAWAETGGM




mutation
GLAVRQAPLIIPLKATSTPV





SIKQYPMSQEARLGIKPHIR





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTK





TGTLFNWGPDQQKAYQEIKQ





ALLTAPALGLPDLTKPFELF





VDEKQGYAKGVLTQKLGPWR





RPVAYLSKKLDPVAAGWPPC





LRMVAAIAVLTKDAGKLTMG





QPLVILAPHAVEALVKQPPD





RWLSNARMTHYQALLLDTDR





VQFGPWALNPATLLPLPEEG





LQHNCLDILAEAHGTRPDLT





DQPLPDADHTWYTGGSSLLQ





EGQRKAGAAVTTETEVIWAK





ALPAGTSAQRAQLIALTQAL





KMAEGKKLNVYTNSRYAFAT





AHIHGEIYRRRGLLTSEGKE





IKNKDEILALLKALFLPKRL





SIIHCPGHQKGHSAEARGNR





MADQAARKAAITETPDTSTL





LIENSSPYTSEHF






641
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with L99R
SLGSTWLSDFPQAWAETGGM




mutation
GLAVRQAPLIIPLKATSTPV





SIKQYPMSQEARLGIKPHIQ





RLLDQGILVPCQSPWNTPRL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPWALNP





ATLLPLPEEGLQHNCLDILA





EAHGTRPDLTDQPLPDADHT





WYTGGSSLLQEGQRKAGAAV





TTETEVIWAKALPAGTSAQR





AQLIALTQALKMAEGKKLNV





YTNSRYAFATAHIHGEIYRR





RGLLTSEGKEIKNKDEILAL





LKALFLPKRLSIIHCPGHQK





GHSAEARGNRMADQAARKAA





ITETPDTSTLLIENSSPYTS





EHF






642
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with E282D
SLGSTWLSDFPQAWAETGGM




mutation
GLAVRQAPLIIPLKATSTPV





SIKQYPMSQEARLGIKPHIQ





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTDARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQ





ALLLDTDRVQFGPWALNPAT





LLPLPEEGLQHNCLDILAEA





HGTRPDLTDQPLPDADHTWY





TGGSSLLQEGQRKAGAAVTT





ETEVIWAKALPAGTSAQRAQ





LIALTQALKMAEGKKLNVYT





NSRYAFATAHIHGEIYRRRG





LLTSEGKEIKNKDEILALLK





ALFLPKRLSIIHCPGHQKGH





SAEARGNRMADQAARKAAIT





ETPDTSTLLIENSSPYTSEH





F






643
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with R298A
SLGSTWLSDFPQAWAETGGM




mutation
GLAVRQAPLIIPLKATSTPV





SIKQYPMSQEARLGIKPHIQ





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPAQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPWALNP





ATLLPLPEEGLQHNCLDILA





EAHGTRPDLTDQPLPDADHT





WYTGGSSLLQEGQRKAGAAV





TTETEVIWAKALPAGTSAQR





AQLIALTQALKMAEGKKLNV





YTNSRYAFATAHIHGEIYRR





RGLLTSEGKEIKNKDEILAL





LKALFLPKRLSIIHCPGHQK





GHSAEARGNRMADQAARKAA





ITETPDTSTLLIENSSPYTS





EHF










e. Experimental Results


The two-step and one-step reactions for MMLV RTase base construct and MMLV RTase single mutant variants were analyzed and reported by copy number output based on a standard curve (see Tables 4 and 5). Six single mutant MMLV RTase variants were found to exhibit an increase in the overall activity and thermostability as compared to the MMLV RTase base construct. The six single mutant MMLV RTase variants were as follows: I61R, Q68R, Q79R, L99R, E282D, and R298A.









TABLE 4







Two-step cDNA synthesis by MMLV RT single mutants.


Data was generated via qPCR human normalizer


assay and translated by copy number.









MMLV RT Variant
Quantity Mean
Quantity Standard Deviation












MMLV-II
21,046.784
954.827


MMLV-II A283V
280.423
50.910


MMLV-II A283R
10,390.819
340.236


MMLV-II A283E
7,378.705
122.716


MMLV-II E123A
15,059.791
556.095


MMLV-II E123R
19,043.292
415.522


MMLV-II E123D
3,619.959
243.766


MMLV-II E282A
19,939.551
1,645.246


MMLV-II E282R
15,588.940
546.467


MMLV-II E282D
24,282.327
2,259.264


MMLV-II I61A
648.252
45.640


MMLV-II I61R
26,280.811
549.417


MMLV-II I61E
10,966.741
469.747


MMLV-II K102A
98.438
12.778


MMLV-II K102R
780.114
90.331


MMLV-II K102E
1,674.854
157.485


MMLV-II K103A
359.984
67.322


MMLV-II K103R
206.765
20.758


MMLV-II K103E
200.883
16.719


MMLV-II K120A
217.787
72.696


MMLV-II K120R
3,619.338
100.478


MMLV-II K120E
2,230.375
210.050


MMLV-II K193A
2,736.271
162.383


MMLV-II K193R
11,496.935
193.681


MMLV-II K193E
325.109
50.932


MMLV-II K295A
8,101.927
348.373


MMLV-II K295R
6,879.112
131.993


MMLV-II K295E
9,673.612
351.106


MMLV-II K329A
3,199.167
212.003


MMLV-II K329R
10,387.670
330.429


MMLV-II K329E
18,306.813
1,167.600


MMLV-II K53A
474.465
62.390


MMLV-II K53R
369.020
49.436


MMLV-II K53E
5,308.165
104.585


MMLV-II K62A
2,102.396
64.197


MMLV-II K62R
4,920.330
251.414


MMLV-II K62E
71.723
11.419


MMLV-II K75A
76.659
24.657


MMLV-II K75R
2,842.314
77.212


MMLV-II K75E
1,697.887
158.946


MMLV-II L99A
1,576.246
213.455


MMLV-II L99R
37,070.048
1,531.910


MMLV-II L99E
195.448
22.530


MMLV-II N107A
3,354.325
176.385


MMLV-II N107R
41.532
24.527


MMLV-II N107E
8,523.285
353.411


MMLV-II Q291A
14,093.444
576.318


MMLV-II Q291R
15,736.443
566.630


MMLV-II Q291E
1,480.309
93.187


MMLV-II Q68A
n.d.
n.d.


MMLV-II Q68R
20,158.035
722.022


MMLV-II Q68E
2,263.714
150.236


MMLV-II Q79A
2,317.484
43.518


MMLV-II Q79R
37,480.443
1,268.309


MMLV-II Q79E
489.184
39.449


MMLV-II R110A
1,815.710
7.917


MMLV-II R110K
502.172
38.619


MMLV-II R110E
383.331
38.162


MMLV-II R298A
44,477.013
3,036.502


MMLV-II R298K
14,925.202
186.581


MMLV-II R298E
1,150.932
56.107


MMLV-II R301A
2,745.075
82.646


MMLV-II R301K
12,813.899
568.898


MMLV-II R301E
1,583.826
198.913


MMLV-II T106A
16,641.642
179.631


MMLV-II T106R
2,248.217
71.295


MMLV-II T106E
10,302.113
250.531


MMLV-II T128V
7,034.032
351.446


MMLV-II T128R
3,465.069
143.456


MMLV-II T128E
10,709.019
110.124


MMLV-II T293A
4,612.880
167.335


MMLV-II T293R
13,753.879
319.851


MMLV-II T293E
12,893.457
223.100


MMLV-II T296A
2,192.531
76.071


MMLV-II T296R
893.449
51.913


MMLV-II T296E
473.936
102.414


MMLV-II T55A
5,774.471
223.173


MMLV-II T55R
3,284.089
314.651


MMLV-II T55E
6,143.058
429.507


MMLV-II T57A
6,129.791
285.070


MMLV-II T57R
888.244
11.952


MMLV-II T57E
1,487.448
71.681


MMLV-II V101A
552.130
98.391


MMLV-II V101R
4,754.017
107.434


MMLV-II V101E
1,388.699
87.091


MMLV-II V112A
2,085.594
72.265


MMLV-II V112R
377.194
41.722


MMLV-II V112E
210.825
17.715


MMLV-II V59A
628.779
15.216


MMLV-II V59R
6,662.173
210.234


MMLV-II V59E
3,249.465
79.848


MMLV-II Y109A
101.656
6.717


MMLV-II Y109R
349.373
27.171


MMLV-II Y109E
1,029.589
45.189


MMLV-IV
71,572.714
4,656.679
















TABLE 5







One-step cDNA synthesis by MMLV RT single mutants.


Data was generated via qPCR human normalizer assay


and data is translated by copy number.









MMLV RT Variant
Quantity Mean
Quantity Standard Deviation












MMLV-II
20,638.973
614.785


MMLV-II A283V
8,802.753
220.902


MMLV-II A283R
14,379.575
337.562


MMLV-II A283E
16,396.614
203.476


MMLV-II E123A
17,975.218
259.986


MMLV-II E123R
20,652.508
515.600


MMLV-II E123D
14,452.672
242.000


MMLV-II E282A
19,017.751
827.419


MMLV-II E282R
17,180.421
204.739


MMLV-II E282D
20,735.271
420.881


MMLV-II I61A
7,450.147
348.788


MMLV-II I61R
25,123.507
2,977.836


MMLV-II I61E
17,441.860
1,662.749


MMLV-II K102A
9,342.754
120.846


MMLV-II K102R
10,563.589
255.139


MMLV-II K102E
13,925.008
307.601


MMLV-II K103A
9,429.555
437.351


MMLV-II K103R
9,009.846
155.888


MMLV-II K103E
7,985.278
189.792


MMLV-II K120A
8,593.433
438.722


MMLV-II K120R
12,558.793
407.946


MMLV-II K120E
12,268.574
303.495


MMLV-II K193A
12,977.263
537.992


MMLV-II K193R
13,446.766
2,337.906


MMLV-II K193E
8,536.558
182.514


MMLV-II K295A
13,506.491
1,613.467


MMLV-II K295R
13,944.407
1,839.608


MMLV-II K295E
15,021.823
650.111


MMLV-II K329A
13,284.541
246.298


MMLV-II K329R
15,935.899
970.971


MMLV-II K329E
20,628.859
884.254


MMLV-II K53A
10,868.676
161.435


MMLV-II K53R
9,908.252
632.663


MMLV-II K53E
20,666.775
518.895


MMLV-II K62A
9,454.043
732.242


MMLV-II K62R
14,532.171
63.450


MMLV-II K62E
8,341.361
436.076


MMLV-II K75A
9,084.502
113.100


MMLV-II K75R
13,106.462
331.663


MMLV-II K75E
11,191.849
565.160


MMLV-II L99A
12,876.076
49.507


MMLV-II L99R
27,167.197
142.371


MMLV-II L99E
6,534.199
2,730.598


MMLV-II N107A
13,563.421
349.378


MMLV-II N107R
8,654.167
497.167


MMLV-II N107E
16,675.075
172.596


MMLV-II Q291A
20,957.729
150.006


MMLV-II Q291R
17,980.723
346.436


MMLV-II Q291E
11,025.722
407.116


MMLV-II Q68A
n.d.
n.d.


MMLV-II Q68R
24,925.791
937.265


MMLV-II Q68E
12,844.484
165.039


MMLV-II Q79A
12,038.975
482.596


MMLV-II Q79R
28,458.521
296.595


MMLV-II Q79E
10,358.863
309.043


MMLV-II R110A
11,517.764
562.094


MMLV-II R110K
8,112.167
76.742


MMLV-II R110E
8,809.423
290.785


MMLV-II R298A
27,817.905
172.690


MMLV-II R298K
18,222.660
825.743


MMLV-II R298E
10,783.790
783.279


MMLV-II R301A
11,344.854
63.499


MMLV-II R301K
17,584.850
445.587


MMLV-II R301E
10,146.906
1,879.902


MMLV-II T106A
17,717.520
215.965


MMLV-II T106R
11,680.187
148.213


MMLV-II T106E
21,203.557
366.469


MMLV-II T128V
14,384.970
355.754


MMLV-II T128R
12,938.223
464.841


MMLV-II T128E
14,781.394
1,930.931


MMLV-II T293A
15,658.189
347.640


MMLV-II T293R
19,976.165
253.604


MMLV-II T293E
17,580.335
404.397


MMLV-II T296A
10,312.142
159.775


MMLV-II T296R
8,482.071
92.806


MMLV-II T296E
7,687.972
112.884


MMLV-II T55A
18,073.262
618.174


MMLV-II T55R
11,546.179
138.906


MMLV-II T55E
12,299.658
815.911


MMLV-II T57A
14,700.042
2,916.521


MMLV-II T57R
11,195.901
145.433


MMLV-II T57E
11,958.503
605.445


MMLV-II V101A
10,697.751
269.696


MMLV-II VI01R
8,934.765
53.924


MMLV-II V101E
11,295.874
296.506


MMLV-II V112A
12,854.738
356.724


MMLV-II V112R
6,331.802
303.453


MMLV-II V112E
7,643.184
448.446


MMLV-II V59A
9,520.143
339.954


MMLV-II V59R
18,523.053
499.377


MMLV-II V59E
16,029.631
137.454


MMLV-II Y109A
8,421.361
185.196


MMLV-II Y109R
8,581.961
129.732


MMLV-II Y109E
10,216.473
416.388


MMLV-IV
65,726.159
1,811.314









Example 4: Extension of Reverse Transcriptase Single Mutants

The amino acid positions that enclosed the MMLV RTase single mutants identified in Example 3 were further evaluated to include all possible amino acid substitutions at that position. The single mutants were cloned, overexpressed, and purified as described in Examples 1 and 2, and evaluated as described in Example 3. The two-step and one-step reactions for MMLV RTase base construct and MMLV RTase double mutant variants were analyzed and reported by copy number output based on a standard curve (see Tables 6 and 7). Ten single mutant MMLV RTase variants (see Table 8) were found to exhibit an increase in the overall activity and thermostability as compared to the MMLV RTase base construct. The ten single mutant MMLV RTase variants were as follows: I61K, I61M, Q68I, Q68K, Q79H, Q79I, L99K, L99N, E282M and E282W.









TABLE 6







Two-step cDNA synthesis by MMLV RT single mutants.


Data was generated via qPCR human normalizer


assay and translated by copy number.









MMLV RT Variant
Quantity Mean
Quantity Standard Deviation












MMLV-II
1,484.121
125.278


MMLV-II E282C
749.332
37.947


MMLV-II E282F
968.042
28.112


MMLV-II E282G
841.839
30.618


MMLV-II E282H
936.562
64.904


MMLV-II E282I
1,418.551
8.682


MMLV-II E282K
2,399.973
50.862


MMLV-II E282L
1,778.903
134.133


MMLV-II E282M
2,115.328
125.477


MMLV-II E282N
1,175.130
79.221


MMLV-II E282P
1,529.331
61.525


MMLV-II E282Q
1,856.418
24.118


MMLV-II E282S
673.670
44.770


MMLV-II E282T
994.318
24.066


MMLV-II E282V
748.877
29.053


MMLV-II E282W
2,469.404
141.080


MMLV-II E282Y
1,360.706
338.309


MMLV-II I61C
283.240
11.244


MMLV-II I61D
349.008
10.979


MMLV-II I61F
784.163
22.643


MMLV-II I61G
395.348
21.967


MMLV-II I61H
736.015
30.271


MMLV-II I61K
4,479.606
62.627


MMLV-II I61L
1,106.547
38.553


MMLV-II I61M
4,198.088
93.025


MMLV-II I61N
709.752
29.312


MMLV-II I61P
32.935
16.814


MMLV-II I61Q
1,311.695
145.810


MMLV-II I61S
797.783
50.626


MMLV-II I61T
628.173
33.371


MMLV-II I61V
1,439.915
27.490


MMLV-II I61W
442.039
29.310


MMLV-II I61Y
534.249
26.831


MMLV-II L99C
3,109.142
80.016


MMLV-II L99D
83.653
3.432


MMLV-II L99F
2,811.513
79.584


MMLV-II L99G
908.041
16.157


MMLV-II L99H
4,881.196
390.497


MMLV-II L99I
910.072
71.671


MMLV-II L99K
6,410.818
127.262


MMLV-II L99M
976.548
65.154


MMLV-II L99N
4,974.458
162.464


MMLV-II L99P
6.416
1.820


MMLV-II L99Q
3,908.473
337.167


MMLV-II L99S
3,793.955
86.959


MMLV-II L99T
4,189.211
27.640


MMLV-II L99V
964.081
48.105


MMLV-II L99W
1,614.660
40.442


MMLV-II L99Y
2,123.406
181.945


MMLV-II Q68A
1,184.702
7.676


MMLV-II Q68C
2,038.167
36.463


MMLV-II Q68D
1,613.880
77.796


MMLV-II Q68F
1,805.647
62.456


MMLV-II Q68G
2,262.873
69.688


MMLV-II Q68H
106.421
9.860


MMLV-II Q68I
2,675.446
73.874


MMLV-II Q68K
1,042.979
70.081


MMLV-II Q68L
1,070.742
57.215


MMLV-II Q68M
1,342.806
58.349


MMLV-II Q68N
1,993.946
65.808


MMLV-II Q68P
2,025.753
25.540


MMLV-II Q68S
1,895.984
26.959


MMLV-II Q68T
431.442
22.751


MMLV-II Q68V
1,534.710
110.794


MMLV-II Q68W
1,790.706
124.583


MMLV-II Q79C
2,477.812
107.510


MMLV-II Q79D
627.902
11.073


MMLV-II Q79F
1,786.571
126.904


MMLV-II Q79G
2,702.985
83.998


MMLV-II Q79H
2,851.710
57.501


MMLV-II Q79I
2,967.710
57.440


MMLV-II Q79K
1,346.751
64.513


MMLV-II Q79L
2,214.615
67.622


MMLV-II Q79M
1,847.181
31.384


MMLV-II Q79N
1,365.563
54.775


MMLV-II Q79P
674.074
42.100


MMLV-II Q79S
2,199.353
52.958


MMLV-II Q79T
1,523.163
77.025


MMLV-II Q79V
1,704.661
77.643


MMLV-II Q79W
2,186.489
31.470


MMLV-II Q79Y
2,326.023
123.508


MMLV-II R298C
79.970
9.815


MMLV-II R298D
0.000
0.000


MMLV-II R298F
84.760
9.362


MMLV-II R298G
357.027
15.726


MMLV-II R298H
269.257
20.814


MMLV-II R298I
130.983
5.364


MMLV-II R298L
199.612
5.843


MMLV-II R298M
172.013
18.710


MMLV-II R298N
199.678
2.660


MMLV-II R298P
122.098
5.900


MMLV-II R298Q
118.092
40.694


MMLV-II R298S
406.112
7.695


MMLV-II R298T
618.616
20.023


MMLV-II R298V
136.498
13.297


MMLV-II R298W
68.096
7.016


MMLV-II R298Y
162.713
7.854


MMLV-IV
6,830.294
376.878
















TABLE 7







One-step cDNA synthesis by MMLV RT single mutants.


Data was generated via qPCR human normalizer assay


and data is translated by copy number.









MMLV RT Variant
Quantity Mean
Quantity Standard Deviation












MMLV-II
408.018
8.693


MMLV-II E282C
175.083
7.005


MMLV-II E282F
1,043.025
16.137


MMLV-II E282G
635.037
13.293


MMLV-II E282H
656.956
10.018


MMLV-II E282I
1,033.125
44.996


MMLV-II E282K
751.309
17.611


MMLV-II E282L
1,072.350
80.365


MMLV-II E282M
1,318.072
51.735


MMLV-II E282N
539.305
10.767


MMLV-II E282P
725.869
92.685


MMLV-II E282Q
626.674
12.129


MMLV-II E282S
354.956
34.850


MMLV-II E282T
485.477
45.783


MMLV-II E282V
594.047
27.898


MMLV-II E282W
913.290
61.145


MMLV-II E282Y
759.920
34.784


MMLV-II I61C
219.438
18.403


MMLV-II I61D
347.020
13.303


MMLV-II I61F
428.623
25.316


MMLV-II I61G
389.503
21.764


MMLV-II I61H
514.330
18.416


MMLV-II I61K
2,343.894
67.214


MMLV-II I61L
621.572
14.892


MMLV-II I61M
2,536.807
150.371


MMLV-II I61N
538.519
20.736


MMLV-II I61P
61.683
18.802


MMLV-II I61Q
701.471
32.487


MMLV-II I61S
611.977
30.430


MMLV-II I61T
534.254
31.643


MMLV-II I61V
881.608
20.662


MMLV-II I61W
428.440
17.964


MMLV-II I61Y
347.930
4.412


MMLV-II L99C
2,390.104
35.867


MMLV-II L99D
185.044
6.975


MMLV-II L99F
1,577.767
7.757


MMLV-II L99G
987.225
9.718


MMLV-II L99H
3,886.372
111.670


MMLV-II L99I
613.648
46.303


MMLV-II L99K
7,597.650
321.753


MMLV-II L99M
934.817
52.006


MMLV-II L99N
4,689.222
160.641


MMLV-II L99P
18.537
1.131


MMLV-II L99Q
2,394.744
64.077


MMLV-II L99S
3,293.831
111.802


MMLV-II L99T
3,505.113
101.670


MMLV-II L99V
677.756
49.356


MMLV-II L99W
839.088
50.301


MMLV-II L99Y
1,127.536
19.074


MMLV-II Q68A
827.617
30.689


MMLV-II Q68C
1,110.680
45.944


MMLV-II Q68D
1,045.802
25.488


MMLV-II Q68F
1,210.166
120.899


MMLV-II Q68G
907.279
30.688


MMLV-II Q68H
150.384
6.867


MMLV-II Q68I
1,550.372
76.712


MMLV-II Q68K
1,712.176
47.342


MMLV-II Q68L
651.039
51.426


MMLV-II Q68M
1,395.463
34.805


MMLV-II Q68N
1,241.364
25.780


MMLV-II Q68P
1,249.444
13.709


MMLV-II Q68S
1,125.260
21.324


MMLV-II Q68T
792.901
31.513


MMLV-II Q68V
1,026.654
24.972


MMLV-II Q68W
1,594.175
101.221


MMLV-II Q79C
1,948.151
87.341


MMLV-II Q79D
458.131
10.763


MMLV-II Q79F
1,623.675
50.723


MMLV-II Q79G
1,885.097
20.190


MMLV-II Q79H
2,508.763
149.926


MMLV-II Q79I
2,329.030
76.545


MMLV-II Q79K
1,861.302
24.320


MMLV-II Q79L
1,496.247
30.399


MMLV-II Q79M
1,496.469
38.178


MMLV-II Q79N
995.813
42.279


MMLV-II Q79P
526.914
23.216


MMLV-II Q79S
1,685.124
42.694


MMLV-II Q79T
966.505
8.377


MMLV-II Q79V
1,218.191
21.512


MMLV-II Q79W
1,962.326
37.135


MMLV-II Q79Y
2,218.504
56.938


MMLV-II R298C
45.500
1.456


MMLV-II R298D
0.000
0.000


MMLV-II R298F
104.825
5.133


MMLV-II R298G
323.542
14.052


MMLV-II R298H
253.202
47.711


MMLV-II R298I
205.982
8.304


MMLV-II R298L
213.674
15.199


MMLV-II R298M
176.347
12.484


MMLV-II R298N
142.969
39.198


MMLV-II R298P
188.995
3.689


MMLV-II R298Q
95.525
44.292


MMLV-II R298S
307.614
9.962


MMLV-II R298T
487.828
3.480


MMLV-II R298V
255.828
12.902


MMLV-II R298W
37.872
8.482


MMLV-II R298Y
153.333
25.137


MMLV-IV
19,407.721
466.310
















TABLE 8







Sequences of single mutant MMLV


RTase variants.











SEQ





ID





NO:
Construct
Construct Sequence (AA)






644
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with 161K
SLGSTWLSDFPQAWAETGGM




mutation
GLAVRQAPLIIPLKATSTPV





SKKQYPMSQEARLGIKPHIQ





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






645
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with 161M
SLGSTWLSDFPQAWAETGGM




mutation
GLAVRQAPLIIPLKATSTPV





SMKQYPMSQEARLGIKPHIQ





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






646
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with Q68I
SLGSTWLSDFPQAWAETGGM




mutation
GLAVRQAPLIIPLKATSTPV





SIKQYPMSIEARLGIKPHIQ





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






647
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with Q68K
SLGSTWLSDFPQAWAETGGM




mutation
GLAVRQAPLIIPLKATSTPV





SIKQYPMSKEARLGIKPHIQ





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






648
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with Q79H
SLGSTWLSDFPQAWAETGGM




mutation
GLAVRQAPLIIPLKATSTPV





SIKQYPMSQEARLGIKPHIH





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






649
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with Q79I
SLGSTWLSDFPQAWAETGGM




mutation
GLAVRQAPLIIPLKATSTPV





SIKQYPMSQEARLGIKPHII





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






650
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with L99K
SLGSTWLSDFPQAWAETGGM




mutation
GLAVRQAPLIIPLKATSTP





VSIKQYPMSQEA





RLGIKPHIQRLLDQGILVPC





QSPWNTPLKPVKKPGTNDYR





PVQDLREVNKRVEDIHPTVP





NPYNLLSGLPPSHQWYTVLD





LKDAFFCLRLHPTSQPLFAF





EWRDPEMGISGQLTWTRLPQ





GFKNSPTLFDEALHRDLADF





RIQHPDLILLQYVDDLLLAA





TSELDCQQGTRALLQTLGNL





GYRASAKKAQICQKQVKYLG





YLLKEGQRWLTEARKETVMG





QPTPKTPRQLREFLGTAGFC





RLWIPGFAEMAAPLYPLTKT





GTLFNWGPDQQKAYQEIKQA





LLTAPALGLPDLTKPFELFV





DEKQGYAKGVLTQKLGPWRR





PVAYLSKKLDPVAAGWPPCL





RMVAAIAVLTKDAGKLTMGQ





PLVILAPHAVEALVKQPPDR





WLSNARMTHYQALLLDTDRV





QFGPVVALNPATLLPLPEEG





LQHNCLDILAEAHGTRPDLT





DQPLPDADHTWYTGGSSLLQ





EGQRKAGAAVTTETEVIWAK





ALPAGTSAQRAQLIALTQAL





KMAEGKKLNVYTNSRYAFAT





AHIHGEIYRRRGLLTSEGKE





IKNKDEILALLKALFLPKRL





SIIHCPGHQKGHSAEARGNR





MADQAARKAAITETPDTSTL





LIENSSPYTSEHF






651
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with L99N
SLGSTWLSDFPQAWAETGGM




mutation
GLAVRQAPLIIPLKATSTPV





SIKQYPMSQEARLGIKPHIQ





RLLDQGILVPCQSPWNTPLN





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






652
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with E282M
SLGSTWLSDFPQAWAETGGM




mutation
GLAVRQAPLIIPLKATSTPV





SIKQYPMSQEARLGIKPHIQ





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTMARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






653
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with E282W
SLGSTWLSDFPQAWAETGGM




mutation
GLAVRQAPLIIPLKATSTPV





SIKQYPMSQEARLGIKPHIQ





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTWARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF









Example 5: Stacking of Reverse Transcriptase Mutants with Enhanced Activity

a. MMLV RTase Double Mutants


The MMLV RTase single mutants identified in Example 3 were stacked to further improve the ability of MMLV RTase to synthesize cDNA from purified total RNA (DNased, isolated from HeLa cells) as compared to the MMLV RTase base construct (RNase H minus construct). Fifteen MMLV RTase double mutant variants (see Table 9) were cloned, overexpressed, and purified as described in Examples 1 and 2, and evaluated as described in Example 3. The two-step and one-step reactions for MMLV RTase base construct and MMLV RTase double mutant variants were analyzed and reported by copy number output based on a standard curve (see Tables 10 and 11).


Four of the fifteen MMLV RTase double mutant variants were found to exhibit increased overall activity and thermostability as compared to the other MMLV RTase double mutant variants, and almost all of the MMLV RTase double mutant variants exhibited increased overall activity and thermostability as compared to the MMLV RTase base construct. The four MMLV RTase double mutant variants that were found to exhibit the highest overall activity were E282D/L99R, L99R/Q68R, L99R/Q79R, and Q68R/Q79R.









TABLE 9







Sequences of double mutant


MMLV RTase variants.











SEQ





ID





NO:
Construct
Construct Sequence (AA)






654
MMLV RTase
MTLNIEDEHRLHETSKEPDV




With
SLGSTWLSDFPQAWAETGGM




I61R/E282D
GLAVRQAPLIIPLKATSTPV




mutations
SRKQYPMSQEARLGIKPHIQ





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTDARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






655
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




L99R/E282D
GLAVRQAPLIIPLKATSTPV




mutations
SIKQYPMSQEARLGIKPHIQ





RLLDQGILVPCQSPWNTPRL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTDARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






656
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




Q68R/E282D
GLAVRQAPLIIPLKATSTPV




mutations
SIKQYPMSREARLGIKPHIQ





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTDARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






657
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




Q79R/E282D
GLAVRQAPLIIPLKATSTPV




mutations
SIKQYPMSQEARLGIKPHIR





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTDARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






658
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




E282D/R298A
GLAVRQAPLIIPLKATSTPV




mutations
SIKQYPMSQEARLGIKPHIQ





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTDARKETVMGQPTPKTPAQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






659
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




I61R/L99R
GLAVRQAPLIIPLKATSTPV




mutations
SRKQYPMSQEARLGIKPHIQ





RLLDQGILVPCQSPWNTPLR





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






660
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




I61R/Q68R
GLAVRQAPLIIPLKATSTPV




mutations
SRKQYPMSREARLGIKPHIQ





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEH






661
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




I61R/Q79R
GLAVRQAPLIIPLKATSTPV




mutations
SRKQYPMSQEARLGIKPHIR





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






662
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




I61R/R298A
GLAVRQAPLIIPLKATSTPV




mutations
SRKQYPMSQEARLGIKPHIQ





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPAQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






663
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




Q68R/L99R
GLAVRQAPLIIPLKATSTPV




mutations
SIKQYPMSREARLGIKPHIQ





RLLDQGILVPCQSPWNTPLR





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






664
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




Q79R/L99R
GLAVRQAPLIIPLKATSTPV




mutations
SIKQYPMSQEARLGIKPHIR





RLLDQGILVPCQSPWNTPLR





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






665
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




L99R/R298A
GLAVRQAPLIIPLKATSTPV




mutations
SIKQYPMSQEARLGIKPHIQ





RLLDQGILVPCQSPWNTPLR





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPAQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






666
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




Q68R/Q79R
GLAVRQAPLIIPLKATSTPV




mutations
SIKQYPMSREARLGIKPHIR





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






667
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




Q68R/R298A
GLAVRQAPLIIPLKATSTPV




mutations
SIKQYPMSREARLGIKPHIQ





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPAQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






668
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




Q79R/R298A
GLAVRQAPLIIPLKATSTPV




mutations
SIKQYPMSQEARLGIKPHIR





RLLDQGILVPCQSPWNTPLL





PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPAQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTKPFELF





VDEKQGYAKGVLTQKLGPWR





RPVAYLSKKLDPVAAGWPPC





LRMVAAIAVLTKDAGKLTMG





QPLVILAPHAVEALVKQPPD





RWLSNARMTHYQALLLDTDR





VQFGPVVALNPATLLPLPEE





GLQHNCLDILAEAHGTRPDL





TDQPLPDADHTWYTGGSSLL





QEGQRKAGAAVTTETEVIWA





KALPAGTSAQRAQLIALTQA





LKMAEGKKLNVYTNSRYAFA





TAHIHGEIYRRRGLLTSEGK





EIKNKDEILALLKALFLPKR





LSIIHCPGHQKGHSAEARGN





RMADQAARKAAITETPDTST





LLIENSSPYTSEHFTAPALG





LPDL
















TABLE 10







Two-Step cDNA synthesis by MMLV RT double mutants.


Data was generated via qPCR human normalizer assay


and data is translated by copy number.









MMLV RT Variant
Quantity Mean
Quantity Standard Deviation












MMLV-II
1,773.623
5.057


MMLV-II E282D/I61R
4,810.277
143.422


MMLV-II E282D/L99R
7,266.281
50.730


MMLV-II E282D/Q68R
5,186.392
69.563


MMLV-II E282D/Q79R
4,311.403
95.402


MMLV-II E282D/R298A
1,366.524
16.429


MMLV-II I61R/L99R
6,061.812
174.619


MMLV-II I61R/Q68R
5,899.316
39.879


MMLV-II I61R/Q79R
5,257.089
98.378


MMLV-II I61R/R298A
2,661.223
68.948


MMLV-II L99R/Q68R
7,750.519
94.408


MMLV-II L99R/Q79R
7,455.203
124.095


MMLV-II L99R/R298A
5,351.021
179.558


MMLV-II Q68R/Q79R
7,178.681
86.595


MMLV-II Q68R/R298A
4,524.340
84.703


MMLV-II Q79R/R298A
3,739.608
58.621


MMLV-IV
8,258.715
79.458
















TABLE 11







One-Step cDNA synthesis by MMLV RT double mutants.


Data was generated via qPCR human normalizer assay


and data is translated by cony number.









MMLV-RT Variant
Quantity Mean
Quantity Standard Deviation












MMLV-II
859.127
24.795


MMLV-II E282D/I61R
2,948.906
49.177


MMLV-II E282D/L99R
4,814.957
239.110


MMLV-II E282D/Q68R
3,709.046
131.434


MMLV-II E282D/Q79R
3,694.187
98.772


MMLV-II E282D/R298A
794.643
39.913


MMLV-II I61R/L99R
3,443.713
180.210


MMLV-II I61R/Q68R
3,525.138
112.288


MMLV-II I61R/Q79R
3,125.990
120.996


MMLV-II I61R/R298A
2,006.208
83.559


MMLV-II L99R/Q68R
6,755.852
102.788


MMLV-II L99R/Q79R
6,709.502
35.997


MMLV-II L99R/R298A
2,128.451
55.565


MMLV-II Q68R/Q79R
6,343.821
140.779


MMLV-II Q68R/R298A
2,406.470
74.117


MMLV-II Q79R/R298A
2,301.759
22.849


MMLV-IV
15,411.857
333.388










b. Cloning of MMLV RTase Triple and More Mutants


Following the double mutant variants, MMLV RTase single mutants were stacked further to improve the ability of MMLV RTase to synthesize cDNA from purified total RNA (DNased, isolated from HeLa cells) as compared to the MMLV RTase base construct (RNase H minus construct). Seventeen MMLV RTase triple or more mutant variants (see Table 12) were cloned as described in Example 1.









TABLE 12







Sequences of triple or more mutant


MMLV RTase variants.











SEQ





ID

Construct Sequence



NO:
Construct
(AA)






669
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




Q68R/
GLAVRQAPLIIPLKATSTPV




L99R/
SIKQYPMSREARLGIKPHIQ




E282D
RLLDQGILVPCQSPWNTPLR




mutations
PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTDARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






670
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




Q79R/
GLAVRQAPLIIPLKATSTPV




L99R/
SIKQYPMSQEARLGIKPHIR




E282D
RLLDQGILVPCQSPWNTPLR




mutations
PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTDARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






671
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




Q68R/
GLAVRQAPLIIPLKATSTPV




Q79R/
SIKQYPMSREARLGIKPHIR




E282D
RLLDQGILVPCQSPWNTPLL




mutations
PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTDARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






672
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




Q68R/
GLAVRQAPLIIPLKATSTPV




Q79R/
SIKQYPMSREARLGIKPHIR




L99R
RLLDQGILVPCQSPWNTPLR




mutations
PVKKPGTNDYRPVQDLREVN





KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTEARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






673
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




Q68R/
GLAVRQAPLIIPLKATSTPV




Q79R/
SIKQYPMSREARLGIKPHIR




L99R/
RLLDQGILVPCQSPWNTPLR




E282D
PVKKPGTNDYRPVQDLREVN




mutations
KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTDARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






674
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




Q68R/
GLAVRQAPLIIPLKATSTPV




Q79R/
SIKQYPMSREARLGIKPHIR




L99K/
RLLDQGILVPCQSPWNTPLK




E282D
PVKKPGTNDYRPVQDLREVN




mutations
KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTDARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






675
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




Q68R/
GLAVRQAPLIIPLKATSTPV




Q79R/
SIKQYPMSREARLGIKPHIR




L99N/
RLLDQGILVPCQSPWNTPLN




E282D
PVKKPGTNDYRPVQDLREVN




mutations
KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTDARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






676
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




Q68I/
GLAVRQAPLIIPLKATSTPV




Q79R/
SIKQYPMSIEARLGIKPHIR




L99R/
RLLDQGILVPCQSPWNTPLR




E282D
PVKKPGTNDYRPVQDLREVN




mutations
KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTDARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






677
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




Q68K/
GLAVRQAPLIIPLKATSTPV




Q79R/
SIKQYPMSKEARLGIKPHIR




L99R/
RLLDQGILVPCQSPWNTPLR




E282D
PVKKPGTNDYRPVQDLREVN




mutations
KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTDARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






678
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




Q68R/
GLAVRQAPLIIPLKATSTPV




Q79H/
SIKQYPMSREARLGIKPHIH




L99R/
RLLDQGILVPCQSPWNTPLR




E282D
PVKKPGTNDYRPVQDLREVN




mutations
KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTDARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






679
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




Q68R/
GLAVRQAPLIIPLKATSTPV




Q79I/
SIKQYPMSREARLGIKPHII




L99R/
RLLDQGILVPCQSPWNTPLR




E282D
PVKKPGTNDYRPVQDLREVN




mutations
KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTDARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






680
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




Q68R/
GLAVRQAPLIIPLKATSTPV




Q79R/
SIKQYPMSREARLGIKPHIR




L99R/
RLLDQGILVPCQSPWNTPLR




E282M
PVKKPGTNDYRPVQDLREVN




mutations
KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTMARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






681
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




Q68R/
GLAVRQAPLIIPLKATSTPV




Q79R/
SIKQYPMSREARLGIKPHIR




L99R/
RLLDQGILVPCQSPWNTPLR




E282W
PVKKPGTNDYRPVQDLREVN




mutations
KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTWARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






682
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




161K/
GLAVRQAPLIIPLKATSTPV




Q68R/
SKKQYPMSREARLGIKPHIR




Q79R/
RLLDQGILVPCQSPWNTPLR




L99R/
PVKKPGTNDYRPVQDLREVN




E282D
KRVEDIHPTVPNPYNLLSGL




mutations
PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTDARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






683
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




161M/
GLAVRQAPLIIPLKATSTPV




Q68R/
SMKQYPMSREARLGIKPHIR




Q79R/
RLLDQGILVPCQSPWNTPLR




L99R/
PVKKPGTNDYRPVQDLREVN




E282D
KRVEDIHPTVPNPYNLLSGL




mutations
PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTDARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDL





TKPFELFVDEKQGYAKGVLT





QKLGPWRRPVAYLSKKLDPV





AAGWPPCLRMVAAIAVLTKD





AGKLTMGQPLVILAPHAVEA





LVKQPPDRWLSNARMTHYQA





LLLDTDRVQFGPVVALNPAT





LLPLPEEGLQHNCLDILAEA





HGTRPDLTDQPLPDADHTWY





TGGSSLLQEGQRKAGAAVTT





ETEVIWAKALPAGTSAQRAQ





LIALTQALKMAEGKKLNVYT





NSRYAFATAHIHGEIYRRRG





LLTSEGKEIKNKDEILALLK





ALFLPKRLSIIHCPGHQKGH





SAEARGNRMADQAARKAAIT





ETPDTSTLLIENSSPYTSEH





F






684
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




Q68I/
GLAVRQAPLIIPLKATSTPV




Q79H/
SIKQYPMSIEARLGIKPHIH




L99K/
RLLDQGILVPCQSPWNTPLK




E282M
PVKKPGTNDYRPVQDLREVN




mutations
KRVEDIHPTVPNPYNLLSGL





PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTMARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF






685
MMLV RTase
MTLNIEDEHRLHETSKEPDV




with
SLGSTWLSDFPQAWAETGGM




I61M/
GLAVRQAPLIIPLKATSTPV




Q68I/
SMKQYPMSIEARLGIKPHIH




Q79H/
RLLDQGILVPCQSPWNTPLK




L99K/
PVKKPGTNDYRPVQDLREVN




E282M
KRVEDIHPTVPNPYNLLSGL




mutations
PPSHQWYTVLDLKDAFFCLR





LHPTSQPLFAFEWRDPEMGI





SGQLTWTRLPQGFKNSPTLF





DEALHRDLADFRIQHPDLIL





LQYVDDLLLAATSELDCQQG





TRALLQTLGNLGYRASAKKA





QICQKQVKYLGYLLKEGQRW





LTMARKETVMGQPTPKTPRQ





LREFLGTAGFCRLWIPGFAE





MAAPLYPLTKTGTLFNWGPD





QQKAYQEIKQALLTAPALGL





PDLTKPFELFVDEKQGYAKG





VLTQKLGPWRRPVAYLSKKL





DPVAAGWPPCLRMVAAIAVL





TKDAGKLTMGQPLVILAPHA





VEALVKQPPDRWLSNARMTH





YQALLLDTDRVQFGPVVALN





PATLLPLPEEGLQHNCLDIL





AEAHGTRPDLTDQPLPDADH





TWYTGGSSLLQEGQRKAGAA





VTTETEVIWAKALPAGTSAQ





RAQLIALTQALKMAEGKKLN





VYTNSRYAFATAHIHGEIYR





RRGLLTSEGKEIKNKDEILA





LLKALFLPKRLSIIHCPGHQ





KGHSAEARGNRMADQAARKA





AITETPDTSTLLIENSSPYT





SEHF










c. Expression and Purification of MMLV RTase and Mutant Variants


A colony with the appropriate strain was used to inoculate TB media (200 mL) with kanamycin (0.05 mg/mL) and grown at 37° C. until an OD of approximately 0.9 was achieved followed by cooling of the flask for 30 minutes at 4° C. Protein expression was induced by the addition of 1 M IPTG (100 μL), followed by growth at 18° C. for 21 hours. Cells were harvested by spinning samples at 4,700×g for 10 minutes.


Cell pellets were re-suspended in a lysis buffer (50 mM NaPO4, pH 7.8, 5% glycerol, 300 mM NaCl, 10 mM imidazole, 5 mM DTT, 0.01% n-ocyl-β-D-glucopyranoside, DNaseI, 10 mM CaCl2), lysozyme (1 mg/mL), and protease inhibitor). The sample was lysed on an Avestin Emulsiflex C3 pre-chilled to 4° C. at 15-20 kpsi with three passes. Cell debris was removed by centrifuging the lysate at 16,000×g for 30 minutes at 4° C.


Cleared lysates were applied to a HisTrap HP column (Cytiva Life Sciences, Cat #17524701). The resin was equilibrated with MMLV His-Bind buffer (50 mM NaPO4, pH 7.8, 5% glycerol, 0.3 M NaCl, 10 mM imidazole, 1 mM DTT and 0.01% IGEPAL-CA), followed by sample loading. The samples were washed with MMLV His-Bind buffer, followed by a 25% B wash (B=MMLV His Elution buffer=50 mM NaPO4, pH 7.8, 5% glycerol, 0.3 M NaCl, 250 mM imidazole, 1 mM DTT and 0.01% IGEPAL-CA). The sample was eluted with 100% B for 10 CVs in 45 mL fractions.


Purified proteins were applied to a HiTrap Heparin HP column (Cytiva Life Sciences, Cat #17040601). The resin was equilibrated with MMLV Heparin-Bind buffer (50 mM Tris HCl pH 8.5, 75 mM NaCl, 1 mM DTT, 5% glycerol and 0.01% IGEPAL-CA), followed by sample loading. The sample was washed with MLV Heparin Bind buffer, followed by a 25% B wash (B=MLV Heparin Elution Buffer). The sample was eluted with 60% B for 10 CVs in 45 mL fractions.


Purified proteins were applied to a Bio-Scale™ Mini CHT™ Cartridge (Bio-Rad Laboratories, Cat #7324322). The resin was washed with 1 M NaOH, followed by equilibration with MMLV Heparin-Bind buffer and sample loading. The sample was washed with MLV Heparin Elution buffer, followed by MMLV Heparin Bind buffer. The sample was linearly eluted to 100% B2 (B2=MMLV HA Elution Buffer=250 mM KPO4 pH 7.5, 1 mM DTT, 5% glycerol and 0.01% IGEPAL-CA) for 15 CVs in 5 mL fractions.


Fractions containing purified protein were pooled and dialyzed in MMLV Storage Buffer (50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 1 mM DTT, 50% (v/v) glycerol).


d. Evaluation of Ability of Purified MMLV RTase Mutant Variants to Synthesize DNA by Gene Specific Priming


MMLV RTase base construct and MMLV RTase mutant variants evaluated as described in Example 3. Temperatures were adjusted for both two-step and one-step reactions to 55 and 60° C., respectively. The two-step and one-step reactions for MMLV RTase base construct and MMLV RTase mutant variants were analyzed and reported by Ct output from the qPCR (see Tables 13 and 14).


Six of the seventeen MMLV RTase triple or more mutant variants were found to exhibit increased overall activity and thermostability as compared to the other MMLV RTase stacked mutant variants, and almost all of the MMLV RTase stacked mutant variants exhibited increased overall activity and thermostability as compared to the MMLV RTase base construct. The six MMLV RTase mutant variants that were found to exhibit the highest overall activity were Q68R/L99R, Q68R/Q79R/L99R, Q68R/Q79R/L99R/E282D, Q68R/Q79R/L99K/E282D, Q68R/Q79R/L99R/E282W, I61M/Q68R/Q79R/L99R/E282D and Q68I/Q79H/L99K/E282M.









TABLE 13







Two-Step cDNA synthesis by MMLV RT triple and more


mutants. Data was generated via qPCR human normalizer


assay and data is reported by Ct value.











Concentration
Ct
Ct Standard


MMLV RT Variant
of RTase (nM)
Mean
Deviation













MMLV-II
0.625
25.520
0.047


MMLV-II L99R/E282D
0.625
24.332
0.060


MMLV-II Q68R/L99R
0.625
22.207
0.097


MMLV-II Q79R/L99R
0.625
23.789
0.012


MMLV-II Q68R/Q79R
0.625
23.629
0.038


MMLV-II Q68R/L99R/E282D
0.625
22.855
0.079


MMLV-II Q79R/L99R/E282D
0.625
23.095
0.035


MMLV-II Q68R/Q79R/E282D
0.625
22.526
0.027


MMLV-II Q68R/Q79R/L99R
0.625
22.099
0.018


MMLV-II
0.625
21.056
0.023


Q68R/Q79R/L99R/E282D


MMLV-II
0.625
21.833
0.031


Q68R/Q79R/L99K/E282D


MMLV-II
0.625
23.607
0.031


Q68R/Q79R/L99N/E282D


MMLV-II
0.625
23.858
0.029


Q68I/Q79R/L99R/E282D


MMLV-II
0.625
22.615
0.054


Q68K/Q79R/L99R/E282D


MMLV-II
0.625
28.866
0.008


Q68R/Q79H/L99R/E282D


MMLV-II
0.625
23.283
0.085


Q68R/Q79I/L99R/E282D


MMLV-II
0.625
25.073
0.097


Q68R/Q79R/L99R/E282M


MMLV-II
0.625
22.331
0.048


Q68R/Q79R/L99R/E282W


MMLV-II
0.625
23.271
0.065


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
0.625
22.133
0.018


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
0.625
23.344
0.037


Q68I/Q79H/L99K/E282M


MMLV-II
0.625
25.255
0.058


I61M/Q68I/Q79H/L99K/E282M


MMLV-II
2.5
22.154
0.052


MMLV-II L99R/E282D
2.5
21.501
0.054


MMLV-II Q68R/L99R
2.5
21.151
0.048


MMLV-II Q79R/L99R
2.5
21.229
0.163


MMLV-II Q68R/Q79R
2.5
21.228
0.054


MMLV-II Q68R/L99R/E282D
2.5
21.126
0.030


MMLV-II Q79R/L99R/E282D
2.5
21.418
0.033


MMLV-II Q68R/Q79R/E282D
2.5
21.011
0.052


MMLV-II Q68R/Q79R/L99R
2.5
20.953
0.041


MMLV-II
2.5
21.113
0.108


Q68R/Q79R/L99R/E282D


MMLV-II
2.5
20.906
0.081


Q68R/Q79R/L99K/E282D


MMLV-II
2.5
21.196
0.029


Q68R/Q79R/L99N/E282D


MMLV-II
2.5
21.369
0.009


Q68I/Q79R/L99R/E282D


MMLV-II
2.5
20.960
0.030


Q68K/Q79R/L99R/E282D


MMLV-II
2.5
26.167
0.038


Q68R/Q79H/L99R/E282D


MMLV-II
2.5
21.012
0.056


Q68R/Q79I/L99R/E282D


MMLV-II
2.5
21.277
0.036


Q68R/Q79R/L99R/E282M


MMLV-II
2.5
20.944
0.020


Q68R/Q79R/L99R/E282W


MMLV-II
2.5
21.320
0.009


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
2.5
21.095
0.013


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
2.5
21.329
0.047


Q68I/Q79H/L99K/E282M


MMLV-II
2.5
22.159
0.031


I61M/Q68I/Q79H/L99K/E282M


MMLV-II
10
21.575
0.101


MMLV-II L99R/E282D
10
21.546
0.041


MMLV-II Q68R/L99R
10
21.343
0.021


MMLV-II Q79R/L99R
10
21.387
0.016


MMLV-II Q68R/Q79R
10
21.147
0.032


MMLV-II Q68R/L99R/E282D
10
21.265
0.076


MMLV-II Q79R/L99R/E282D
10
21.250
0.036


MMLV-II Q68R/Q79R/E282D
10
21.135
0.015


MMLV-II Q68R/Q79R/L99R
10
21.051
0.036


MMLV-II
10
21.159
0.065


Q68R/Q79R/L99R/E282D


MMLV-II
10
21.056
0.032


Q68R/Q79R/L99K/E282D


MMLV-II
10
21.180
0.052


Q68R/Q79R/L99N/E282D


MMLV-II
10
21.068
0.069


Q68I/Q79R/L99R/E282D


MMLV-II
10
21.065
0.053


Q68K/Q79R/L99R/E282D


MMLV-II
10
21.683
0.075


Q68R/Q79H/L99R/E282D


MMLV-II
10
21.152
0.064


Q68R/Q79I/L99R/E282D


MMLV-II
10
21.029
0.055


Q68R/Q79R/L99R/E282M


MMLV-II
10
21.214
0.052


Q68R/Q79R/L99R/E282W


MMLV-II
10
21.391
0.051


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
10
21.307
0.038


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
10
21.583
0.019


Q68I/Q79H/L99K/E282M


MMLV-II
10
21.759
0.029


I61M/Q68I/Q79H/L99K/E282M
















TABLE 14







One-Step cDNA synthesis by MMLV RT triple and more


mutants. Data was generated via qPCR human normalizer


assay and data is reported by Ct value.











Concentration
Ct
Ct Standard


MMLV RT Variant
of RTase (nM)
Mean
Deviation













MMLV-II
0.625
22.153
0.122


MMLV-II L99R/E282D
0.625
21.713
0.111


MMLV-II Q68R/L99R
0.625
21.334
0.167


MMLV-II Q79R/L99R
0.625
21.398
0.069


MMLV-II Q68R/Q79R
0.625
21.546
0.096


MMLV-II Q68R/L99R/E282D
0.625
21.112
0.149


MMLV-II Q79R/L99R/E282D
0.625
21.260
0.104


MMLV-II Q68R/Q79R/E282D
0.625
21.014
0.102


MMLV-II Q68R/Q79R/L99R
0.625
20.338
0.042


MMLV-II
0.625
19.537
0.120


Q68R/Q79R/L99R/E282D


MMLV-II
0.625
20.516
0.131


Q68R/Q79R/L99K/E282D


MMLV-II
0.625
20.960
0.023


Q68R/Q79R/L99N/E282D


MMLV-II
0.625
21.325
0.088


Q68I/Q79R/L99R/E282D


MMLV-II
0.625
20.602
0.038


Q68K/Q79R/L99R/E282D


MMLV-II
0.625
23.889
0.042


Q68R/Q79H/L99R/E282D


MMLV-II
0.625
21.375
0.035


Q68R/Q79I/L99R/E282D


MMLV-II
0.625
21.805
0.054


Q68R/Q79R/L99R/E282M


MMLV-II
0.625
20.229
0.085


Q68R/Q79R/L99R/E282W


MMLV-II
0.625
20.972
0.037


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
0.625
20.225
0.042


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
0.625
20.578
0.061


Q68I/Q79H/L99K/E282M


MMLV-II
0.625
21.107
0.101


I61M/Q68I/Q79H/L99K/E282M


MMLV-II
2.5
20.874
0.042


MMLV-II L99R/E282D
2.5
19.679
0.047


MMLV-II Q68R/L99R
2.5
19.152
0.024


MMLV-II Q79R/L99R
2.5
19.202
0.091


MMLV-II Q68R/Q79R
2.5
19.506
0.010


MMLV-II Q68R/L99R/E282D
2.5
19.142
0.060


MMLV-II Q79R/L99R/E282D
2.5
19.301
0.004


MMLV-II Q68R/Q79R/E282D
2.5
19.023
0.041


MMLV-II Q68R/Q79R/L99R
2.5
18.312
0.041


MMLV-II
2.5
17.867
0.099


Q68R/Q79R/L99R/E282D


MMLV-II
2.5
18.591
0.036


Q68R/Q79R/L99K/E282D


MMLV-II
2.5
19.123
0.097


Q68R/Q79R/L99N/E282D


MMLV-II
2.5
19.553
0.076


Q68I/Q79R/L99R/E282D


MMLV-II
2.5
18.771
0.113


Q68K/Q79R/L99R/E282D


MMLV-II
2.5
21.911
0.048


Q68R/Q79H/L99R/E282D


MMLV-II
2.5
19.298
0.146


Q68R/Q79I/L99R/E282D


MMLV-II
2.5
19.621
0.027


Q68R/Q79R/L99R/E282M


MMLV-II
2.5
18.219
0.103


Q68R/Q79R/L99R/E282W


MMLV-II
2.5
18.846
0.056


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
2.5
18.500
0.042


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
2.5
18.752
0.148


Q68I/Q79H/L99K/E282M


MMLV-II
2.5
19.445
0.098


I61M/Q68I/Q79H/L99K/E282M


MMLV-II
10
18.239
0.025


MMLV-II L99R/E282D
10
17.293
0.021


MMLV-II Q68R/L99R
10
17.144
0.032


MMLV-II Q79R/L99R
10
17.324
0.016


MMLV-II Q68R/Q79R
10
17.123
0.072


MMLV-II Q68R/L99R/E282D
10
17.082
0.088


MMLV-II Q79R/L99R/E282D
10
17.353
0.068


MMLV-II Q68R/Q79R/E282D
10
17.111
0.036


MMLV-II Q68R/Q79R/L99R
10
16.562
0.101


MMLV-II
10
16.492
0.066


Q68R/Q79R/L99R/E282D


MMLV-II
10
17.027
0.054


Q68R/Q79R/L99K/E282D


MMLV-II
10
17.335
0.080


Q68R/Q79R/L99N/E282D


MMLV-II
10
17.726
0.055


Q68I/Q79R/L99R/E282D


MMLV-II
10
17.144
0.140


Q68K/Q79R/L99R/E282D


MMLV-II
10
19.772
0.064


Q68R/Q79H/L99R/E282D


MMLV-II
10
17.424
0.020


Q68R/Q79I/L99R/E282D


MMLV-II
10
17.624
0.014


Q68R/Q79R/L99R/E282M


MMLV-II
10
16.629
0.080


Q68R/Q79R/L99R/E282W


MMLV-II
10
16.903
0.022


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
10
16.803
0.028


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
10
16.894
0.056


Q6I/Q79H/L99K/E282M


MMLV-II
10
17.509
0.058


I61M/Q68I/Q79H/L99K/E282M










e. Evaluation of Ability of Purified MMLV RTase Mutant Variants to Synthesize DNA by Oligo-dT or Random Priming


MMLV RTase base construct and MMLV RTase mutant variants evaluated as described in Example 3. Oligo-dT or random hexamer priming conditions were adjusted for the two-step reactions and RTase concentration was normalized to 31 nM. The two-step reactions for MMLV RTase base construct and MMLV RTase mutant variants were analyzed and reported by Ct output from the qPCR (see Tables 15 and 16).


Nine of the seventeen MMLV RTase triple or more mutant variants were found to exhibit increased overall activity and thermostability as compared to the other MMLV RTase stacked mutant variants, and almost all of the MMLV RTase stacked mutant variants exhibited increased overall activity and thermostability as compared to the MMLV RTase base construct. The nine MMLV RTase mutant variants that were found to exhibit the highest overall activity were Q79R/L99R/E282D, Q68R/Q79R/L99R, Q68R/Q79R/L99R/E282D, Q68R/Q79R/L99K/E282D, Q68R/Q79R/L99N/E282D, Q68K/Q79R/L99R/E282D, Q68R/Q79R/L99R/E282M, M61K/Q68R/Q79R/L99R/E282D and 161M/Q68R/Q79R/L99R/E282D.









TABLE 15







Two-Step cDNA synthesis by MMLV RT triple and more mutants


by Oligo-dT priming. Data was generated via qPCR human


normalizer assay and data is reported by Ct value.











Temperature of
Ct
Ct Standard


MMLV RT Variant
Reaction (° C.)
Mean
Deviation













MMLV-II
42
25.165
0.057


MMLV-II L99R/E282D
42
25.287
0.062


MMLV-II Q68R/L99R
42
25.026
0.035


MMLV-II Q79R/L99R
42
24.932
0.032


MMLV-II Q68R/Q79R
42
25.002
0.076


MMLV-II Q68R/L99R/E282D
42
24.964
0.068


MMLV-II Q79R/L99R/E282D
42
24.822
0.106


MMLV-II Q68R/Q79R/E282D
42
24.905
0.134


MMLV-II Q68R/Q79R/L99R
42
24.673
0.131


MMLV-II
42
24.523
0.111


Q68R/Q79R/L99R/E282D


MMLV-II
42
24.677
0.076


Q68R/Q79R/L99K/E282D


MMLV-II
42
24.635
0.087


Q68R/Q79R/L99N/E282D


MMLV-II
42
25.010
0.074


Q68I/Q79R/L99R/E282D


MMLV-II
42
24.676
0.066


Q68K/Q79R/L99R/E282D


MMLV-II
42
28.929
0.021


Q68R/Q79H/L99R/E282D


MMLV-II
42
24.932
0.039


Q68R/Q79I/L99R/E282D


MMLV-II
42
24.900
0.113


Q68R/Q79R/L99R/E282M


MMLV-II
42
24.967
0.091


Q68R/Q79R/L99R/E282W


MMLV-II
42
24.597
0.076


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
42
24.833
0.007


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
42
25.440
0.048


Q68I/Q79H/L99K/E282M


MMLV-II
42
25.679
0.050


I61M/Q68I/Q79H/L99K/E282M


MMLV-II
55
34.223
0.406


MMLV-II L99R/E282D
55
34.732
3.729


MMLV-II Q68R/L99R
55
31.509
0.169


MMLV-II Q79R/L99R
55
31.831
0.019


MMLV-II Q68R/Q79R
55
32.633
1.094


MMLV-II Q68R/L99R/E282D
55
32.089
0.075


MMLV-II Q79R/L99R/E282D
55
32.134
0.081


MMLV-II Q68R/Q79R/E282D
55
34.639
3.791


MMLV-II Q68R/Q79R/L99R
55
29.559
0.029


MMLV-II
55
28.013
0.136


Q68R/Q79R/L99R/E282D


MMLV-II
55
29.712
0.090


Q68R/Q79R/L99K/E282D


MMLV-II
55
30.442
0.224


Q68R/Q79R/L99N/E282D


MMLV-II
55
32.857
0.378


Q68I/Q79R/L99R/E282D


MMLV-II
55
31.186
0.630


Q68K/Q79R/L99R/E282D


MMLV-II
55
37.338
1.882


Q68R/Q79H/L99R/E282D


MMLV-II
55
31.830
0.120


Q68R/Q79I/L99R/E282D


MMLV-II
55
31.682
0.181


Q68R/Q79R/L99R/E282M


MMLV-II
55
32.256
0.228


Q68R/Q79R/L99R/E282W


MMLV-II
55
30.362
0.129


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
55
31.473
0.070


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
55
32.892
0.286


Q68I/Q79H/L99K/E282M


MMLV-II
55
33.872
0.131


I61M/Q68I/Q79H/L99K/E282M
















TABLE 16







Two-Step cDNA synthesis by MMLV RT triple and more mutants


by random hexamer priming. Data was generated via qPCR human


normalizer assay and data is reported by Ct value.











Temperature of
Ct
Ct Standard


MMLV RT Variant
Reaction (° C.)
Mean
Deviation













MMLV-II
42
24.675
0.054


MMLV-II L99R/E282D
42
24.864
0.043


MMLV-II Q68R/L99R
42
24.577
0.066


MMLV-II Q79R/L99R
42
24.630
0.103


MMLV-II Q68R/Q79R
42
24.496
0.050


MMLV-II Q68R/L99R/E282D
42
24.549
0.059


MMLV-II Q79R/L99R/E282D
42
24.625
0.013


MMLV-II Q68R/Q79R/E282D
42
24.623
0.083


MMLV-II Q68R/Q79R/L99R
42
24.494
0.070


MMLV-II
42
24.422
0.035


Q68R/Q79R/L99R/E282D


MMLV-II
42
24.517
0.066


Q68R/Q79R/L99K/E282D


MMLV-II
42
24.324
0.059


Q68R/Q79R/L99N/E282D


MMLV-II
42
24.488
0.070


Q68I/Q79R/L99R/E282D


MMLV-II
42
24.501
0.041


Q68K/Q79R/L99R/E282D


MMLV-II
42
26.574
0.029


Q68R/Q79H/L99R/E282D


MMLV-II
42
24.496
0.055


Q68R/Q79I/L99R/E282D


MMLV-II
42
24.382
0.043


Q68R/Q79R/L99R/E282M


MMLV-II
42
24.617
0.109


Q68R/Q79R/L99R/E282W


MMLV-II
42
24.391
0.045


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
42
24.426
0.028


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
42
24.660
0.027


Q68I/Q79H/L99K/E282M


MMLV-II
42
24.949
0.052


I61M/Q68I/Q79H/L99K/E282M


MMLV-II
55
32.082
0.095


MMLV-II L99R/E282D
55
31.612
0.190


MMLV-II Q68R/L99R
55
30.349
0.041


MMLV-II Q79R/L99R
55
30.494
0.094


MMLV-II Q68R/Q79R
55
29.735
0.153


MMLV-II Q68R/L99R/E282D
55
30.724
0.045


MMLV-II Q79R/L99R/E282D
55
30.774
0.152


MMLV-II Q68R/Q79R/E282D
55
30.232
0.079


MMLV-II Q68R/Q79R/L99R
55
28.270
0.340


MMLV-II
55
26.673
0.143


Q68R/Q79R/L99R/E282D


MMLV-II
55
28.258
0.018


Q68R/Q79R/L99K/E282D


MMLV-II
55
28.973
0.116


Q68R/Q79R/L99N/E282D


MMLV-II
55
31.617
0.071


Q68I/Q79R/L99R/E282D


MMLV-II
55
28.994
0.110


Q68K/Q79R/L99R/E282D


MMLV-II
55
35.664
0.695


Q68R/Q79H/L99R/E282D


MMLV-II
55
30.265
0.116


Q68R/Q79I/L99R/E282D


MMLV-II
55
29.765
0.059


Q68R/Q79R/L99R/E282M


MMLV-II
55
30.535
0.424


Q68R/Q79R/L99R/E282W


MMLV-II
55
28.878
0.038


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
55
29.778
0.081


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
55
31.836
0.222


Q68I/Q79H/L99K/E282M


MMLV-II
55
31.984
0.223


I61M/Q68I/Q79H/L99K/E282M










f. Evaluation of Ability of Purified MMLV RTase Mutant Variants to Synthesize DNA Over a Wide Range of Temperatures


MMLV RTase base construct and MMLV RTase mutant variants evaluated as described in Example 3. Oligo-dT or random hexamer priming conditions and reaction temperatures were adjusted for the two-step reactions and RTase concentration was normalized to 31 nM. The two-step reactions for MMLV RTase base construct and MMLV RTase mutant variants were analyzed and reported by Ct output from the qPCR (see Tables 17 and 18).


Six of the nine MMLV RTase triple or more mutant variants were found to exhibit high overall activity as compared to the other MMLV RTase stacked mutant variants over a wide range of temperatures, spanning from 37.0 to 65° C., regardless of which priming method used. All of the MMLV RTase stacked mutant variants exhibited increased overall activity and thermostability as compared to the MMLV RTase base construct. The six MMLV RTase mutant variants that were found to exhibit the highest overall activity at a wide range of temperatures were Q68R/Q79R/L99R, Q68R/Q79R/L99R/E282D, Q68R/Q79R/L99K/E282D, Q68R/Q79R/L99N/E282D, 161K/Q68R/Q79R/L99R/E282D and 161 M/Q68R/Q79R/L99R/E282D.









TABLE 17







Two-Step cDNA synthesis by MMLV RT triple and more mutants


by Oligo-dT priming. Data was generated via qPCR human


normalizer assay and data is reported by Ct value.











Temperature of
Ct
Ct Standard


MMLV RT Variant
Reaction (° C.)
Mean
Deviation













MMLV-II
37.0
26.593
0.020


MMLV-II Q79R/L99R/E282D
37.0
25.713
0.024


MMLV-II Q68R/Q79R/L99R
37.0
25.164
0.059


MMLV-II
37.0
25.163
0.035


Q68R/Q79R/L99R/E282D


MMLV-II
37.0
25.135
0.078


Q68R/Q79R/L99K/E282D


MMLV-II
37.0
25.693
0.048


Q68R/Q79R/L99N/E282D


MMLV-II
37.0
25.491
0.062


Q68K/Q79R/L99R/E282D


MMLV-II
37.0
25.450
0.083


Q68R/Q79R/L99R/E282M


MMLV-II
37.0
25.094
0.071


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
37.0
25.356
0.034


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
37.8
26.623
0.062


MMLV-II Q79R/L99R/E282D
37.8
25.516
0.078


MMLV-II Q68R/Q79R/L99R
37.8
25.251
0.094


MMLV-II
37.8
24.987
0.050


Q68R/Q79R/L99R/E282D


MMLV-II
37.8
25.093
0.084


Q68R/Q79R/L99K/E282D


MMLV-II
37.8
25.273
0.095


Q68R/Q79R/L99N/E282D


MMLV-II
37.8
25.310
0.079


Q68K/Q79R/L99R/E282D


MMLV-II
37.8
25.545
0.044


Q68R/Q79R/L99R/E282M


MMLV-II
37.8
25.144
0.196


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
37.8
25.302
0.035


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
39.5
26.430
0.074


MMLV-II Q79R/L99R/E282D
39.5
25.067
0.026


MMLV-II Q68R/Q79R/L99R
39.5
25.138
0.050


MMLV-II
39.5
24.788
0.022


Q68R/Q79R/L99R/E282D


MMLV-II
39.5
24.842
0.071


Q68R/Q79R/L99K/E282D


MMLV-II
39.5
24.892
0.042


Q68R/Q79R/L99N/E282D


MMLV-II
39.5
25.047
0.038


Q68K/Q79R/L99R/E282D


MMLV-II
39.5
25.249
0.081


Q68R/Q79R/L99R/E282M


MMLV-II
39.5
24.845
0.130


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
39.5
25.130
0.072


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
42.0
25.485
0.052


MMLV-II Q79R/L99R/E282D
42.0
24.941
0.024


MMLV-II Q68R/Q79R/L99R
42.0
24.848
0.101


MMLV-II
42.0
24.802
0.009


Q68R/Q79R/L99R/E282D


MMLV-II
42.0
24.805
0.008


Q68R/Q79R/L99K/E282D


MMLV-II
42.0
24.744
0.076


Q68R/Q79R/L99N/E282D


MMLV-II
42.0
24.893
0.073


Q68K/Q79R/L99R/E282D


MMLV-II
42.0
24.968
0.031


Q68R/Q79R/L99R/E282M


MMLV-II
42.0
24.933
0.088


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
42.0
24.821
0.045


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
45.2
25.776
0.028


MMLV-II Q79R/L99R/E282D
45.2
24.902
0.034


MMLV-II Q68R/Q79R/L99R
45.2
24.792
0.055


MMLV-II
45.2
24.705
0.092


Q68R/Q79R/L99R/E282D


MMLV-II
45.2
24.791
0.009


Q68R/Q79R/L99K/E282D


MMLV-II
45.2
24.890
0.071


Q68R/Q79R/L99N/E282D


MMLV-II
45.2
25.420
0.101


Q68K/Q79R/L99R/E282D


MMLV-II
45.2
25.196
0.086


Q68R/Q79R/L99R/E282M


MMLV-II
45.2
24.823
0.079


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
45.2
24.720
0.006


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
47.8
27.932
0.049


MMLV-II Q79R/L99R/E282D
47.8
24.858
0.063


MMLV-II Q68R/Q79R/L99R
47.8
24.685
0.095


MMLV-II
47.8
24.689
0.067


Q68R/Q79R/L99R/E282D


MMLV-II
47.8
24.620
0.072


Q68R/Q79R/L99K/E282D


MMLV-II
47.8
24.780
0.039


Q68R/Q79R/L99N/E282D


MMLV-II
47.8
24.855
0.018


Q68K/Q79R/L99R/E282D


MMLV-II
47.8
24.961
0.040


Q68R/Q79R/L99R/E282M


MMLV-II
47.8
24.681
0.076


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
47.8
24.759
0.055


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
49.2
30.393
0.118


MMLV-II Q79R/L99R/E282D
49.2
24.974
0.090


MMLV-II Q68R/Q79R/L99R
49.2
24.794
0.056


MMLV-II
49.2
24.720
0.100


Q68R/Q79R/L99R/E282D


MMLV-II
49.2
25.007
0.096


Q68R/Q79R/L99K/E282D


MMLV-II
49.2
25.304
0.147


Q68R/Q79R/L99N/E282D


MMLV-II
49.2
25.273
0.066


Q68K/Q79R/L99R/E282D


MMLV-II
49.2
25.560
0.019


Q68R/Q79R/L99R/E282M


MMLV-II
49.2
24.719
0.177


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
49.2
25.123
0.034


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
50.0
30.870
0.210


MMLV-II Q79R/L99R/E282D
50.0
26.677
0.090


MMLV-II Q68R/Q79R/L99R
50.0
25.381
0.049


MMLV-II
50.0
24.820
0.064


Q68R/Q79R/L99R/E282D


MMLV-II
50.0
25.348
0.098


Q68R/Q79R/L99K/E282D


MMLV-II
50.0
25.287
0.064


Q68R/Q79R/L99N/E282D


MMLV-II
50.0
25.208
0.085


Q68K/Q79R/L99R/E282D


MMLV-II
50.0
25.790
0.051


Q68R/Q79R/L99R/E282M


MMLV-II
50.0
24.840
0.071


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
50.0
25.317
0.042


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
51.0
27.914
0.002


MMLV-II Q79R/L99R/E282D
51.0
25.561
0.069


MMLV-II Q68R/Q79R/L99R
51.0
25.225
0.069


MMLV-II
51.0
24.726
0.034


Q68R/Q79R/L99R/E282D


MMLV-II
51.0
25.324
0.071


Q68R/Q79R/L99K/E282D


MMLV-II
51.0
25.157
0.062


Q68R/Q79R/L99N/E282D


MMLV-II
51.0
25.275
0.039


Q68K/Q79R/L99R/E282D


MMLV-II
51.0
25.938
0.095


Q68R/Q79R/L99R/E282M


MMLV-II
51.0
25.821
0.072


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
51.0
25.053
0.044


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
51.9
28.602
0.059


MMLV-II Q79R/L99R/E282D
51.9
25.975
0.024


MMLV-II Q68R/Q79R/L99R
51.9
25.256
0.075


MMLV-II
51.9
24.903
0.050


Q68R/Q79R/L99R/E282D


MMLV-II
51.9
25.163
0.169


Q68R/Q79R/L99K/E282D


MMLV-II
51.9
25.272
0.011


Q68R/Q79R/L99N/E282D


MMLV-II
51.9
25.491
0.075


Q68K/Q79R/L99R/E282D


MMLV-II
51.9
25.878
0.038


Q68R/Q79R/L99R/E282M


MMLV-II
51.9
26.071
0.044


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
51.9
25.419
0.067


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
53.8
26.412
0.082


MMLV-II Q79R/L99R/E282D
53.8
25.558
0.063


MMLV-II Q68R/Q79R/L99R
53.8
24.969
0.065


MMLV-II
53.8
25.356
0.063


Q68R/Q79R/L99R/E282D


MMLV-II
53.8
25.460
0.056


Q68R/Q79R/L99K/E282D


MMLV-II
53.8
25.769
0.118


Q68R/Q79R/L99N/E282D


MMLV-II
53.8
26.251
0.103


Q68K/Q79R/L99R/E282D


MMLV-II
53.8
26.310
0.174


Q68R/Q79R/L99R/E282M


MMLV-II
53.8
25.701
0.106


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
53.8
26.412
0.082


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
56.5
29.343
0.085


MMLV-II Q79R/L99R/E282D
56.5
26.885
0.083


MMLV-II Q68R/Q79R/L99R
56.5
25.736
0.015


MMLV-II
56.5
25.223
0.016


Q68R/Q79R/L99R/E282D


MMLV-II
56.5
25.900
0.039


Q68R/Q79R/L99K/E282D


MMLV-II
56.5
25.930
0.031


Q68R/Q79R/L99N/E282D


MMLV-II
56.5
25.869
0.204


Q68K/Q79R/L99R/E282D


MMLV-II
56.5
26.622
0.067


Q68R/Q79R/L99R/E282M


MMLV-II
56.5
25.817
0.089


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
56.5
26.290
0.009


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
59.9
29.693
0.047


MMLV-II Q79R/L99R/E282D
59.9
27.820
0.014


MMLV-II Q68R/Q79R/L99R
59.9
26.069
0.057


MMLV-II
59.9
25.374
0.061


Q68R/Q79R/L99R/E282D


MMLV-II
59.9
26.066
0.053


Q68R/Q79R/L99K/E282D


MMLV-II
59.9
25.873
0.018


Q68R/Q79R/L99N/E282D


MMLV-II
59.9
26.278
0.073


Q68K/Q79R/L99R/E282D


MMLV-II
59.9
27.068
0.075


Q68R/Q79R/L99R/E282M


MMLV-II
59.9
26.863
0.025


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
59.9
26.176
0.072


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
62.6
29.731
0.092


MMLV-II Q79R/L99R/E282D
62.6
27.161
0.035


MMLV-II Q68R/Q79R/L99R
62.6
25.929
0.026


MMLV-II
62.6
25.303
0.074


Q68R/Q79R/L99R/E282D


MMLV-II
62.6
25.907
0.003


Q68R/Q79R/L99K/E282D


MMLV-II
62.6
26.145
0.053


Q68R/Q79R/L99N/E282D


MMLV-II
62.6
26.181
0.056


Q68K/Q79R/L99R/E282D


MMLV-II
62.6
27.134
0.015


Q68R/Q79R/L99R/E282M


MMLV-II
62.6
26.025
0.178


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
62.6
26.304
0.041


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
64.2
26.809
0.080


MMLV-II Q79R/L99R/E282D
64.2
27.325
0.038


MMLV-II Q68R/Q79R/L99R
64.2
26.131
0.018


MMLV-II
64.2
25.542
0.135


Q68R/Q79R/L99R/E282D


MMLV-II
64.2
26.408
0.093


Q68R/Q79R/L99K/E282D


MMLV-II
64.2
26.734
0.040


Q68R/Q79R/L99N/E282D


MMLV-II
64.2
30.589
0.128


Q68K/Q79R/L99R/E282D


MMLV-II
64.2
26.262
0.090


Q68R/Q79R/L99R/E282M


MMLV-II
64.2
27.594
0.118


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
64.2
27.062
0.051


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
65.0
30.277
0.050


MMLV-II Q79R/L99R/E282D
65.0
27.119
0.065


MMLV-II Q68R/Q79R/L99R
65.0
26.078
0.025


MMLV-II
65.0
25.583
0.068


Q68R/Q79R/L99R/E282D


MMLV-II
65.0
25.906
0.080


Q68R/Q79R/L99K/E282D


MMLV-II
65.0
26.943
0.058


Q68R/Q79R/L99N/E282D


MMLV-II
65.0
26.413
0.067


Q68K/Q79R/L99R/E282D


MMLV-II
65.0
28.233
0.075


Q68R/Q79R/L99R/E282M


MMLV-II
65.0
25.778
0.129


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
65.0
27.345
0.015


I61M/Q68R/Q79R/L99R/E282D
















TABLE 18







Two-Step cDNA synthesis by MMLV RT triple and more mutants


by random hexamer priming. Data was generated via qPCR human


normalizer assay and data is reported by Ct value.











Temperature of
Ct
Ct Standard


MMLV RT Variant
Reaction (° C.)
Mean
Deviation





MMLV-II
37.0
25.827
0.120


MMLV-II Q79R/L99R/E282D
37.0
25.616
0.094


MMLV-II Q68R/Q79R/L99R
37.0
24.747
0.041


MMLV-II
37.0
24.595
0.034


Q68R/Q79R/L99R/E282D


MMLV-II
37.0
24.917
0.078


Q68R/Q79R/L99K/E282D


MMLV-II
37.0
24.817
0.024


Q68R/Q79R/L99N/E282D


MMLV-II
37.0
24.757
0.032


Q68K/Q79R/L99R/E282D


MMLV-II
37.0
24.754
0.062


Q68R/Q79R/L99R/E282M


MMLV-II
37.0
24.883
0.106


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
37.0
24.776
0.028


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
37.8
25.609
0.038


MMLV-II Q79R/L99R/E282D
37.8
25.300
0.061


MMLV-II Q68R/Q79R/L99R
37.8
24.822
0.037


MMLV-II
37.8
24.690
0.044


Q68R/Q79R/L99R/E282D


MMLV-II
37.8
24.884
0.033


Q68R/Q79R/L99K/E282D


MMLV-II
37.8
24.665
0.022


Q68R/Q79R/L99N/E282D


MMLV-II
37.8
24.846
0.021


Q68K/Q79R/L99R/E282D


MMLV-II
37.8
24.882
0.043


Q68R/Q79R/L99R/E282M


MMLV-II
37.8
24.846
0.059


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
37.8
24.723
0.023


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
39.5
25.455
0.020


MMLV-II Q79R/L99R/E282D
39.5
24.790
0.109


MMLV-II Q68R/Q79R/L99R
39.5
24.712
0.050


MMLV-II
39.5
24.543
0.005


Q68R/Q79R/L99R/E282D


MMLV-II
39.5
24.714
0.035


Q68R/Q79R/L99K/E282D


MMLV-II
39.5
24.520
0.084


Q68R/Q79R/L99N/E282D


MMLV-II
39.5
24.752
0.047


Q68K/Q79R/L99R/E282D


MMLV-II
39.5
24.850
0.054


Q68R/Q79R/L99R/E282M


MMLV-II
39.5
24.698
0.059


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
39.5
24.682
0.024


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
42.0
25.136
0.034


MMLV-II Q79R/L99R/E282D
42.0
24.760
0.052


MMLV-II Q68R/Q79R/L99R
42.0
24.637
0.037


MMLV-II
42.0
24.449
0.008


Q68R/Q79R/L99R/E282D


MMLV-II
42.0
24.650
0.068


Q68R/Q79R/L99K/E282D


MMLV-II
42.0
24.477
0.055


Q68R/Q79R/L99N/E282D


MMLV-II
42.0
24.624
0.029


Q68K/Q79R/L99R/E282D


MMLV-II
42.0
24.627
0.044


Q68R/Q79R/L99R/E282M


MMLV-II
42.0
24.718
0.083


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
42.0
24.532
0.021


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
45.2
25.079
0.017


MMLV-II Q79R/L99R/E282D
45.2
24.624
0.026


MMLV-II Q68R/Q79R/L99R
45.2
24.525
0.021


MMLV-II
45.2
24.430
0.014


Q68R/Q79R/L99R/E282D


MMLV-II
45.2
24.525
0.037


Q68R/Q79R/L99K/E282D


MMLV-II
45.2
34.853
0.705


Q68R/Q79R/L99N/E282D


MMLV-II
45.2
24.653
0.055


Q68K/Q79R/L99R/E282D


MMLV-II
45.2
24.552
0.060


Q68R/Q79R/L99R/E282M


MMLV-II
45.2
24.595
0.027


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
45.2
24.493
0.016


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
47.8
25.346
0.007


MMLV-II Q79R/L99R/E282D
47.8
24.521
0.097


MMLV-II Q68R/Q79R/L99R
47.8
24.605
0.018


MMLV-II
47.8
24.333
0.107


Q68R/Q79R/L99R/E282D


MMLV-II
47.8
24.516
0.043


Q68R/Q79R/L99K/E282D


MMLV-II
47.8
24.527
0.026


Q68R/Q79R/L99N/E282D


MMLV-II
47.8
24.539
0.064


Q68K/Q79R/L99R/E282D


MMLV-II
47.8
24.631
0.019


Q68R/Q79R/L99R/E282M


MMLV-II
47.8
24.227
0.260


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
47.8
24.441
0.030


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
49.2
25.791
0.064


MMLV-II Q79R/L99R/E282D
49.2
24.700
0.033


MMLV-II Q68R/Q79R/L99R
49.2
24.658
0.008


MMLV-II
49.2
24.471
0.069


Q68R/Q79R/L99R/E282D


MMLV-II
49.2
24.590
0.024


Q68R/Q79R/L99K/E282D


MMLV-II
49.2
24.482
0.099


Q68R/Q79R/L99N/E282D


MMLV-II
49.2
24.549
0.028


Q68K/Q79R/L99R/E282D


MMLV-II
49.2
24.753
0.030


Q68R/Q79R/L99R/E282M


MMLV-II
49.2
24.499
0.157


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
49.2
24.559
0.033


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
50.0
26.267
0.025


MMLV-II Q79R/L99R/E282D
50.0
24.729
0.047


MMLV-II Q68R/Q79R/L99R
50.0
24.462
0.040


MMLV-II
50.0
24.412
0.035


Q68R/Q79R/L99R/E282D


MMLV-II
50.0
24.438
0.090


Q68R/Q79R/L99K/E282D


MMLV-II
50.0
24.509
0.050


Q68R/Q79R/L99N/E282D


MMLV-II
50.0
24.405
0.059


Q68K/Q79R/L99R/E282D


MMLV-II
50.0
24.547
0.041


Q68R/Q79R/L99R/E282M


MMLV-II
50.0
24.504
0.005


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
50.0
24.481
0.009


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
51.0
27.277
0.058


MMLV-II Q79R/L99R/E282D
51.0
25.694
0.104


MMLV-II Q68R/Q79R/L99R
51.0
24.579
0.037


MMLV-II
51.0
24.364
0.019


Q68R/Q79R/L99R/E282D


MMLV-II
51.0
24.849
0.041


Q68R/Q79R/L99K/E282D


MMLV-II
51.0
24.899
0.121


Q68R/Q79R/L99N/E282D


MMLV-II
51.0
24.980
0.048


Q68K/Q79R/L99R/E282D


MMLV-II
51.0
25.292
0.065


Q68R/Q79R/L99R/E282M


MMLV-II
51.0
25.147
0.100


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
51.0
25.034
0.075


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
51.9
28.797
0.055


MMLV-II Q79R/L99R/E282D
51.9
26.585
0.011


MMLV-II Q68R/Q79R/L99R
51.9
25.021
0.036


MMLV-II
51.9
24.763
0.028


Q68R/Q79R/L99R/E282D


MMLV-II
51.9
25.392
0.012


Q68R/Q79R/L99K/E282D


MMLV-II
51.9
25.543
0.087


Q68R/Q79R/L99N/E282D


MMLV-II
51.9
25.549
0.058


Q68K/Q79R/L99R/E282D


MMLV-II
51.9
26.025
0.065


Q68R/Q79R/L99R/E282M


MMLV-II
51.9
26.087
0.024


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
51.9
25.756
0.054


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
53.8
30.985
0.073


MMLV-II Q79R/L99R/E282D
53.8
29.356
0.044


MMLV-II Q68R/Q79R/L99R
53.8
26.370
0.041


MMLV-II
53.8
25.580
0.049


Q68R/Q79R/L99R/E282D


MMLV-II
53.8
26.682
0.029


Q68R/Q79R/L99K/E282D


MMLV-II
53.8
26.438
0.031


Q68R/Q79R/L99N/E282D


MMLV-II
53.8
27.024
0.042


Q68K/Q79R/L99R/E282D


MMLV-II
53.8
28.314
0.051


Q68R/Q79R/L99R/E282M


MMLV-II
53.8
27.489
0.025


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
53.8
27.871
0.118


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
56.5
33.313
0.164


MMLV-II Q79R/L99R/E282D
56.5
32.626
0.113


MMLV-II Q68R/Q79R/L99R
56.5
30.047
0.089


MMLV-II
56.5
29.183
0.155


Q68R/Q79R/L99R/E282D


MMLV-II
56.5
30.750
0.051


Q68R/Q79R/L99K/E282D


MMLV-II
56.5
30.403
0.095


Q68R/Q79R/L99N/E282D


MMLV-II
56.5
31.707
0.111


Q68K/Q79R/L99R/E282D


MMLV-II
56.5
31.878
0.093


Q68R/Q79R/L99R/E282M


MMLV-II
56.5
32.235
0.291


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
56.5
32.395
0.105


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
59.9
34.408
0.498


MMLV-II Q79R/L99R/E282D
59.9
36.798
2.131


MMLV-II Q68R/Q79R/L99R
59.9
33.997
0.035


MMLV-II
59.9
32.009
0.051


Q68R/Q79R/L99R/E282D


MMLV-II
59.9
33.685
0.317


Q68R/Q79R/L99K/E282D


MMLV-II
59.9
33.083
0.163


Q68R/Q79R/L99N/E282D


MMLV-II
59.9
34.160
0.066


Q68K/Q79R/L99R/E282D


MMLV-II
59.9
33.650
0.161


Q68R/Q79R/L99R/E282M


MMLV-II
59.9
33.341
0.096


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
59.9
34.439
0.222


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
62.6
35.163
0.447


MMLV-II Q79R/L99R/E282D
62.6
37.138
1.603


MMLV-II Q68R/Q79R/L99R
62.6
34.108
0.604


MMLV-II
62.6
32.539
0.060


Q68R/Q79R/L99R/E282D


MMLV-II
62.6
34.175
0.421


Q68R/Q79R/L99K/E282D


MMLV-II
62.6
33.726
0.622


Q68R/Q79R/L99N/E282D


MMLV-II
62.6
34.376
0.408


Q68K/Q79R/L99R/E282D


MMLV-II
62.6
33.792
0.231


Q68R/Q79R/L99R/E282M


MMLV-II
62.6
33.768
0.387


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
62.6
34.428
0.085


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
64.2
37.284
0.764


MMLV-II Q79R/L99R/E282D
64.2
36.661
0.192


MMLV-II Q68R/Q79R/L99R
64.2
34.463
0.213


MMLV-II
64.2
32.992
0.023


Q68R/Q79R/L99R/E282D


MMLV-II
64.2
34.805
0.472


Q68R/Q79R/L99K/E282D


MMLV-II
64.2
34.060
0.043


Q68R/Q79R/L99N/E282D


MMLV-II
64.2
34.508
0.302


Q68K/Q79R/L99R/E282D


MMLV-II
64.2
34.481
0.078


Q68R/Q79R/L99R/E282M


MMLV-II
64.2
34.231
0.253


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
64.2
35.049
0.885


I61M/Q68R/Q79R/L99R/E282D


MMLV-II
65.0
35.809
0.511


MMLV-II Q79R/L99R/E282D
65.0
35.932
0.372


MMLV-II Q68R/Q79R/L99R
65.0
34.979
0.856


MMLV-II
65.0
33.293
0.319


Q68R/Q79R/L99R/E282D


MMLV-II
65.0
34.974
0.536


Q68R/Q79R/L99K/E282D


MMLV-II
65.0
34.862
0.268


Q68R/Q79R/L99N/E282D


MMLV-II
65.0
34.363
0.201


Q68K/Q79R/L99R/E282D


MMLV-II
65.0
34.687
0.666


Q68R/Q79R/L99R/E282M


MMLV-II
65.0
34.246
0.563


I61K/Q68R/Q79R/L99R/E282D


MMLV-II
65.0
34.872
0.467


I61M/Q68R/Q79R/L99R/E282D









Example 6: Reverse Transcriptase Mutant Evaluation by Oligo dT or Random Priming

This example demonstrates the procedure used to evaluate each mutant RTase's ability to synthesize cDNA from purified total RNA (DNased, isolated from HeLa cells) compared to the base construct of MMLV RTase. The mutant MMLV RTases were tested by two priming conditions: Oligo dT only and random hexamer priming using a standard two-step cDNA synthesis as described in Example 5.


The reactions were analyzed and reported by Ct value (Tables 19 and 20). Four mutant variants of MMLV RTase showed an increase in the overall activity using oligo dT priming compared to the base construct, Q299E, T332E and V433R. Eight mutant variants of MMLV RTase showed an increase in the overall activity using random priming compared to the base construct, P76R, L82R, I125R, Y271A, L280A, L280R, T328R and V433R.









TABLE 19







Two-Step cDNA Synthesis by MMLV-RT single mutants using


oligo dT priming. The data was generated via qPCR human


normalizer assay and data is reported by Ct value.












Ct
Ct Standard



MMLV-RT Variant
Mean
Deviation







MMLV-II
40.000
0.000



MMLV-II D209A
40.000
0.000



MMLV-II D209E
40.000
0.000



MMLV-II D209R
40.000
0.000



MMLV-II D83 A
40.000
0.000



MMLV-II D83E
40.000
0.000



MMLV-II D83R
40.000
0.000



MMLV-II E201A
40.000
0.000



MMLV-II E201D
40.000
0.000



MMLV-II E201R
40.000
0.000



MMLV-II E367A
40.000
0.000



MMLV-II E367D
40.000
0.000



MMLV-II E367R
40.000
0.000



MMLV-II E596A
40.000
0.000



MMLV-II E596D
40.000
0.000



MMLV-II E596R
40.000
0.000



MMLV-II F210A
40.000
0.000



MMLV-II F210E
40.000
0.000



MMLV-II F210R
40.000
0.000



MMLV-II F369A
40.000
0.000



MMLV-II F369E
40.000
0.000



MMLV-II F369R
40.000
0.000



MMLV-II G308A
40.000
0.000



MMLV-II G308E
40.000
0.000



MMLV-II G308R
40.000
0.000



MMLV-II G331A
40.000
0.000



MMLV-II G331E
40.000
0.000



MMLV-II G331R
40.000
0.000



MMLV-II G73A
40.000
0.000



MMLV-II G73E
40.000
0.000



MMLV-II G73R
40.000
0.000



MMLV-II H77A
40.000
0.000



MMLV-II H77E
40.000
0.000



MMLV-II H77R
40.000
0.000



MMLV-II I125A
40.000
0.000



MMLV-II I125E
40.000
0.000



MMLV-II I125R
40.000
0.000



MMLV-II I212A
40.000
0.000



MMLV-II I212E
40.000
0.000



MMLV-II I212R
40.000
0.000



MMLV-II I593A
40.000
0.000



MMLV-II I593E
40.000
0.000



MMLV-II I593R
40.000
0.000



MMLV-II I597A
40.000
0.000



MMLV-II I597E
40.000
0.000



MMLV-II I597R
40.000
0.000



MMLV-II K285A
40.000
0.000



MMLV-II K285E
40.000
0.000



MMLV-II K285R
40.000
0.000



MMLV-II K348A
40.000
0.000



MMLV-II K348E
40.000
0.000



MMLV-II K348R
40.000
0.000



MMLV-II L198A
40.000
0.000



MMLV-II L198E
40.000
0.000



MMLV-II L198R
40.000
0.000



MMLV-II L280A
40.000
0.000



MMLV-II L280E
40.000
0.000



MMLV-II L280R
40.000
0.000



MMLV-II L352A
40.000
0.000



MMLV-II L352E
40.000
0.000



MMLV-II L352R
40.000
0.000



MMLV-II L357A
40.000
0.000



MMLV-II L357E
40.000
0.000



MMLV-II L357R
40.000
0.000



MMLV-II L82A
40.000
0.000



MMLV-II L82E
40.000
0.000



MMLV-II L82R
40.000
0.000



MMLV-II N335A
39.787
0.302



MMLV-II N335E
40.000
0.000



MMLV-II N335R
40.000
0.000



MMLV-II P76A
40.000
0.000



MMLV-II P76E
40.000
0.000



MMLV-II P76R
40.000
0.000



MMLV-II Q213A
40.000
0.000



MMLV-II Q213E
40.000
0.000



MMLV-II Q213R
40.000
0.000



MMLV-II Q299A
40.000
0.000



MMLV-II Q299E
37.177
3.993



MMLV-II Q299R
40.000
0.000



MMLV-II Q654A
40.000
0.000



MMLV-II Q654E
40.000
0.000



MMLV-II Q654R
40.000
0.000



MMLV-II R205A
40.000
0.000



MMLV-II R205E
39.947
0.075



MMLV-II R205K
40.000
0.000



MMLV-II R211A
40.000
0.000



MMLV-II R211E
40.000
0.000



MMLV-II R211K
40.000
0.000



MMLV-II R311A
40.000
0.000



MMLV-II R311E
40.000
0.000



MMLV-II R311K
40.000
0.000



MMLV-II R389A
40.000
0.000



MMLV-II R389E
40.000
0.000



MMLV-II R389K
40.000
0.000



MMLV-II R650A
40.000
0.000



MMLV-II R650E
40.000
0.000



MMLV-II R650K
40.000
0.000



MMLV-II R657A
40.000
0.000



MMLV-II R657E
39.965
0.050



MMLV-II R657K
40.000
0.000



MMLV-II S67A
40.000
0.000



MMLV-II S67E
40.000
0.000



MMLV-II S67R
36.816
0.703



MMLV-II T328A
40.000
0.000



MMLV-II T328E
40.000
0.000



MMLV-II T328R
40.000
0.000



MMLV-II T332A
39.750
0.354



MMLV-II T332E
38.461
2.177



MMLV-II T332R
40.000
0.000



MMLV-II V129A
40.000
0.000



MMLV-II V129E
40.000
0.000



MMLV-II V129R
40.000
0.000



MMLV-II V433A
40.000
0.000



MMLV-II V433E
40.000
0.000



MMLV-II V433R
38.884
0.806



MMLV-II V476A
40.000
0.000



MMLV-II V476E
40.000
0.000



MMLV-II V476R
40.000
0.000



MMLV-II Y271A
40.000
0.000



MMLV-II Y271E
40.000
0.000



MMLV-II Y271R
40.000
0.000



MMLV-IV
31.467
0.190

















TABLE 20







Two-Step cDNA Synthesis by MMLV-RT single mutants using


random priming. The data was generated via qPCR human


normalizer assay and data is reported by Ct value.












Ct
Ct Standard



MMLV-RT Variant
Mean
Deviation







MMLV-II
40.000
0.000



MMLV-II D209A
40.000
0.000



MMLV-II D209E
40.000
0.000



MMLV-II D209R
40.000
0.000



MMLV-II D83A
40.000
0.000



MMLV-II D83E
40.000
0.000



MMLV-II D83R
40.000
0.000



MMLV-II E201A
40.000
0.000



MMLV-II E201D
40.000
0.000



MMLV-II E201R
40.000
0.000



MMLV-II E367A
40.000
0.000



MMLV-II E367D
40.000
0.000



MMLV-II E367R
40.000
0.000



MMLV-II E596A
40.000
0.000



MMLV-II E596D
40.000
0.000



MMLV-II E596R
40.000
0.000



MMLV-II F210A
40.000
0.000



MMLV-II F210E
40.000
0.000



MMLV-II F210R
40.000
0.000



MMLV-II F369A
40.000
0.000



MMLV-II F369E
40.000
0.000



MMLV-II F369R
40.000
0.000



MMLV-II G308A
40.000
0.000



MMLV-II G308E
40.000
0.000



MMLV-II G308R
40.000
0.000



MMLV-II G331A
40.000
0.000



MMLV-II G331E
40.000
0.000



MMLV-II G331R
40.000
0.000



MMLV-II G73A
40.000
0.000



MMLV-II G73E
40.000
0.000



MMLV-II G73R
40.000
0.000



MMLV-II H77A
39.708
0.412



MMLV-II H77E
40.000
0.000



MMLV-II H77R
40.000
0.000



MMLV-II I125A
40.000
0.000



MMLV-II I125E
40.000
0.000



MMLV-II I125R
39.449
0.779



MMLV-II I212A
40.000
0.000



MMLV-II I212E
40.000
0.000



MMLV-II I212R
40.000
0.000



MMLV-II I593A
40.000
0.000



MMLV-II I593E
40.000
0.000



MMLV-II I593R
40.000
0.000



MMLV-II I597A
40.000
0.000



MMLV-II I597E
40.000
0.000



MMLV-II I597R
40.000
0.000



MMLV-II K285A
40.000
0.000



MMLV-II K285E
40.000
0.000



MMLV-II K285R
39.783
0.308



MMLV-II K348A
40.000
0.000



MMLV-II K348E
40.000
0.000



MMLV-II K348R
40.000
0.000



MMLV-II L198A
40.000
0.000



MMLV-II L198E
40.000
0.000



MMLV-II L198R
40.000
0.000



MMLV-II L280A
39.503
0.703



MMLV-II L280E
40.000
0.000



MMLV-II L280R
38.762
1.751



MMLV-II L352A
39.778
0.313



MMLV-II L352E
40.000
0.000



MMLV-II L352R
40.000
0.000



MMLV-II L357A
40.000
0.000



MMLV-II L357E
40.000
0.000



MMLV-II L357R
40.000
0.000



MMLV-II L82A
40.000
0.000



MMLV-II L82E
39.673
0.462



MMLV-II L82R
38.926
1.518



MMLV-II N335A
39.876
0.175



MMLV-II N335E
40.000
0.000



MMLV-II N335R
39.861
0.196



MMLV-II P76A
40.000
0.000



MMLV-II P76E
40.000
0.000



MMLV-II P76R
39.535
0.658



MMLV-II Q213A
40.000
0.000



MMLV-II Q213E
40.000
0.000



MMLV-II Q213R
40.000
0.000



MMLV-II Q299A
40.000
0.000



MMLV-II Q299E
40.000
0.000



MMLV-II Q299R
40.000
0.000



MMLV-II Q654A
40.000
0.000



MMLV-II Q654E
40.000
0.000



MMLV-II Q654R
40.000
0.000



MMLV-II R205A
39.811
0.267



MMLV-II R205E
40.000
0.000



MMLV-II R205K
40.000
0.000



MMLV-II R211A
40.000
0.000



MMLV-II R211E
40.000
0.000



MMLV-II R211K
40.000
0.000



MMLV-II R311A
40.000
0.000



MMLV-II R311E
40.000
0.000



MMLV-II R311K
40.000
0.000



MMLV-II R389A
40.000
0.000



MMLV-II R389E
40.000
0.000



MMLV-II R389K
40.000
0.000



MMLV-II R650A
40.000
0.000



MMLV-II R650E
40.000
0.000



MMLV-II R650K
40.000
0.000



MMLV-II R657A
40.000
0.000



MMLV-II R657E
40.000
0.000



MMLV-II R657K
40.000
0.000



MMLV-II S67A
40.000
0.000



MMLV-II S67E
39.435
0.800



MMLV-II S67R
38.209
0.977



MMLV-II T328A
40.000
0.000



MMLV-II T328E
40.000
0.000



MMLV-II T328R
39.478
0.739



MMLV-II T332A
40.000
0.000



MMLV-II T332E
40.000
0.000



MMLV-II T332R
40.000
0.000



MMLV-II V129A
40.000
0.000



MMLV-II V129E
40.000
0.000



MMLV-II V129R
40.000
0.000



MMLV-II V433A
40.000
0.000



MMLV-II V433E
40.000
0.000



MMLV-II V433R
38.071
1.452



MMLV-II V476A
40.000
0.000



MMLV-II V476E
40.000
0.000



MMLV-II V476R
40.000
0.000



MMLV-II Y271A
39.466
0.755



MMLV-II Y271E
40.000
0.000



MMLV-II Y271R
40.000
0.000



MMLV-IV
31.850
0.183










In addition to the increased activity demonstrated in the MMLV RTase mutations Q299E, T332E, and V433R (Table 19), and the MMLV RTase mutations P76R, L82R, I125R, Y271A, L280A, L280R, T328R, and V433R (Table 20), further MMLV RTase mutations were selected by rational design and introduced by site-directed mutagenesis using standard PCR conditions and primers (Table 21).









TABLE 21







Sequences of primers used for cloning of MMLV RTase


base construct and mutants into pET28b. All primers were


ordered as DNA oligos from Integrated DNA Technologies.









SEQ ID




NO:
Primer Name
Primer Sequence (5′-3′)





700
MMLV V433R
AGTTGACGATGGGTCAACCCTTACGTATCTTGGCTCCA



SDM F
CATGCTGTAGA





701
MMLV V433R
TCTACAGCATGTGGAGCCAAGATACGTAAGGGTTGAC



SDM R
CCATCGTCAACT





702
MMLV I593E
CGTTATGCTTTTGCAACAGCGCATGAGCATGGCGAAA



SDM F
TTTACCGCCGC





703
MMLV I593E
GCGGCGGTAAATTTCGCCATGCTCATGCGCTGTTGCAA



SDM R
AAGCATAACG





704
MMLV Q299E
TACGCCTAAGACGCCACGCGAGTTGCGTGAATTTTTG



SDM F
GGCACAGC





705
MMLV Q299E
GCTGTGCCCAAAAATTCACGCAACTCGCGTGGCGTCTT



SDM R
AGGCGTA





706
MMLV L82Y
GATTAAGCCACATATTCAGCGCTTGTATGACCAGGGG



SDM F
ATCTTGGTCC





707
MMLV L82Y
GGACCAAGATCCCCTGGTCATACAAGCGCTGAATATG



SDM R
TGGCTTAATC





708
MMLV L280I
TGCTGAAAGAAGGTCAACGTTGGATCACTGAAGCGCG



SDM F
TAAGGAGACC





709
MMLV L280I
GGTCTCCTTACGCGCTTCAGTGATCCAACGTTGACCTT



SDM R
CTTTCAGCA





710
MMLV V433N
AGTTGACGATGGGTCAACCCTTAAACATCTTGGCTCCA



SDM F
CATGCTGTAGA





711
MMLV V433N
TCTACAGCATGTGGAGCCAAGATGTTTAAGGGTTGAC



SDM R
CCATCGTCAACT





712
MMLV I593W
CGTTATGCTTTTGCAACAGCGCATTGGCATGGCGAAAT



SDM F
TTACCGCCGC





713
MMLV I593W
GCGGCGGTAAATTTCGCCATGCCAATGCGCTGTTGCA



SDM R
AAAGCATAACG





714
MMLV T306K
GCCAGTTGCGTGAATTTTTGGGCAAAGCGGGATTCTGT



TOP
CGTTTATGGATTCC





715
MMLV T306K
GGAATCCATAAACGACAGAATCCCGCTTTGCCCAAAA



BTM
ATTCACGCAACTGGC









The resulting plasmids were transformed into E. coli BL21(DE3) cells for protein expression and proteins isolated through affinity and ion exchange chromatography (Table 22).









TABLE 22







Sequences of MMLV RTase base construct and mutant MMLV RTase


constructs.









SEQ ID NO:
Construct
Construct Sequence (DNA: 5′-3′ or AA)





716
MMLV-II RTase
ATGACTTTAAATATTGAGGATGAGCATCGTTTA




CATGAGACATCAAAAGAACCCGACGTGAGCTTA




GGGTCAACGTGGCTTTCTGACTTCCCCCAGGCG




TGGGCGGAGACTGGCGGAATGGGGTTAGCTGTC




CGCCAAGCACCGTTGATCATCCCGTTAAAGGCA




ACGTCTACACCTGTCTCTATCAAACAGTACCCC




ATGAGTCAAGAGGCCCGCCTGGGGATTAAGCCA




CATATTCAGCGCTTGCTGGACCAGGGGATCTTG




GTCCCATGTCAATCTCCGTGGAACACCCCCCTT




CTGCCCGTGAAAAAGCCAGGTACAAACGATTAT




CGTCCAGTTCAAGATCTTCGCGAGGTCAACAAA




CGCGTAGAAGACATCCATCCGACTGTACCTAAT




CCTTATAATCTGTTATCAGGCCTGCCCCCATCG




CACCAATGGTATACAGTATTAGACTTGAAAGAC




GCGTTCTTTTGCCTGCGTCTGCACCCAACGTCT




CAGCCGCTGTTTGCGTTCGAATGGCGTGATCCT




GAAATGGGAATTTCGGGTCAGTTAACCTGGACT




CGTCTGCCCCAGGGCTTTAAAAACAGCCCCACA




TTGTTCGATGAAGCACTTCACCGTGACTTAGCA




GACTTCCGTATCCAACACCCAGACTTAATTCTG




TTACAGTATGTTGACGACCTTTTGTTGGCGGCA




ACGTCTGAACTTGACTGTCAGCAAGGCACACGC




GCGTTATTACAAACGTTAGGTAACTTAGGATAT




CGTGCGTCCGCGAAAAAGGCGCAAATTTGTCAA




AAACAGGTAAAGTACCTTGGGTATTTGCTGAAA




GAAGGTCAACGTTGGCTGACTGAAGCGCGTAAG




GAGACCGTAATGGGGCAGCCTACGCCTAAGACG




CCACGCCAGTTGCGTGAATTTTTGGGCACAGCG




GGATTCTGTCGTTTATGGATTCCTGGGTTCGCT




GAAATGGCTGCACCCCTGTACCCCTTAACAAAA




ACAGGGACGCTTTTCAACTGGGGGCCAGACCAG




CAAAAGGCGTATCAGGAGATCAAACAAGCTTTG




TTGACCGCACCCGCGTTGGGTCTTCCGGATTTA




ACCAAGCCCTTTGAGCTGTTCGTTGATGAAAAA




CAGGGATATGCAAAAGGAGTATTAACCCAAAAG




TTAGGCCCGTGGCGTCGCCCTGTTGCTTACTTG




AGTAAAAAATTGGATCCTGTCGCAGCAGGATGG




CCACCGTGCTTGCGTATGGTCGCGGCAATTGCC




GTTTTGACAAAGGATGCAGGTAAGTTGACGATG




GGTCAACCCTTAGTAATCTTGGCTCCACATGCT




GTAGAAGCGTTAGTAAAGCAGCCCCCAGACCGC




TGGCTTTCTAATGCGCGCATGACCCACTATCAG




GCGCTTCTGCTTGATACGGATCGTGTACAATTT




GGACCAGTTGTAGCTTTGAATCCAGCTACTTTG




CTTCCCCTTCCAGAAGAAGGACTTCAGCACAAT




TGTTTAGATATTCTGGCCGAGGCACATGGGACG




CGCCCTGATTTGACGGATCAGCCACTGCCTGAT




GCCGACCATACATGGTATACTGGCGGCAGTAGT




CTTCTTCAAGAGGGGCAACGCAAGGCGGGAGCA




GCCGTCACTACGGAGACCGAAGTTATCTGGGCC




AAAGCGTTACCCGCGGGAACATCCGCGCAACGT




GCACAGTTAATCGCTCTGACACAGGCCCTGAAG




ATGGCAGAGGGCAAAAAGTTGAATGTCTACACC




AACTCACGTTATGCTTTTGCAACAGCGCATATC




CATGGCGAAATTTACCGCCGCCGTGGTCTGCTG




ACTAGTGAGGGTAAGGAAATTAAAAATAAAGAT




GAGATTCTTGCGTTGTTAAAAGCTTTATTCTTA




CCAAAACGCCTTTCGATCATTCATTGCCCGGGG




CATCAAAAGGGTCACTCAGCGGAGGCTCGTGGA




AACCGTATGGCGGACCAAGCTGCCCGTAAGGCG




GCGATCACAGAGACCCCGGATACATCAACGCTG




TTGATCGAAAACAGCTCTCCCTACACTAGCGAG




CATTTTTAA





717
MMLV-II RTase
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA




WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP




MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





718
MMLV-II
ATGACTTTAAATATTGAGGATGAGCATCGTTTA



Q68R/Q79R/L99R/
CATGAGACATCAAAAGAACCCGACGTGAGCTTA



E282D/Q299E/V433N/
GGGTCAACGTGGCTTTCTGACTTCCCCCAGGCG



I593W
TGGGCGGAGACTGGCGGAATGGGGTTAGCTGTC




CGCCAAGCACCGTTGATCATCCCGTTAAAGGCA




ACGTCTACACCTGTCTCTATCAAACAGTACCCC




ATGAGTCGTGAGGCCCGCCTGGGGATTAAGCCA




CATATTCGTCGCTTGCTGGACCAGGGGATCTTG




GTCCCATGTCAATCTCCGTGGAACACCCCCCTT




CGTCCCGTGAAAAAGCCAGGTACAAACGATTAT




CGTCCAGTTCAAGATCTTCGCGAGGTCAACAAA




CGCGTAGAAGACATCCATCCGACTGTACCTAAT




CCTTATAATCTGTTATCAGGCCTGCCCCCATCG




CACCAATGGTATACAGTATTAGACTTGAAAGAC




GCGTTCTTTTGCCTGCGTCTGCACCCAACGTCT




CAGCCGCTGTTTGCGTTCGAATGGCGTGATCCT




GAAATGGGAATTTCGGGTCAGTTAACCTGGACT




CGTCTGCCCCAGGGCTTTAAAAACAGCCCCACA




TTGTTCGATGAAGCACTTCACCGTGACTTAGCA




GACTTCCGTATCCAACACCCAGACTTAATTCTG




TTACAGTATGTTGACGACCTTTTGTTGGCGGCA




ACGTCTGAACTTGACTGTCAGCAAGGCACACGC




GCGTTATTACAAACGTTAGGTAACTTAGGATAT




CGTGCGTCCGCGAAAAAGGCGCAAATTTGTCAA




AAACAGGTAAAGTACCTTGGGTATTTGCTGAAA




GAAGGTCAACGTTGGCTGACTGATGCGCGTAAG




GAGACCGTAATGGGGCAGCCTACGCCTAAGACG




CCACGCGAATTGCGTGAATTTTTGGGCACAGCG




GGATTCTGTCGTTTATGGATTCCTGGGTTCGCT




GAAATGGCTGCACCCCTGTACCCCTTAACAAAA




ACAGGGACGCTTTTCAACTGGGGGCCAGACCAG




CAAAAGGCGTATCAGGAGATCAAACAAGCTTTG




TTGACCGCACCCGCGTTGGGTCTTCCGGATTTA




ACCAAGCCCTTTGAGCTGTTCGTTGATGAAAAA




CAGGGATATGCAAAAGGAGTATTAACCCAAAAG




TTAGGCCCGTGGCGTCGCCCTGTTGCTTACTTG




AGTAAAAAATTGGATCCTGTCGCAGCAGGATGG




CCACCGTGCTTGCGTATGGTCGCGGCAATTGCC




GTTTTGACAAAGGATGCAGGTAAGTTGACGATG




GGTCAACCCTTACGTATCTTGGCTCCACATGCT




GTAGAAGCGTTAGTAAAGCAGCCCCCAGACCGC




TGGCTTTCTAATGCGCGCATGACCCACTATCAG




GCGCTTCTGCTTGATACGGATCGTGTACAATTT




GGACCAGTTGTAGCTTTGAATCCAGCTACTTTG




CTTCCCCTTCCAGAAGAAGGACTTCAGCACAAT




TGTTTAGATATTCTGGCCGAGGCACATGGGACG




CGCCCTGATTTGACGGATCAGCCACTGCCTGAT




GCCGACCATACATGGTATACTGGCGGCAGTAGT




CTTCTTCAAGAGGGGCAACGCAAGGCGGGAGCA




GCCGTCACTACGGAGACCGAAGTTATCTGGGCC




AAAGCGTTACCCGCGGGAACATCCGCGCAACGT




GCACAGTTAATCGCTCTGACACAGGCCCTGAAG




ATGGCAGAGGGCAAAAAGTTGAATGTCTACACC




AACTCACGTTATGCTTTTGCAACAGCGCATTGG




CATGGCGAAATTTACCGCCGCCGTGGTCTGCTG




ACTAGTGAGGGTAAGGAAATTAAAAATAAAGAT




GAGATTCTTGCGTTGTTAAAAGCTTTATTCTTA




CCAAAACGCCTTTCGATCATTCATTGCCCGGGG




CATCAAAAGGGTCACTCAGCGGAGGCTCGTGGA




AACCGTATGGCGGACCAAGCTGCCCGTAAGGCG




GCGATCACAGAGACCCCGGATACATCAACGCTG




TTGATCGAAAACAGCTCTCCCTACACTAGCGAG




CATTTT





719
MMLV-II
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R/L99R/
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



E282D/Q299E/V433N/
MSREARLGIKPHIRRLLDQGILVPCQSPWNTPL



I593W
RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKI




PRELREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLRILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHW




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





720
MMLV-II
ATGACTTTAAATATTGAGGATGAGCATCGTTTA



Q68R/Q79R/L99R/
CATGAGACATCAAAAGAACCCGACGTGAGCTTA



L2801/E282D/Q299E/
GGGTCAACGTGGCTTTCTGACTTCCCCCAGGCG



V433N/I593W
TGGGCGGAGACTGGCGGAATGGGGTTAGCTGTC




CGCCAAGCACCGTTGATCATCCCGTTAAAGGCA




ACGTCTACACCTGTCTCTATCAAACAGTACCCC




ATGAGTCGTGAGGCCCGCCTGGGGATTAAGCCA




CATATTCGTCGCTTGCTGGACCAGGGGATCTTG




GTCCCATGTCAATCTCCGTGGAACACCCCCCTT




CGTCCCGTGAAAAAGCCAGGTACAAACGATTAT




CGTCCAGTTCAAGATCTTCGCGAGGTCAACAAA




CGCGTAGAAGACATCCATCCGACTGTACCTAAT




CCTTATAATCTGTTATCAGGCCTGCCCCCATCG




CACCAATGGTATACAGTATTAGACTTGAAAGAC




GCGTTCTTTTGCCTGCGTCTGCACCCAACGTCT




CAGCCGCTGTTTGCGTTCGAATGGCGTGATCCT




GAAATGGGAATTTCGGGTCAGTTAACCTGGACT




CGTCTGCCCCAGGGCTTTAAAAACAGCCCCACA




TTGTTCGATGAAGCACTTCACCGTGACTTAGCA




GACTTCCGTATCCAACACCCAGACTTAATTCTG




TTACAGTATGTTGACGACCTTTTGTTGGCGGCA




ACGTCTGAACTTGACTGTCAGCAAGGCACACGC




GCGTTATTACAAACGTTAGGTAACTTAGGATAT




CGTGCGTCCGCGAAAAAGGCGCAAATTTGTCAA




AAACAGGTAAAGTACCTTGGGTATTTGCTGAAA




GAAGGTCAACGTTGGATTACTGATGCGCGTAAG




GAGACCGTAATGGGGCAGCCTACGCCTAAGACG




CCACGCGAATTGCGTGAATTTTTGGGCACAGCG




GGATTCTGTCGTTTATGGATTCCTGGGTTCGCT




GAAATGGCTGCACCCCTGTACCCCTTAACAAAA




ACAGGGACGCTTTTCAACTGGGGGCCAGACCAG




CAAAAGGCGTATCAGGAGATCAAACAAGCTTTG




TTGACCGCACCCGCGTTGGGTCTTCCGGATTTA




ACCAAGCCCTTTGAGCTGTTCGTTGATGAAAAA




CAGGGATATGCAAAAGGAGTATTAACCCAAAAG




TTAGGCCCGTGGCGTCGCCCTGTTGCTTACTTG




AGTAAAAAATTGGATCCTGTCGCAGCAGGATGG




CCACCGTGCTTGCGTATGGTCGCGGCAATTGCC




GTTTTGACAAAGGATGCAGGTAAGTTGACGATG




GGTCAACCCTTACGTATCTTGGCTCCACATGCT




GTAGAAGCGTTAGTAAAGCAGCCCCCAGACCGC




TGGCTTTCTAATGCGCGCATGACCCACTATCAG




GCGCTTCTGCTTGATACGGATCGTGTACAATTT




GGACCAGTTGTAGCTTTGAATCCAGCTACTTTG




CTTCCCCTTCCAGAAGAAGGACTTCAGCACAAT




TGTTTAGATATTCTGGCCGAGGCACATGGGACG




CGCCCTGATTTGACGGATCAGCCACTGCCTGAT




GCCGACCATACATGGTATACTGGCGGCAGTAGT




CTTCTTCAAGAGGGGCAACGCAAGGCGGGAGCA




GCCGTCACTACGGAGACCGAAGTTATCTGGGCC




AAAGCGTTACCCGCGGGAACATCCGCGCAACGT




GCACAGTTAATCGCTCTGACACAGGCCCTGAAG




ATGGCAGAGGGCAAAAAGTTGAATGTCTACACC




ACTCACGTTATGCTTTTGCAACAGCGCATTGG




CATGGCGAAATTTACCGCCGCCGTGGTCTGCTG




ACTAGTGAGGGTAAGGAAATTAAAAATAAAGAT




GAGATTCTTGCGTTGTTAAAAGCTTTATTCTTA




CCAAAACGCCTTTCGATCATTCATTGCCCGGGG




CATCAAAAGGGTCACTCAGCGGAGGCTCGTGGA




AACCGTATGGCGGACCAAGCTGCCCGTAAGGCG




GCGATCACAGAGACCCCGGATACATCAACGCTG




TTGATCGAAAACAGCTCTCCCTACACTAGCGAG




CATTTT





721
MMLV-II
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R/L99R/
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



L280I/E282D/Q299E/
MSREARLGIKPHIRRLLDQGILVPCQSPWNTPL



V433N/I593W
RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWITDARKETVMGQPTPKT




PRELREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLRILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHW




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





722
MMLV-II
ATGACTTTAAATATTGAGGATGAGCATCGTTTA



Q68R/Q79R/L82Y/
CATGAGACATCAAAAGAACCCGACGTGAGCTTA



L99R/L280I/E282D/
GGGTCAACGTGGCTTTCTGACTTCCCCCAGGCG



Q299E/V433N/I593W
TGGGCGGAGACTGGCGGAATGGGGTTAGCTGTC




CGCCAAGCACCGTTGATCATCCCGTTAAAGGCA




ACGTCTACACCTGTCTCTATCAAACAGTACCCC




ATGAGTCGTGAGGCCCGCCTGGGGATTAAGCCA




CATATTCGTCGCTTGTATGACCAGGGGATCTTG




GTCCCATGTCAATCTCCGTGGAACACCCCCCTT




CGTCCCGTGAAAAAGCCAGGTACAAACGATTAT




CGTCCAGTTCAAGATCTTCGCGAGGTCAACAAA




CGCGTAGAAGACATCCATCCGACTGTACCTAAT




CCTTATAATCTGTTATCAGGCCTGCCCCCATCG




CACCAATGGTATACAGTATTAGACTTGAAAGAC




GCGTTCTTTTGCCTGCGTCTGCACCCAACGTCT




CAGCCGCTGTTTGCGTTCGAATGGCGTGATCCT




GAAATGGGAATTTCGGGTCAGTTAACCTGGACT




CGTCTGCCCCAGGGCTTTAAAAACAGCCCCACA




TTGTTCGATGAAGCACTTCACCGTGACTTAGCA




GACTTCCGTATCCAACACCCAGACTTAATTCTG




TTACAGTATGTTGACGACCTTTTGTTGGCGGCA




ACGTCTGAACTTGACTGTCAGCAAGGCACACGC




GCGTTATTACAAACGTTAGGTAACTTAGGATAT




CGTGCGTCCGCGAAAAAGGCGCAAATTTGTCAA




AAACAGGTAAAGTACCTTGGGTATTTGCTGAAA




GAAGGTCAACGTTGGATTACTGATGCGCGTAAG




GAGACCGTAATGGGGCAGCCTACGCCTAAGACG




CCACGCGAATTGCGTGAATTTTTGGGCACAGCG




GGATTCTGTCGTTTATGGATTCCTGGGTTCGCT




GAAATGGCTGCACCCCTGTACCCCTTAACAAAA




ACAGGGACGCTTTTCAACTGGGGGCCAGACCAG




CAAAAGGCGTATCAGGAGATCAAACAAGCTTTG




TTGACCGCACCCGCGTTGGGTCTTCCGGATTTA




ACCAAGCCCTTTGAGCTGTTCGTTGATGAAAAA




CAGGGATATGCAAAAGGAGTATTAACCCAAAAG




TTAGGCCCGTGGCGTCGCCCTGTTGCTTACTTG




AGTAAAAAATTGGATCCTGTCGCAGCAGGATGG




CCACCGTGCTTGCGTATGGTCGCGGCAATTGCC




GTTTTGACAAAGGATGCAGGTAAGTTGACGATG




GGTCAACCCTTACGTATCTTGGCTCCACATGCT




GTAGAAGCGTTAGTAAAGCAGCCCCCAGACCGC




TGGCTTTCTAATGCGCGCATGACCCACTATCAG




GCGCTTCTGCTTGATACGGATCGTGTACAATTT




GGACCAGTTGTAGCTTTGAATCCAGCTACTTTG




CTTCCCCTTCCAGAAGAAGGACTTCAGCACAAT




TGTTTAGATATTCTGGCCGAGGCACATGGGACG




CGCCCTGATTTGACGGATCAGCCACTGCCTGAT




GCCGACCATACATGGTATACTGGCGGCAGTAGT




CTTCTTCAAGAGGGGCAACGCAAGGCGGGAGCA




GCCGTCACTACGGAGACCGAAGTTATCTGGGCC




AAAGCGTTACCCGCGGGAACATCCGCGCAACGT




GCACAGTTAATCGCTCTGACACAGGCCCTGAAG




ATGGCAGAGGGCAAAAAGTTGAATGTCTACACC




AACTCACGTTATGCTTTTGCAACAGCGCATTGG




CATGGCGAAATTTACCGCCGCCGTGGTCTGCTG




ACTAGTGAGGGTAAGGAAATTAAAAATAAAGAT




GAGATTCTTGCGTTGTTAAAAGCTTTATTCTTA




CCAAAACGCCTTTCGATCATTCATTGCCCGGGG




CATCAAAAGGGTCACTCAGCGGAGGCTCGTGGA




AACCGTATGGCGGACCAAGCTGCCCGTAAGGCG




GCGATCACAGAGACCCCGGATACATCAACGCTG




TTGATCGAAAACAGCTCTCCCTACACTAGCGAG




CATTTT





723
MMLV-II
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R/L82Y/
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



L99R/L280I/E282D/
MSREARLGIKPHIRRLYDQGILVPCQSPWNTPL



Q299E/V433N/I593W
RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWITDARKETVMGQPTPKT




PRELREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLRILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHW




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





724
MMLV-II
ATGACTTTAAATATTGAGGATGAGCATCGTTTA



Q68R/Q79R/L82Y/
CATGAGACATCAAAAGAACCCGACGTGAGCTTA



L99R/L280I/E282D/
GGGTCAACGTGGCTTTCTGACTTCCCCCAGGCG



Q299E/T306K/V433N/
TGGGCGGAGACTGGCGGAATGGGGTTAGCTGTC



I593W
CGCCAAGCACCGTTGATCATCCCGTTAAAGGCA




ACGTCTACACCTGTCTCTATCAAACAGTACCCC




ATGAGTCGTGAGGCCCGCCTGGGGATTAAGCCA




CATATTCGTCGCTTGTATGACCAGGGGATCTTG




GTCCCATGTCAATCTCCGTGGAACACCCCCCTT




CGTCCCGTGAAAAAGCCAGGTACAAACGATTAT




CGTCCAGTTCAAGATCTTCGCGAGGTCAACAAA




CGCGTAGAAGACATCCATCCGACTGTACCTAAT




CCTTATAATCTGTTATCAGGCCTGCCCCCATCG




CACCAATGGTATACAGTATTAGACTTGAAAGAC




GCGTTCTTTTGCCTGCGTCTGCACCCAACGTCT




CAGCCGCTGTTTGCGTTCGAATGGCGTGATCCT




GAAATGGGAATTTCGGGTCAGTTAACCTGGACT




CGTCTGCCCCAGGGCTTTAAAAACAGCCCCACA




TTGTTCGATGAAGCACTTCACCGTGACTTAGCA




GACTTCCGTATCCAACACCCAGACTTAATTCTG




TTACAGTATGTTGACGACCTTTTGTTGGCGGCA




ACGTCTGAACTTGACTGTCAGCAAGGCACACGC




GCGTTATTACAAACGTTAGGTAACTTAGGATAT




CGTGCGTCCGCGAAAAAGGCGCAAATTTGTCAA




AAACAGGTAAAGTACCTTGGGTATTTGCTGAAA




GAAGGTCAACGTTGGATTACTGATGCGCGTAAG




GAGACCGTAATGGGGCAGCCTACGCCTAAGACG




CCACGCGAATTGCGTGAATTTTTGGGCAAAGCG




GGATTCTGTCGTTTATGGATTCCTGGGTTCGCT




GAAATGGCTGCACCCCTGTACCCCTTAACAAAA




ACAGGGACGCTTTTCAACTGGGGGCCAGACCAG




CAAAAGGCGTATCAGGAGATCAAACAAGCTTTG




TTGACCGCACCCGCGTTGGGTCTTCCGGATTTA




ACCAAGCCCTTTGAGCTGTTCGTTGATGAAAAA




CAGGGATATGCAAAAGGAGTATTAACCCAAAAG




TTAGGCCCGTGGCGTCGCCCTGTTGCTTACTTG




AGTAAAAAATTGGATCCTGTCGCAGCAGGATGG




CCACCGTGCTTGCGTATGGTCGCGGCAATTGCC




GTTTTGACAAAGGATGCAGGTAAGTTGACGATG




GGTCAACCCTTAAACATCTTGGCTCCACATGCT




GTAGAAGCGTTAGTAAAGCAGCCCCCAGACCGC




TGGCTTTCTAATGCGCGCATGACCCACTATCAG




GCGCTTCTGCTTGATACGGATCGTGTACAATTT




GGACCAGTTGTAGCTTTGAATCCAGCTACTTTG




CTTCCCCTTCCAGAAGAAGGACTTCAGCACAAT




TGTTTAGATATTCTGGCCGAGGCACATGGGACG




CGCCCTGATTTGACGGATCAGCCACTGCCTGAT




GCCGACCATACATGGTATACTGGCGGCAGTAGT




CTTCTTCAAGAGGGGCAACGCAAGGCGGGAGCA




GCCGTCACTACGGAGACCGAAGTTATCTGGGCC




AAAGCGTTACCCGCGGGAACATCCGCGCAACGT




GCACAGTTAATCGCTCTGACACAGGCCCTGAAG




ATGGCAGAGGGCAAAAAGTTGAATGTCTACACC




AACTCACGTTATGCTTTTGCAACAGCGCATTGG




CATGGCGAAATTTACCGCCGCCGTGGTCTGCTG




ACTAGTGAGGGTAAGGAAATTAAAAATAAAGAT




GAGATTCTTGCGTTGTTAAAAGCTTTATTCTTA




CCAAAACGCCTTTCGATCATTCATTGCCCGGGG




CATCAAAAGGGTCACTCAGCGGAGGCTCGTGGA




AACCGTATGGCGGACCAAGCTGCCCGTAAGGCG




GCGATCACAGAGACCCCGGATACATCAACGCTG




TTGATCGAAAACAGCTCTCCCTACACTAGCGAG




CATTTT





725
MMLV-II
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R/L82Y/
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



L99R/L280I/E282D/
MSREARLGIKPHIRRLYDQGILVPCQSPWNTPL



Q299E/T306K/V433N/
RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN



I593W
PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWITDARKETVMGQPTPKT




PRELREFLGKAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLNILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHW




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





726
MMLV-II
ATGACTTTAAATATTGAGGATGAGCATCGTTTA



Q68R/Q79R/L99R/
CATGAGACATCAAAAGAACCCGACGTGAGCTTA



E282D/Q299E/T306K/
GGGTCAACGTGGCTTTCTGACTTCCCCCAGGCG



V433R/I593E
TGGGCGGAGACTGGCGGAATGGGGTTAGCTGTC




CGCCAAGCACCGTTGATCATCCCGTTAAAGGCA




ACGTCTACACCTGTCTCTATCAAACAGTACCCC




ATGAGTCGTGAGGCCCGCCTGGGGATTAAGCCA




CATATTCGTCGCTTGCTGGACCAGGGGATCTTG




GTCCCATGTCAATCTCCGTGGAACACCCCCCTT




CGTCCCGTGAAAAAGCCAGGTACAAACGATTAT




CGTCCAGTTCAAGATCTTCGCGAGGTCAACAAA




CGCGTAGAAGACATCCATCCGACTGTACCTAAT




CCTTATAATCTGTTATCAGGCCTGCCCCCATCG




CACCAATGGTATACAGTATTAGACTTGAAAGAC




GCGTTCTTTTGCCTGCGTCTGCACCCAACGTCT




CAGCCGCTGTTTGCGTTCGAATGGCGTGATCCT




GAAATGGGAATTTCGGGTCAGTTAACCTGGACT




CGTCTGCCCCAGGGCTTTAAAAACAGCCCCACA




TTGTTCGATGAAGCACTTCACCGTGACTTAGCA




GACTTCCGTATCCAACACCCAGACTTAATTCTG




TTACAGTATGTTGACGACCTTTTGTTGGCGGCA




ACGTCTGAACTTGACTGTCAGCAAGGCACACGC




GCGTTATTACAAACGTTAGGTAACTTAGGATAT




CGTGCGTCCGCGAAAAAGGCGCAAATTTGTCAA




AAACAGGTAAAGTACCTTGGGTATTTGCTGAAA




GAAGGTCAACGTTGGCTGACTGATGCGCGTAAG




GAGACCGTAATGGGGCAGCCTACGCCTAAGACG




CCACGCGAATTGCGTGAATTTTTGGGCAAAGCG




GGATTCTGTCGTTTATGGATTCCTGGGTTCGCT




GAAATGGCTGCACCCCTGTACCCCTTAACAAAA




ACAGGGACGCTTTTCAACTGGGGGCCAGACCAG




CAAAAGGCGTATCAGGAGATCAAACAAGCTTTG




TTGACCGCACCCGCGTTGGGTCTTCCGGATTTA




ACCAAGCCCTTTGAGCTGTTCGTTGATGAAAAA




CAGGGATATGCAAAAGGAGTATTAACCCAAAAG




TTAGGCCCGTGGCGTCGCCCTGTTGCTTACTTG




AGTAAAAAATTGGATCCTGTCGCAGCAGGATGG




CCACCGTGCTTGCGTATGGTCGCGGCAATTGCC




GTTTTGACAAAGGATGCAGGTAAGTTGACGATG




GGTCAACCCTTACGTATCTTGGCTCCACATGCT




GTAGAAGCGTTAGTAAAGCAGCCCCCAGACCGC




TGGCTTTCTAATGCGCGCATGACCCACTATCAG




GCGCTTCTGCTTGATACGGATCGTGTACAATTT




GGACCAGTTGTAGCTTTGAATCCAGCTACTTTG




CTTCCCCTTCCAGAAGAAGGACTTCAGCACAAT




TGTTTAGATATTCTGGCCGAGGCACATGGGACG




CGCCCTGATTTGACGGATCAGCCACTGCCTGAT




GCCGACCATACATGGTATACTGGCGGCAGTAGT




CTTCTTCAAGAGGGGCAACGCAAGGCGGGAGCA




GCCGTCACTACGGAGACCGAAGTTATCTGGGCC




AAAGCGTTACCCGCGGGAACATCCGCGCAACGT




GCACAGTTAATCGCTCTGACACAGGCCCTGAAG




ATGGCAGAGGGCAAAAAGTTGAATGTCTACACC




AACTCACGTTATGCTTTTGCAACAGCGCATGAA




CATGGCGAAATTTACCGCCGCCGTGGTCTGCTG




ACTAGTGAGGGTAAGGAAATTAAAAATAAAGAT




GAGATTCTTGCGTTGTTAAAAGCTTTATTCTTA




CCAAAACGCCTTTCGATCATTCATTGCCCGGGG




CATCAAAAGGGTCACTCAGCGGAGGCTCGTGGA




AACCGTATGGCGGACCAAGCTGCCCGTAAGGCG




GCGATCACAGAGACCCCGGATACATCAACGCTG




TTGATCGAAAACAGCTCTCCCTACACTAGCGAG




CATTTT





727
MMLV-II
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R/L99R/
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



E282D/Q299E/T306K/
MSREARLGIKPHIRRLLDQGILVPCQSPWNTPL



V433R/I593E
RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKI




PRELREFLGKAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLRILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHE




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





728
MMLV-II
ATGACTTTAAATATTGAGGATGAGCATCGTTTA



Q68R/Q79R/L82Y/
CATGAGACATCAAAAGAACCCGACGTGAGCTTA



L99R/L280I/E282D/
GGGTCAACGTGGCTTTCTGACTTCCCCCAGGCG



Q299E/V433R/I593E
TGGGCGGAGACTGGCGGAATGGGGTTAGCTGTC




CGCCAAGCACCGTTGATCATCCCGTTAAAGGCA




ACGTCTACACCTGTCTCTATCAAACAGTACCCC




ATGAGTCGTGAGGCCCGCCTGGGGATTAAGCCA




CATATTCGTCGCTTGTATGACCAGGGGATCTTG




GTCCCATGTCAATCTCCGTGGAACACCCCCCTT




CGTCCCGTGAAAAAGCCAGGTACAAACGATTAT




CGTCCAGTTCAAGATCTTCGCGAGGTCAACAAA




CGCGTAGAAGACATCCATCCGACTGTACCTAAT




CCTTATAATCTGTTATCAGGCCTGCCCCCATCG




CACCAATGGTATACAGTATTAGACTTGAAAGAC




GCGTTCTTTTGCCTGCGTCTGCACCCAACGTCT




CAGCCGCTGTTTGCGTTCGAATGGCGTGATCCT




GAAATGGGAATTTCGGGTCAGTTAACCTGGACT




CGTCTGCCCCAGGGCTTTAAAAACAGCCCCACA




TTGTTCGATGAAGCACTTCACCGTGACTTAGCA




GACTTCCGTATCCAACACCCAGACTTAATTCTG




TTACAGTATGTTGACGACCTTTTGTTGGCGGCA




ACGTCTGAACTTGACTGTCAGCAAGGCACACGC




GCGTTATTACAAACGTTAGGTAACTTAGGATAT




CGTGCGTCCGCGAAAAAGGCGCAAATTTGTCAA




AAACAGGTAAAGTACCTTGGGTATTTGCTGAAA




GAAGGTCAACGTTGGATTACTGATGCGCGTAAG




GAGACCGTAATGGGGCAGCCTACGCCTAAGACG




CCACGCGAATTGCGTGAATTTTTGGGCACAGCG




GGATTCTGTCGTTTATGGATTCCTGGGTTCGCT




GAAATGGCTGCACCCCTGTACCCCTTAACAAAA




ACAGGGACGCTTTTCAACTGGGGGCCAGACCAG




CAAAAGGCGTATCAGGAGATCAAACAAGCTTTG




TTGACCGCACCCGCGTTGGGTCTTCCGGATTTA




ACCAAGCCCTTTGAGCTGTTCGTTGATGAAAAA




CAGGGATATGCAAAAGGAGTATTAACCCAAAAG




TTAGGCCCGTGGCGTCGCCCTGTTGCTTACTTG




AGTAAAAAATTGGATCCTGTCGCAGCAGGATGG




CCACCGTGCTTGCGTATGGTCGCGGCAATTGCC




GTTTTGACAAAGGATGCAGGTAAGTTGACGATG




GGTCAACCCTTACGTATCTTGGCTCCACATGCT




GTAGAAGCGTTAGTAAAGCAGCCCCCAGACCGC




TGGCTTTCTAATGCGCGCATGACCCACTATCAG




GCGCTTCTGCTTGATACGGATCGTGTACAATTT




GGACCAGTTGTAGCTTTGAATCCAGCTACTTTG




CTTCCCCTTCCAGAAGAAGGACTTCAGCACAAT




TGTTTAGATATTCTGGCCGAGGCACATGGGACG




CGCCCTGATTTGACGGATCAGCCACTGCCTGAT




GCCGACCATACATGGTATACTGGCGGCAGTAGT




CTTCTTCAAGAGGGGCAACGCAAGGCGGGAGCA




GCCGTCACTACGGAGACCGAAGTTATCTGGGCC




AAAGCGTTACCCGCGGGAACATCCGCGCAACGT




GCACAGTTAATCGCTCTGACACAGGCCCTGAAG




ATGGCAGAGGGCAAAAAGTTGAATGTCTACACC




AACTCACGTTATGCTTTTGCAACAGCGCATGAA




CATGGCGAAATTTACCGCCGCCGTGGTCTGCTG




ACTAGTGAGGGTAAGGAAATTAAAAATAAAGAT




GAGATTCTTGCGTTGTTAAAAGCTTTATTCTTA




CCAAAACGCCTTTCGATCATTCATTGCCCGGGG




CATCAAAAGGGTCACTCAGCGGAGGCTCGTGGA




AACCGTATGGCGGACCAAGCTGCCCGTAAGGCG




GCGATCACAGAGACCCCGGATACATCAACGCTG




TTGATCGAAAACAGCTCTCCCTACACTAGCGAG




CATTTT





729
MMLV-II
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R/L82Y/
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



L99R/L280I/E282D/
MSREARLGIKPHIRRLYDQGILVPCQSPWNTPL



Q299E/V433R/I593E
RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWITDARKETVMGQPTPKT




PRELREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLRILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHE




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





730
MMLV-II
ATGACTTTAAATATTGAGGATGAGCATCGTTTA



Q68R/Q79R/L82Y/
CATGAGACATCAAAAGAACCCGACGTGAGCTTA



L99R/L280I/E282D/
GGGTCAACGTGGCTTTCTGACTTCCCCCAGGCG



Q299E/T306K/V433R/
TGGGCGGAGACTGGCGGAATGGGGTTAGCTGTC



I593E
CGCCAAGCACCGTTGATCATCCCGTTAAAGGCA




ACGTCTACACCTGTCTCTATCAAACAGTACCCC




ATGAGTCGTGAGGCCCGCCTGGGGATTAAGCCA




CATATTCGTCGCTTGTATGACCAGGGGATCTTG




GTCCCATGTCAATCTCCGTGGAACACCCCCCTT




CGTCCCGTGAAAAAGCCAGGTACAAACGATTAT




CGTCCAGTTCAAGATCTTCGCGAGGTCAACAAA




CGCGTAGAAGACATCCATCCGACTGTACCTAAT




CCTTATAATCTGTTATCAGGCCTGCCCCCATCG




CACCAATGGTATACAGTATTAGACTTGAAAGAC




GCGTTCTTTTGCCTGCGTCTGCACCCAACGTCT




CAGCCGCTGTTTGCGTTCGAATGGCGTGATCCT




GAAATGGGAATTTCGGGTCAGTTAACCTGGACT




CGTCTGCCCCAGGGCTTTAAAAACAGCCCCACA




TTGTTCGATGAAGCACTTCACCGTGACTTAGCA




GACTTCCGTATCCAACACCCAGACTTAATTCTG




TTACAGTATGTTGACGACCTTTTGTTGGCGGCA




ACGTCTGAACTTGACTGTCAGCAAGGCACACGC




GCGTTATTACAAACGTTAGGTAACTTAGGATAT




CGTGCGTCCGCGAAAAAGGCGCAAATTTGTCAA




AAACAGGTAAAGTACCTTGGGTATTTGCTGAAA




GAAGGTCAACGTTGGATTACTGATGCGCGTAAG




GAGACCGTAATGGGGCAGCCTACGCCTAAGACG




CCACGCGAATTGCGTGAATTTTTGGGCAAAGCG




GGATTCTGTCGTTTATGGATTCCTGGGTTCGCT




GAAATGGCTGCACCCCTGTACCCCTTAACAAAA




ACAGGGACGCTTTTCAACTGGGGGCCAGACCAG




CAAAAGGCGTATCAGGAGATCAAACAAGCTTTG




TTGACCGCACCCGCGTTGGGTCTTCCGGATTTA




ACCAAGCCCTTTGAGCTGTTCGTTGATGAAAAA




CAGGGATATGCAAAAGGAGTATTAACCCAAAAG




TTAGGCCCGTGGCGTCGCCCTGTTGCTTACTTG




AGTAAAAAATTGGATCCTGTCGCAGCAGGATGG




CCACCGTGCTTGCGTATGGTCGCGGCAATTGCC




GTTTTGACAAAGGATGCAGGTAAGTTGACGATG




GGTCAACCCTTACGTATCTTGGCTCCACATGCT




GTAGAAGCGTTAGTAAAGCAGCCCCCAGACCGC




TGGCTTTCTAATGCGCGCATGACCCACTATCAG




GCGCTTCTGCTTGATACGGATCGTGTACAATTT




GGACCAGTTGTAGCTTTGAATCCAGCTACTTTG




CTTCCCCTTCCAGAAGAAGGACTTCAGCACAAT




TGTTTAGATATTCTGGCCGAGGCACATGGGACG




CGCCCTGATTTGACGGATCAGCCACTGCCTGAT




GCCGACCATACATGGTATACTGGCGGCAGTAGT




CTTCTTCAAGAGGGGCAACGCAAGGCGGGAGCA




GCCGTCACTACGGAGACCGAAGTTATCTGGGCC




AAAGCGTTACCCGCGGGAACATCCGCGCAACGT




GCACAGTTAATCGCTCTGACACAGGCCCTGAAG




ATGGCAGAGGGCAAAAAGTTGAATGTCTACACC




AACTCACGTTATGCTTTTGCAACAGCGCATGAA




CATGGCGAAATTTACCGCCGCCGTGGTCTGCTG




ACTAGTGAGGGTAAGGAAATTAAAAATAAAGAT




GAGATTCTTGCGTTGTTAAAAGCTTTATTCTTA




CCAAAACGCCTTTCGATCATTCATTGCCCGGGG




CATCAAAAGGGTCACTCAGCGGAGGCTCGTGGA




AACCGTATGGCGGACCAAGCTGCCCGTAAGGCG




GCGATCACAGAGACCCCGGATACATCAACGCTG




TTGATCGAAAACAGCTCTCCCTACACTAGCGAG




CATTTT





731
MMLV-II
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R/L82Y/
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



L99R/L280I/E282D/
MSREARLGIKPHIRRLYDQGILVPCQSPWNTPL



Q299E/T306K/V433R/
RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN



I593E
PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWITDARKETVMGQPTPKT




PRELREFLGKAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLRILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHE




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF









For the standard two-step procedure, RTases (1 μL, 620 nM) were added to a reaction mixture containing RNA (20 ng), dNTPs (100 μM), oligo dT primer (5 ng/uL) or both random hexamers and oligo dT primers (5 ng/uL each), first strand synthesis buffer (1×, 50 mM potassium acetate, 20 mM tris-acetate, pH 7.9, 10 mM magnesium acetate, 0.6 M trehalose 100 μg/ml BSA, and 10 mM DTT), and SuperaseIN (0.17 U/μL) in a 20 μL volume. The reaction proceeded at 50 or 65° C. for 15 minutes, followed by 80° C. for 10 minutes.


The subsequent cDNA synthesized by the RTase mutants in this disclosure were quantified by qPCR amplification using an assay that identified the SFRS9 gene in human cells. The assay master mix was a composition of Integrated DNA Technologies PrimeTime© Gene Expression Master Mix (GEM, 1×), SFRS9 primer set (500 nM, Table 3) and SFRS9 probe (250 nM, Table 3). The assay master mix and synthesized cDNA were mixed at a 10:1 ratio for a final volume of 20 μL. The reaction proceeded on a qPCR (QuantStudio7 Flex) using the following method: 95° C. hold for 3 minutes, followed by 95° C. for 15 seconds and 60° C. for one minute for 40 cycles. The reactions were analyzed and reported by Ct value (Tables 23-25). All mutant variants of MMLV RTase showed an increase in the overall activity compared to the base construct and three mutant variants of MMLV RTase showed noteworthy activity compared to the others, Q68R/Q79R/L82Y/L99R/L280I/E282D/Q299E/T306K/V433N/I593W; Q68R/Q79R/L99R/E282D/Q299E/T306K/V433R/I593E; and Q68R/Q79R/L83Y/L99R/L280I/E282D/Q299E/T306K/V433R/I593E.









TABLE 23







Two-Step cDNA Synthesis by MMLV-RT mutants using oligo dT priming. The data was


generated via qPCR human normalizer assay and data is reported by Ct value.











RT





Temperature
Ct
Ct Standard


MMLV-RT Variant
(° C.)
Mean
Deviation





MMLV-II
50
24.873
0.043



65
35.817
0.630


MMLV-II Q68R/Q79R/L99R/E282D
50
24.932
0.058



65
36.668
0.614


MMLV-II Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E
50
24.750
0.036



65
35.782
1.366


MMLV-II Q68R/Q79R/L99R/E282D/Q299E/V433N/I593W
50
24.586
0.035



65
35.819
0.284


MMLV-II
50
24.638
0.028


Q68R/Q79R/L99R/E282D/L280EQ299E/V433N/I593W
65
34.319
0.343


MMLV-II
50
24.681
0.019


Q68R/Q79R/L82Y/L99R/E282D/L280I/Q299E/V433N/I593W
65
33.184
0.021
















TABLE 24







Two-Step cDNA Synthesis by MMLV-RT mutants using oligo dT priming. The data was


generated via qPCR human normalizer assay and data is reported by Ct value.











RT





Temperature
Ct
Ct Standard


MMLV-RT Variant
(° C.)
Mean
Deviation





MMLV-II
50
24.887
0.041



65
32.730
0.053


MMLV-II Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E
50
25.061
0.126



65
27.898
0.070


MMLV-II
50
24.849
0.101


Q68R/Q79R/L82Y/L99R/L280I/E282D/Q299E/V433N/I593W
65
26.607
0.077


MMLV-II
50
25.110
0.154


Q68R/Q79R/L82Y/L99R/L280I/E282D/Q299E/T306K/V433N/I593W
65
25.701
0.062


MMLV-II
50
24.990
0.088


Q68R/Q79R/L99R/E282D/Q299E/T306K/V433R/I593E
65
25.929
0.114


MMLV-II
50
25.133
0.114


Q68R/Q79R/L82Y/L99R/L280I/E282D/Q299E/V433R
65
27.032
0.141


I593E


MMLV-II
50
24.817
0.122


Q68R/Q79R/L82Y/L99R/L280I/E282D/Q299E/T306K/
65
25.721
0.187


V433R/I593E
















TABLE 25







Two-Step cDNA Synthesis by MMLV-RT mutants using random priming. The data was


generated via qPCR human normalizer assay and data is reported by Ct value.











RT





Temperature
Ct
Ct Standard


MMLV-RT Variant
(° C.)
Mean
Deviation





MMLV-II
50
25.048
0.075



65
32.563
0.156


MMLV-II Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E
50
25.002
0.027



65
28.062
0.106


MMLV-II
50
25.016
0.179


Q68R/Q79R/L82Y/L99R/L280I/E282D/Q299E/V433N/
65
26.724
0.040


I593W


MMLV-II
50
24.973
0.021


Q68R/Q79R/L82Y/L99R/L280I/E282D/Q299E/T306K/
65
25.732
0.061


V433N/I593W


MMLV-II
50
24.982
0.030


Q68R/Q79R/L99R/E282D/Q299E/T306K/V433R/I593E
65
26.006
0.020


MMLV-II
50
25.078
0.065


Q68R/Q79R/L82Y/L99R/L280I/E282D/Q299E/V433R/I593E
65
27.080
0.122


MMLV-II
50
25.074
0.094


Q68R/Q79R/L82Y/L99R/L280I/E282D/Q299E/T306K/
65
25.784
0.100


V433R/I593E









Example 7. Reverse Transcriptase Mutant Evaluation by Gene Specific Priming

This example demonstrates the procedure used to evaluate each mutant RTase's ability to synthesize cDNA from purified RNA ultramers (Integrated DNA Technologies) compared to the base construct of MMLV RTase. The mutant MMLV RTases were tested by a one-step addition of the RTase in GEM as described in Example 5. The reactions were analyzed and reported by Ct value (Table 26). Twelve mutant variants of MMLV RTase showed an increase in the overall activity compared to the base construct, H77A, D83E, D83R, Y271E, Q299E, G308E, F396A, V433R, I593E, I597A, and I597R.









TABLE 26







One-Step cDNA Synthesis by MMLV-RT single mutants by gene


specific priming. The data was generated via qPCR human


normalizer assay and data is reported by Ct value.












Ct
Ct Standard



MMLV-RT Variant
Mean
Deviation







MMLV-II
29.065
0.277



MMLV-II D209A
29.583
0.166



MMLV-II D209E
28.900
0.088



MMLV-II D209R
29.266
0.068



MMLV-II D83 A
29.588
0.082



MMLV-II D83E
28.499
0.087



MMLV-II D83R
28.724
0.087



MMLV-II E201A
30.692
0.173



MMLV-II E201D
29.130
0.157



MMLV-II E201R
29.333
0.141



MMLV-II E367A
31.153
0.021



MMLV-II E367D
31.070
0.187



MMLV-II E367R
34.221
0.475



MMLV-II E596A
29.150
0.121



MMLV-II E596D
30.494
0.081



MMLV-II E596R
31.787
0.227



MMLV-II F210A
33.639
0.196



MMLV-II F210E
34.982
0.065



MMLV-II F210R
37.201
1.986



MMLV-II F369A
29.055
0.063



MMLV-II F369E
36.856
0.508



MMLV-II F369R
36.149
0.308



MMLV-II G308A
30.226
0.170



MMLV-II G308E
28.772
0.121



MMLV-II G308R
40.000
0.000



MMLV-II G331A
30.412
0.137



MMLV-II G331E
31.321
0.160



MMLV-II G331R
31.340
0.020



MMLV-II G73A
30.741
0.125



MMLV-II G73E
34.319
0.369



MMLV-II G73R
29.721
0.061



MMLV-II H77A
28.581
0.070



MMLV-II H77E
29.475
0.107



MMLV-II H77R
29.726
0.120



MMLV-II I125A
29.812
0.043



MMLV-II I125E
30.712
0.147



MMLV-II I125R
30.324
0.012



MMLV-II I212A
29.586
0.086



MMLV-II I212E
29.459
0.073



MMLV-II I212R
29.037
0.092



MMLV-II I593A
30.560
0.101



MMLV-II I593E
27.779
0.056



MMLV-II I593R
29.268
0.012



MMLV-II I597A
28.983
0.024



MMLV-II I597E
29.583
0.143



MMLV-II I597R
28.671
0.103



MMLV-II K285A
32.375
0.158



MMLV-II K285E
37.065
0.044



MMLV-II K285R
30.564
0.075



MMLV-II K348A
34.241
0.516



MMLV-II K348E
34.533
0.432



MMLV-II K348R
29.703
0.225



MMLV-II L198A
31.900
0.054



MMLV-II L198E
34.193
0.167



MMLV-II L198R
30.819
0.077



MMLV-II L280A
35.724
0.175



MMLV-II L280E
40.000
0.000



MMLV-II L280R
40.000
0.000



MMLV-II L352A
28.936
0.043



MMLV-II L352E
30.177
0.059



MMLV-II L352R
29.371
0.063



MMLV-II L357A
38.802
1.694



MMLV-II L357E
40.000
0.000



MMLV-II L357R
40.000
0.000



MMLV-II L82A
31.245
0.035



MMLV-II L82E
31.384
0.122



MMLV-II L82R
29.682
0.116



MMLV-II N335A
29.668
0.086



MMLV-II N335E
29.113
0.058



MMLV-II N335R
32.323
5.429



MMLV-II P76A
29.463
0.123



MMLV-II P76E
30.030
0.163



MMLV-II P76R
29.443
0.028



MMLV-II Q213A
29.833
0.223



MMLV-II Q213E
29.677
0.196



MMLV-II Q213R
29.704
0.053



MMLV-II Q299A
31.314
0.200



MMLV-II Q299E
28.652
0.149



MMLV-II Q299R
31.711
0.062



MMLV-II Q654A
29.415
0.117



MMLV-II Q654E
30.523
0.057



MMLV-II Q654R
29.523
0.052



MMLV-II R205A
29.140
0.138



MMLV-II R205E
29.356
0.179



MMLV-II R205K
29.162
0.206



MMLV-II R211A
29.491
0.025



MMLV-II R211E
30.049
0.205



MMLV-II R211K
30.196
0.147



MMLV-II R311A
31.237
0.425



MMLV-II R311E
40.000
0.000



MMLV-II R311K
29.857
0.091



MMLV-II R389A
32.173
0.151



MMLV-II R389E
32.717
0.105



MMLV-II R389K
31.944
0.166



MMLV-II R650A
29.734
0.060



MMLV-II R650E
31.012
0.074



MMLV-II R650K
29.404
0.094



MMLV-II R657A
31.470
0.133



MMLV-II R657E
32.785
0.145



MMLV-II R657K
29.468
0.274



MMLV-II S67A
29.268
0.090



MMLV-II S67E
30.157
0.254



MMLV-II S67R
27.274
0.054



MMLV-II T328A
40.000
0.000



MMLV-II T328E
37.699
1.627



MMLV-II T328R
37.169
0.848



MMLV-II T332A
29.219
0.075



MMLV-II T332E
29.714
0.057



MMLV-II T332R
30.462
0.130



MMLV-II V129A
29.305
0.077



MMLV-II V129E
31.188
0.181



MMLV-II V129R
30.383
0.081



MMLV-II V433A
30.483
0.059



MMLV-II V433E
30.106
0.144



MMLV-II V433R
29.297
0.457



MMLV-II V476A
31.295
0.244



MMLV-II V476E
34.664
0.364



MMLV-II V476R
31.223
0.166



MMLV-II Y271A
30.854
0.086



MMLV-II Y271E
28.620
0.068



MMLV-II Y271R
33.280
0.258



MMLV-IV
26.368
0.057










Example 8. Further Stacking of Reverse Transcriptase Mutants with Enhanced Activity

This example demonstrates the procedure used to stack the enhanced mutants found in Examples 6 and 7 to further improve the MMLV RTase's ability to synthesize cDNA from purified total RNA (DNased, isolated from HeLa cells) compared to the base construct and previously found mutant MMLV RTase containing the following mutations: Q68R/Q79R/L99R/E282D. The stacked mutant MMLV RTases were cloned, overexpressed and purified as described in Examples 1 and 2 and tested as described in Examples 6 and 7. Both the two- and one-step reactions were analyzed and reported by Ct value (Tables 27-29). Six of the eight stacked mutant variants of MMLV RTase increased the overall activity and thermostability compared to the base construct, Q68R/Q79R/L99R/E282D/V433R, Q68R/Q79R/L99R/E282D/1593E, Q68R/Q79R/L99R/E282D/Q299E, Q68R/Q79R/L99R/E282D/T332E, Q68R/L82R/L99R/E282D and Q68R/Q79R/L82R/L99R/E282D. Sub sequentially, four of those six stacked mutant variants of MMLV RTase increased the overall activity and thermostability compared to the previously identified mutant RTase (Q68R/Q79R/L99R/E282D), Q68R/Q79R/L99R/E282D/1593E, Q68R/Q79R/L99R/E282D/Q299E, Q68R/L82R/L99R/E282D and Q68R/Q79R/L82R/L99R/E282D.


Following these stacked mutant variants, MMLV RTase mutations were stacked further to improve the ability of MMLV RTase to synthesize cDNA from purified total RNA (DNased, isolated from HeLa cells) as compared to the MMLV RTase base construct (RNase H minus construct). Eight MMLV RTase sextuple or more mutant variants were cloned as described in Example 1 and overexpressed and purified as in Example 5.


MMLV RTase base construct and MMLV RTase mutant variants evaluated as described in Example 3. Temperatures were adjusted for both two-step and one-step reactions to 42/55 and 50/60° C., respectively. The two-step first strand synthesis buffer was modified from 50 mM Tris-hydrochloride, pH 8.3, 75 mM potassium chloride, 3 mM magnesium chloride and 10 mM DTT to 50 mM potassium acetate, 20 mM Tris-acetate, pH 7.0, 10 mM magnesium acetate, 100 pg/ml bovine serum albumin and 10 mM DTT. The two-step and one-step reactions for MMLV RTase base construct and MMLV RTase mutant variants were analyzed and reported by Ct output from the qPCR (Tables 27-29).


Four of the eleven MMLV RTase sextuple or more mutant variants were found to exhibit increased overall activity and thermostability as compared to the other MMLV RTase stacked mutant variants, and almost all of the MMLV RTase stacked mutant variants exhibited increased overall activity and thermostability as compared to the MMLV RTase base construct. The four MMLV RTase mutant variants that were found to exhibit the highest overall activity were Q68R/Q79R/L99R/E282D/Q299E/V433R/V593E, Q68R2Q79R/L82R/L99R/E282D/Q299E/V433R/M593E, Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/593E, and Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/I593E.









TABLE 27







Two-Step cDNA Synthesis by MMLV-RT stacked mutants using


oligo dT priming. The data was generated via qPCR human


normalizer assay and data is reported by Ct value.










Ct
Ct Standard


MMLV-RT Variant
Mean
Deviation





MMLV-II
37.388
0.396


MMLV-II Q68R/Q79R/L99R/E282D/V433R
29.215
0.113


MMLV-II Q68R/Q79R/L99R/E282D/I593E
33.563
0.118


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
31.902
0.169


MMLV-II Q68R/Q79R/L99R/E282D/T332E
33.988
0.108


MMLV-II Q68R/Q79R/L99R/L280R
40.000
0.000


MMLV-II Q68R/Q79R/L99R/L280R/E282D
40.000
0.000


MMLV-II Q68R/L82R/L99R/E282D
39.259
1.047


MMLV-II Q68R/Q79R/L82R/L99R/E282D
30.623
0.076


MMLV-IV
25.880
0.023
















TABLE 28







Two-Step cDNA Synthesis by MMLV-RT stacked mutants using


random priming. The data was generated via qPCR human


normalizer assay and data is reported by Ct value.










Ct
Ct Standard


MMLV-RT Variant
Mean
Deviation





MMLV-II
36.638
1.014


MMLV-II Q68R/Q79R/L99R/E282D/V433R
40.000
0.000


MMLV-II Q68R/Q79R/L99R/E282D/I593E
32.331
0.111


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
30.430
0.154


MMLV-II Q68R/Q79R/L99R/E282D/T332E
33.720
0.266


MMLV-II Q68R/Q79R/L99R/L280R
40.000
0.000


MMLV-II Q68R/Q79R/L99R/L280R/E282D
40.000
0.000


MMLV-II Q68R/L82R/L99R/E282D
35.325
0.422


MMLV-II Q68R/Q79R/L82R/L99R/E282D
31.928
0.177


MMLV-IV
25.840
0.049
















TABLE 29







One-Step cDNA Synthesis by MMLV-RT stacked mutants by gene


specific priming. The data was generated via qPCR human


normalizer assay and data is reported by Ct value.










Ct
Ct Standard


MMLV-RT Variant
Mean
Deviation





MMLV-II
33.027
0.048


MMLV-II Q68R/Q79R/L99R/E282D/V433R
29.937
0.040


MMLV-II Q68R/Q79R/L99R/E282D/I593E
28.724
0.081


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
29.341
0.022


MMLV-II Q68R/Q79R/L99R/E282D/T332E
30.330
0.036


MMLV-II Q68R/Q79R/L99R/L280R
40.000
0.000


MMLV-II Q68R/Q79R/L99R/L280R/E282D
40.000
0.000


MMLV-II Q68R/L82R/L99R/E282D
30.559
0.045


MMLV-II Q68R/Q79R/L82R/L99R/E282D
30.097
0.033


MMLV-IV
28.975
0.012










a. Evaluation of Ability of Purified MMLV RTase Mutant Variants to Synthesize DNA Over a Wide Range of Temperatures


MMLV RTase base construct MMLV RTase mutant variants evaluated as described in Example 5. Oligo-dT or random hexamer priming conditions and reaction temperatures were adjusted for the two-step reactions and RTase concentration was normalized to 31 nM. The two-step reactions for MMLV RTase base construct and MMLV RTase mutant variants were analyzed and reported by Ct output from the qPCR (see tables 25 and 26)


Five MMLV RTase mutants were found to exhibit high overall activity as compared to the MMLV RTase base construct over a wide range of temperatures, spanning from 37.0 to 51° C., regardless of which priming method used. All of the MMLV RTase stacked mutant variants exhibited increased overall activity and thermostability as compared to the MMLV RTase base construct. The five MMLV RTase mutant variants that were found to exhibit the highest overall activity at a wide range of temperatures were Q68R/Q79R/L99R/E282D, Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E, Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E, Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E and Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/I593E









TABLE 30







Two-Step cDNA synthesis by MMLV RT quadruple and more mutants


by Oligo-dT priming. Data was generated via qPCR human


normalizer assay and data is reported by Ct value.











Temperature of
Ct
Ct


MMLV RT Mutant
Reaction (° C.)
Mean
SD





MMLV-II
37.0
26.340
0.033


MMLV-II
37.8
26.130
0.061


MMLV-II
39.5
25.830
0.014


MMLV-II
42.0
25.753
0.041


MMLV-II
45.2
25.632
0.077


MMLV-II
47.8
25.935
0.026


MMLV-II
49.2
26.478
0.042


MMLV-II
50.0
29.461
0.120


MMLV-II
51.0
29.430
0.098


MMLV-II
51.9
31.123
0.066


MMLV-II
53.8
33.632
0.073


MMLV-II
56.5
36.499
0.385


MMLV-II
59.9
37.158
0.427


MMLV-II
62.6
37.464
0.440


MMLV-II
64.2
37.082
0.022


MMLV-II
65.0
37.518
0.370


MMLV-II Q68R/Q79R/L99R/E282D
37.0
25.688
0.031


MMLV-II Q68R/Q79R/L99R/E282D
37.8
25.734
0.032


MMLV-II Q68R/Q79R/L99R/E282D
39.5
25.613
0.040


MMLV-II Q68R/Q79R/L99R/E282D
42.0
25.528
0.032


MMLV-II Q68R/Q79R/L99R/E282D
45.2
25.525
0.029


MMLV-II Q68R/Q79R/L99R/E282D
47.8
25.471
0.105


MMLV-II Q68R/Q79R/L99R/E282D
49.2
25.491
0.047


MMLV-II Q68R/Q79R/L99R/E282D
50.0
25.608
0.061


MMLV-II Q68R/Q79R/L99R/E282D
51.0
25.679
0.006


MMLV-II Q68R/Q79R/L99R/E282D
51.9
25.969
0.032


MMLV-II Q68R/Q79R/L99R/E282D
53.8
27.251
0.053


MMLV-II Q68R/Q79R/L99R/E282D
56.5
33.619
0.195


MMLV-II Q68R/Q79R/L99R/E282D
59.9
36.635
0.059


MMLV-II Q68R/Q79R/L99R/E282D
62.6
36.929
0.500


MMLV-II Q68R/Q79R/L99R/E282D
64.2
37.515
0.478


MMLV-II Q68R/Q79R/L99R/E282D
65.0
37.107
0.285


MMLV-II Q68R/Q79R/L99R/E282D/I593E
37.0
26.133
0.054


MMLV-II Q68R/Q79R/L99R/E282D/I593E
37.8
26.029
0.012


MMLV-II Q68R/Q79R/L99R/E282D/I593E
39.5
25.850
0.047


MMLV-II Q68R/Q79R/L99R/E282D/I593E
42.0
25.793
0.012


MMLV-II Q68R/Q79R/L99R/E282D/I593E
45.2
25.614
0.018


MMLV-II Q68R/Q79R/L99R/E282D/I593E
47.8
25.658
0.005


MMLV-II Q68R/Q79R/L99R/E282D/I593E
49.2
25.663
0.024


MMLV-II Q68R/Q79R/L99R/E282D/I593E
50.0
25.791
0.041


MMLV-II Q68R/Q79R/L99R/E282D/I593E
51.0
25.877
0.067


MMLV-II Q68R/Q79R/L99R/E282D/I593E
51.9
26.602
0.038


MMLV-II Q68R/Q79R/L99R/E282D/I593E
53.8
29.535
0.086


MMLV-II Q68R/Q79R/L99R/E282D/I593E
56.5
35.912
0.439


MMLV-II Q68R/Q79R/L99R/E282D/I593E
59.9
37.158
0.566


MMLV-II Q68R/Q79R/L99R/E282D/I593E
62.6
37.187
0.158


MMLV-II Q68R/Q79R/L99R/E282D/I593E
64.2
37.958
0.236


MMLV-II Q68R/Q79R/L99R/E282D/I593E
65.0
36.861
0.416


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
37.0
26.106
0.070


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
37.8
26.024
0.092


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
39.5
25.830
0.122


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
42.0
25.788
0.025


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
45.2
25.634
0.022


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
47.8
25.681
0.016


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
49.2
25.684
0.029


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
50.0
25.743
0.096


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
51.0
25.870
0.003


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
51.9
26.301
0.033


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
53.8
28.283
0.036


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
56.5
34.732
0.445


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
59.9
36.947
0.407


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
62.6
37.140
0.280


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
64.2
37.403
0.205


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
65.0
37.347
0.438


MMLV-II Q68R/Q79R/L82R/L99R/E282D
37.0
25.961
0.170


MMLV-II Q68R/Q79R/L82R/L99R/E282D
37.8
26.065
0.085


MMLV-II Q68R/Q79R/L82R/L99R/E282D
39.5
25.909
0.028


MMLV-II Q68R/Q79R/L82R/L99R/E282D
42.0
25.802
0.055


MMLV-II Q68R/Q79R/L82R/L99R/E282D
45.2
25.632
0.087


MMLV-II Q68R/Q79R/L82R/L99R/E282D
47.8
25.728
0.065


MMLV-II Q68R/Q79R/L82R/L99R/E282D
49.2
25.612
0.165


MMLV-II Q68R/Q79R/L82R/L99R/E282D
50.0
25.795
0.038


MMLV-II Q68R/Q79R/L82R/L99R/E282D
51.0
25.830
0.009


MMLV-II Q68R/Q79R/L82R/L99R/E282D
51.9
26.477
0.037


MMLV-II Q68R/Q79R/L82R/L99R/E282D
53.8
28.496
0.040


MMLV-II Q68R/Q79R/L82R/L99R/E282D
56.5
34.329
0.177


MMLV-II Q68R/Q79R/L82R/L99R/E282D
59.9
36.564
0.315


MMLV-II Q68R/Q79R/L82R/L99R/E282D
62.6
37.152
0.322


MMLV-II Q68R/Q79R/L82R/L99R/E282D
64.2
37.340
0.585


MMLV-II Q68R/Q79R/L82R/L99R/E282D
65.0
38.351
1.016


MMLV-II
37.0
25.853
0.057


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
37.8
25.898
0.016


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
39.5
25.716
0.093


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
42.0
25.669
0.064


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
45.2
25.643
0.056


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
47.8
25.680
0.016


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
49.2
25.663
0.057


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
50.0
25.708
0.045


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
51.0
25.557
0.025


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
51.9
26.015
0.125


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
53.8
27.812
0.048


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
56.5
34.073
0.217


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
59.9
36.512
0.168


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
62.6
37.182
0.167


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
64.2
37.239
0.291


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
65.0
36.573
0.232


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
37.0
25.789
0.075


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
37.8
25.784
0.103


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
39.5
25.714
0.025


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
42.0
25.713
0.027


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
45.2
25.690
0.030


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
47.8
25.662
0.026


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
49.2
25.713
0.021


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
50.0
25.551
0.092


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
51.0
25.561
0.107


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
51.9
25.975
0.125


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
53.8
27.556
0.023


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
56.5
33.934
0.249


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
59.9
36.473
0.285


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
62.6
37.411
0.377


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
64.2
37.656
0.478


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
65.0
37.950
1.451


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
37.0
25.788
0.028


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
37.8
25.680
0.229


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
39.5
25.794
0.051


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
42.0
25.415
0.270


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
45.2
25.631
0.047


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
47.8
25.672
0.027


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
49.2
25.792
0.045


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
50.0
25.759
0.022


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
51.0
25.852
0.015


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
51.9
26.425
0.033


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
53.8
29.964
0.023


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
56.5
36.532
0.113


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
59.9
38.246
0.608


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
62.6
37.333
0.446


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
64.2
37.223
0.212


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
65.0
36.930
0.527


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
37.0
25.863
0.014


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
37.8
25.649
0.036


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
39.5
25.573
0.057


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
42.0
25.453
0.023


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
45.2
25.447
0.083


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
47.8
25.413
0.061


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
49.2
25.542
0.035


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
50.0
25.567
0.060


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
51.0
25.741
0.093


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
51.9
26.231
0.225


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
53.8
28.556
0.142


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
56.5
35.202
0.208


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
59.9
36.991
0.419


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/








I593E











MMLV-II
62.6
37.168
0.463


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
64.2
37.670
0.410


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
65.0
37.680
0.273


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E
















TABLE 31







Two-Step cDNA synthesis by MMLV RT quadruple and more mutants


by Random priming. Data was generated via qPCR human normalizer


assay and data is reported by Ct value.











Temperature





of Reaction
Ct
Ct


MMLV RT Mutant
(° C.)
Mean
SD





MMLV-II
37.0
26.365
0.066


MMLV-II
37.8
26.390
0.006


MMLV-II
39.5
25.939
0.016


MMLV-II
42.0
25.798
0.029


MMLV-II
45.2
25.849
0.064


MMLV-II
47.8
26.647
0.050


MMLV-II
49.2
28.326
0.028


MMLV-II
50.0
29.340
0.010


MMLV-II
51.0
30.684
0.099


MMLV-II
51.9
32.462
0.163


MMLV-II
53.8
33.855
0.307


MMLV-II
56.5
35.376
0.461


MMLV-II
59.9
36.098
0.481


MMLV-II
62.6
36.391
0.367


MMLV-II
64.2
36.442
0.547


MMLV-II
65.0
35.871
0.301


MMLV-II Q68R/Q79R/L99R/E282D
37.0
25.699
0.009


MMLV-II Q68R/Q79R/L99R/E282D
37.8
25.674
0.038


MMLV-II Q68R/Q79R/L99R/E282D
39.5
25.594
0.029


MMLV-II Q68R/Q79R/L99R/E282D
42.0
25.496
0.016


MMLV-II Q68R/Q79R/L99R/E282D
45.2
25.431
0.011


MMLV-II Q68R/Q79R/L99R/E282D
47.8
25.420
0.036


MMLV-II Q68R/Q79R/L99R/E282D
49.2
25.481
0.023


MMLV-II Q68R/Q79R/L99R/E282D
50.0
25.646
0.035


MMLV-II Q68R/Q79R/L99R/E282D
51.0
25.979
0.012


MMLV-II Q68R/Q79R/L99R/E282D
51.9
26.591
0.053


MMLV-II Q68R/Q79R/L99R/E282D
53.8
28.345
0.091


MMLV-II Q68R/Q79R/L99R/E282D
56.5
32.976
0.109


MMLV-II Q68R/Q79R/L99R/E282D
59.9
34.407
0.158


MMLV-II Q68R/Q79R/L99R/E282D
62.6
35.130
0.014


MMLV-II Q68R/Q79R/L99R/E282D
64.2
34.866
0.258


MMLV-II Q68R/Q79R/L99R/E282D
65.0
35.317
0.299


MMLV-II Q68R/Q79R/L99R/E282D/I593E
37.0
26.079
0.036


MMLV-II Q68R/Q79R/L99R/E282D/I593E
37.8
25.951
0.015


MMLV-II Q68R/Q79R/L99R/E282D/I593E
39.5
25.801
0.055


MMLV-II Q68R/Q79R/L99R/E282D/I593E
42.0
25.602
0.087


MMLV-II Q68R/Q79R/L99R/E282D/I593E
45.2
25.424
0.038


MMLV-II Q68R/Q79R/L99R/E282D/I593E
47.8
25.520
0.011


MMLV-II Q68R/Q79R/L99R/E282D/I593E
49.2
25.674
0.046


MMLV-II Q68R/Q79R/L99R/E282D/I593E
50.0
25.922
0.015


MMLV-II Q68R/Q79R/L99R/E282D/I593E
51.0
26.351
0.014


MMLV-II Q68R/Q79R/L99R/E282D/I593E
51.9
27.411
0.092


MMLV-II Q68R/Q79R/L99R/E282D/I593E
53.8
30.482
0.048


MMLV-II Q68R/Q79R/L99R/E282D/I593E
56.5
33.914
0.075


MMLV-II Q68R/Q79R/L99R/E282D/I593E
59.9
35.443
0.191


MMLV-II Q68R/Q79R/L99R/E282D/I593E
62.6
35.872
0.445


MMLV-II Q68R/Q79R/L99R/E282D/I593E
64.2
36.107
0.011


MMLV-II Q68R/Q79R/L99R/E282D/I593E
65.0
35.715
0.299


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
37.0
25.955
0.040


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
37.8
25.934
0.023


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
39.5
25.669
0.035


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
42.0
25.523
0.016


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
45.2
25.532
0.054


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
47.8
25.550
0.021


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
49.2
25.620
0.030


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
50.0
25.711
0.035


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
51.0
26.215
0.056


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
51.9
26.969
0.013


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
53.8
29.622
0.060


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
56.5
33.679
0.234


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
59.9
35.253
0.144


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
62.6
35.408
0.441


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
64.2
35.586
0.139


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
65.0
36.076
0.700


MMLV-II Q68R/Q79R/L82R/L99R/E282D
37.0
25.884
0.012


MMLV-II Q68R/Q79R/L82R/L99R/E282D
37.8
25.833
0.009


MMLV-II Q68R/Q79R/L82R/L99R/E282D
39.5
25.684
0.077


MMLV-II Q68R/Q79R/L82R/L99R/E282D
42.0
25.553
0.026


MMLV-II Q68R/Q79R/L82R/L99R/E282D
45.2
25.471
0.043


MMLV-II Q68R/Q79R/L82R/L99R/E282D
47.8
25.491
0.085


MMLV-II Q68R/Q79R/L82R/L99R/E282D
49.2
25.646
0.014


MMLV-II Q68R/Q79R/L82R/L99R/E282D
50.0
25.765
0.039


MMLV-II Q68R/Q79R/L82R/L99R/E282D
51.0
26.365
0.044


MMLV-II Q68R/Q79R/L82R/L99R/E282D
51.9
27.170
0.071


MMLV-II Q68R/Q79R/L82R/L99R/E282D
53.8
29.662
0.048


MMLV-II Q68R/Q79R/L82R/L99R/E282D
56.5
33.853
0.162


MMLV-II Q68R/Q79R/L82R/L99R/E282D
59.9
34.899
0.325


MMLV-II Q68R/Q79R/L82R/L99R/E282D
62.6
35.557
0.145


MMLV-II Q68R/Q79R/L82R/L99R/E282D
64.2
35.360
0.222


MMLV-II Q68R/Q79R/L82R/L99R/E282D
65.0
35.614
0.403


MMLV-II
37.0
25.706
0.031


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
37.8
25.757
0.101


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
39.5
25.435
0.036


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
42.0
25.417
0.025


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
45.2
25.425
0.023


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
47.8
25.401
0.049


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
49.2
25.467
0.009


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
50.0
25.516
0.056


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
51.0
25.880
0.039


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
51.9
26.348
0.064


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
53.8
28.506
0.018


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
56.5
32.812
0.242


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
59.9
34.123
0.163


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
62.6
35.108
0.027


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
64.2
34.796
0.171


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
65.0
34.999
0.064


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
37.0
25.711
0.080


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
37.8
25.916
0.224


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
39.5
25.665
0.052


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
42.0
25.527
0.016


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
45.2
25.504
0.065


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
47.8
25.437
0.070


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
49.2
25.555
0.065


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
50.0
25.571
0.028


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
51.0
25.854
0.029


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
51.9
26.259
0.057


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
53.8
28.329
0.053


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
56.5
32.962
0.212


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
59.9
34.072
0.446


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
62.6
34.931
0.205


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
64.2
34.626
0.169


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
65.0
35.085
0.230


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E


MMLV-II
37.0
25.940
0.130


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
37.8
25.793
0.129


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
39.5
25.599
0.015


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
42.0
25.504
0.016


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
45.2
25.602
0.041


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
47.8
25.604
0.058


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
49.2
25.665
0.007


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
50.0
25.821
0.068


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
51.0
26.315
0.047


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
51.9
27.036
0.059


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
53.8
31.004
0.089


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
56.5
33.765
0.274


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
59.9
34.656
0.209


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
62.6
35.561
0.468


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
64.2
35.877
0.154


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
65.0
35.659
0.477


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E


MMLV-II
37.0
25.780
0.046


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
37.8
25.652
0.026


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
39.5
25.641
0.037


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
42.0
25.507
0.005


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
45.2
25.484
0.067


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
47.8
25.438
0.027


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
49.2
25.534
0.022


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
50.0
25.755
0.085


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
51.0
25.981
0.027


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
51.9
26.242
0.052


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
53.8
29.146
0.069


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
56.5
33.138
0.159


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
59.9
34.551
0.152


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
62.6
35.186
0.322


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R


/I593E


MMLV-II
64.2
35.550
0.368


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E


MMLV-II
65.0
35.459
0.295


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/


I593E









Example 9: Extension of Reverse Transcriptase Single Mutants

The amino acid positions that enclosed the MMLV RTase single mutants identified in Examples 6 and 7 were further evaluated to include all possible amino acid substitutions at that position. The single mutants were cloned, overexpressed, and purified as described in Examples 1 and 2, and evaluated as described in Examples 6 and 7. The two-step and one-step reactions for MMLV RTase base construct and MMLV RTase double mutant variants were analyzed and reported by Ct output from the qPCR (Tables 32-34). Numerous single mutant MMLV RTase variants were found to exhibit an increase in the overall activity and thermostability as compared to the MMLV RTase base construct. The most prevalent among these were: L82F, L82K, L82T, L82Y, L280I, T332V, V433K, V433N, and I593W.









TABLE 32







Two-Step cDNA Synthesis by MMLV-RT single mutants using


Oligo-dT priming. The data was generated via qPCR human


normalizer assay and data is reported by Ct value.












Ct
Ct Standard



MMLV-RT Variant
Mean
Deviation







MMLV-II
40.000
0.000



MMLV-II I593A
40.000
0.000



MMLV-II I593C
37.874
0.991



MMLV-II I593D
40.000
0.000



MMLV-II I593E
40.000
0.000



MMLV-II I593F
40.000
0.000



MMLV-II I593G
39.748
0.356



MMLV-II I593H
39.502
0.704



MMLV-II I593K
40.000
0.000



MMLV-II I593L
38.994
1.423



MMLV-II I593M
39.383
0.873



MMLV-II I593N
40.000
0.000



MMLV-II I593P
40.000
0.000



MMLV-II I593Q
40.000
0.000



MMLV-II I593R
40.000
0.000



MMLV-II I593S
39.614
0.545



MMLV-II I593T
37.709
0.520



MMLV-II I593V
40.000
0.000



MMLV-II I593W
30.504
0.073



MMLV-II I593Y
40.000
0.000



MMLV-II L280A
40.000
0.000



MMLV-II L280C
40.000
0.000



MMLV-II L280D
40.000
0.000



MMLV-II L280E
40.000
0.000



MMLV-II L280F
40.000
0.000



MMLV-II L280G
40.000
0.000



MMLV-II L280H
40.000
0.000



MMLV-II L280I
30.951
0.076



MMLV-II L280K
40.000
0.000



MMLV-II L280M
40.000
0.000



MMLV-II L280N
39.727
0.386



MMLV-II L280P
40.000
0.000



MMLV-II L280Q
40.000
0.000



MMLV-II L280R
39.994
0.009



MMLV-II L280S
40.000
0.000



MMLV-II L280T
40.000
0.000



MMLV-II L280V
37.749
0.142



MMLV-II L280W
40.000
0.000



MMLV-II L280Y
40.000
0.000



MMLV-II L82A
40.000
0.000



MMLV-II L82C
39.565
0.615



MMLV-II L82D
40.000
0.000



MMLV-II L82E
40.000
0.000



MMLV-II L82F
39.347
0.924



MMLV-II L82G
40.000
0.000



MMLV-II L82H
40.000
0.000



MMLV-II L82I
40.000
0.000



MMLV-II L82K
37.136
0.593



MMLV-II L82M
38.649
1.260



MMLV-II L82N
40.000
0.000



MMLV-II L82P
40.000
0.000



MMLV-II L82Q
39.098
1.275



MMLV-II L82R
40.000
0.000



MMLV-II L82S
39.346
0.925



MMLV-II L82T
38.695
1.845



MMLV-II L82V
38.047
1.381



MMLV-II L82W
37.151
0.308



MMLV-II L82Y
35.014
0.421



MMLV-II Q299A
40.000
0.000



MMLV-II Q299C
40.000
0.000



MMLV-II Q299D
40.000
0.000



MMLV-II Q299E
39.061
1.328



MMLV-II Q299F
40.000
0.000



MMLV-II Q299G
40.000
0.000



MMLV-II Q299H
39.398
0.852



MMLV-II Q299I
39.183
1.155



MMLV-II Q299K
40.000
0.000



MMLV-II Q299L
39.474
0.743



MMLV-II Q299M
40.000
0.000



MMLV-II Q299N
40.000
0.000



MMLV-II Q299P
40.000
0.000



MMLV-II Q299R
40.000
0.000



MMLV-II Q299S
40.000
0.000



MMLV-II Q299T
40.000
0.000



MMLV-II Q299V
40.000
0.000



MMLV-II Q299W
40.000
0.000



MMLV-II Q299Y
40.000
0.000



MMLV-II T332A
39.087
1.291



MMLV-II T332C
38.956
1.476



MMLV-II T332D
40.000
0.000



MMLV-II T332E
39.554
0.631



MMLV-II T332F
40.000
0.000



MMLV-II T332G
37.321
2.009



MMLV-II T332H
39.215
1.110



MMLV-II T332I
39.344
0.927



MMLV-II T332K
40.000
0.000



MMLV-II T332L
40.000
0.000



MMLV-II T332M
37.775
1.632



MMLV-II T332N
37.326
0.834



MMLV-II T332P
40.000
0.000



MMLV-II T332Q
39.509
0.694



MMLV-II T332R
39.588
0.582



MMLV-II T332S
39.765
0.332



MMLV-II T332V
36.977
0.384



MMLV-II T332W
40.000
0.000



MMLV-II T332Y
40.000
0.000



MMLV-II V433A
40.000
0.000



MMLV-II V433C
37.504
0.682



MMLV-II V433D
40.000
0.000



MMLV-II V433E
35.189
0.336



MMLV-II V433F
39.379
0.878



MMLV-II V433G
39.482
0.732



MMLV-II V433H
40.000
0.000



MMLV-II V433I
39.781
0.310



MMLV-II V433K
35.770
0.623



MMLV-II V433L
39.015
0.744



MMLV-II V433M
39.119
1.247



MMLV-II V433N
33.981
0.185



MMLV-II V433P
40.000
0.000



MMLV-II V433Q
40.000
0.000



MMLV-II V433R
37.230
1.247



MMLV-II V433S
37.850
0.846



MMLV-II V433T
37.564
1.895



MMLV-II V433W
37.770
1.622



MMLV-II V433Y
40.000
0.000



MMLV-IV
26.102
0.033

















TABLE 33







Two-Step cDNA Synthesis by MMLV-RT single mutants using


random priming. The data was generated via qPCR human


normalizer assay and data is reported by Ct value.













Ct Standard



MMLV-RT Variant
Ct Mean
Deviation







MMLV-II
40.000
0.000



MMLV-II I593A
40.000
0.000



MMLV-II I593C
40.000
0.000



MMLV-II I593D
39.992
0.012



MMLV-II I593E
40.000
0.000



MMLV-II I593F
39.189
1.147



MMLV-II I593G
40.000
0.000



MMLV-II I593H
40.000
0.000



MMLV-II I593K
40.000
0.000



MMLV-II I593L
40.000
0.000



MMLV-II I593M
40.000
0.000



MMLV-II I593N
40.000
0.000



MMLV-II I593P
40.000
0.000



MMLV-II I593Q
39.201
0.853



MMLV-II I593R
38.928
1.516



MMLV-II I593S
39.025
1.379



MMLV-II I593T
38.385
1.227



MMLV-II I593V
39.574
0.603



MMLV-II I593W
32.572
0.054



MMLV-II I593Y
40.000
0.000



MMLV-II L280A
40.000
0.000



MMLV-II L280C
40.000
0.000



MMLV-II L280D
40.000
0.000



MMLV-II L280E
40.000
0.000



MMLV-II L280F
40.000
0.000



MMLV-II L280G
40.000
0.000



MMLV-II L280H
40.000
0.000



MMLV-II L280I
34.152
0.276



MMLV-II L280K
40.000
0.000



MMLV-II L280M
39.973
0.038



MMLV-II L280N
40.000
0.000



MMLV-II L280P
40.000
0.000



MMLV-II L280Q
40.000
0.000



MMLV-II L280R
40.000
0.000



MMLV-II L280S
40.000
0.000



MMLV-II L280T
40.000
0.000



MMLV-II L280V
39.260
1.046



MMLV-II L280W
40.000
0.000



MMLV-II L280Y
40.000
0.000



MMLV-II L82A
40.000
0.000



MMLV-II L82C
40.000
0.000



MMLV-II L82D
40.000
0.000



MMLV-II L82E
39.672
0.463



MMLV-II L82F
36.854
0.708



MMLV-II L82G
40.000
0.000



MMLV-II L82H
37.705
0.557



MMLV-II L82I
39.231
1.087



MMLV-II L82K
39.437
0.443



MMLV-II L82M
40.000
0.000



MMLV-II L82N
40.000
0.000



MMLV-II L82P
40.000
0.000



MMLV-II L82Q
40.000
0.000



MMLV-II L82R
38.595
1.191



MMLV-II L82S
40.000
0.000



MMLV-II L82T
38.449
1.192



MMLV-II L82V
39.438
0.795



MMLV-II L82W
39.178
1.163



MMLV-II L82Y
36.758
0.962



MMLV-II Q299A
40.000
0.000



MMLV-II Q299C
40.000
0.000



MMLV-II Q299D
38.003
1.414



MMLV-II Q299E
39.338
0.936



MMLV-II Q299F
40.000
0.000



MMLV-II Q299G
40.000
0.000



MMLV-II Q299H
40.000
0.000



MMLV-II Q299I
39.850
0.212



MMLV-II Q299K
40.000
0.000



MMLV-II Q299L
40.000
0.000



MMLV-II Q299M
40.000
0.000



MMLV-II Q299N
40.000
0.000



MMLV-II Q299P
40.000
0.000



MMLV-II Q299R
40.000
0.000



MMLV-II Q299S
40.000
0.000



MMLV-II Q299T
40.000
0.000



MMLV-II Q299V
40.000
0.000



MMLV-II Q299W
40.000
0.000



MMLV-II Q299Y
40.000
0.000



MMLV-II T332A
39.814
0.264



MMLV-II T332C
40.000
0.000



MMLV-II T332D
40.000
0.000



MMLV-II T332E
40.000
0.000



MMLV-II T332F
40.000
0.000



MMLV-II T332G
38.897
1.560



MMLV-II T332H
40.000
0.000



MMLV-II T332I
40.000
0.000



MMLV-II T332K
40.000
0.000



MMLV-II T332L
38.169
2.589



MMLV-II T332M
37.410
1.906



MMLV-II T332N
38.983
1.362



MMLV-II T332P
39.046
1.350



MMLV-II T332Q
40.000
0.000



MMLV-II T332R
40.000
0.000



MMLV-II T332S
40.000
0.000



MMLV-II T332V
38.650
1.326



MMLV-II T332W
40.000
0.000



MMLV-II T332Y
40.000
0.000



MMLV-II V433A
40.000
0.000



MMLV-II V433C
37.605
0.184



MMLV-II V433D
40.000
0.000



MMLV-II V433E
34.693
0.193



MMLV-II V433F
40.000
0.000



MMLV-II V433G
40.000
0.000



MMLV-II V433H
40.000
0.000



MMLV-II V433I
39.792
0.294



MMLV-II V433K
35.725
0.464



MMLV-II V433L
40.000
0.000



MMLV-II V433M
40.000
0.000



MMLV-II V433N
34.604
0.554



MMLV-II V433P
40.000
0.000



MMLV-II V433Q
38.844
1.001



MMLV-II V433R
38.817
0.839



MMLV-II V433S
38.202
1.372



MMLV-II V433T
37.573
0.623



MMLV-II V433W
37.611
1.690



MMLV-II V433Y
40.000
0.000



MMLV-IV
26.053
0.098

















TABLE 34







One-Step cDNA Synthesis by MMLV-RT single mutants by gene


specific priming. The data was generated via qPCR human


normalizer assay and data is reported by Ct value.












Ct
Ct Standard



MMLV-RT Variant
Mean
Deviation







MMLV-II
32.775
0.189



MMLV-II I593A
32.438
0.209



MMLV-II I593C
32.680
0.053



MMLV-II I593D
31.775
0.237



MMLV-II I593E
30.635
0.048



MMLV-II I593F
30.411
0.008



MMLV-II I593G
30.904
0.098



MMLV-II I593H
29.686
0.131



MMLV-II I593K
31.832
0.259



MMLV-II I593L
32.289
0.273



MMLV-II I593M
32.162
0.078



MMLV-II I593N
31.410
0.251



MMLV-II I593P
34.728
0.201



MMLV-II I593Q
31.609
0.032



MMLV-II I593R
31.144
0.133



MMLV-II I593S
30.548
0.247



MMLV-II I593T
29.572
0.236



MMLV-II I593V
30.673
0.142



MMLV-II I593W
28.179
0.092



MMLV-II I593Y
30.858
0.067



MMLV-II L280A
36.160
0.729



MMLV-II L280C
32.097
0.261



MMLV-II L280D
40.000
0.000



MMLV-II L280E
39.115
1.251



MMLV-II L280F
34.573
0.371



MMLV-II L280G
40.000
0.000



MMLV-II L280H
37.255
0.322



MMLV-II L280I
29.267
1.032



MMLV-II L280K
34.274
0.095



MMLV-II L280M
32.746
0.223



MMLV-II L280N
39.677
0.457



MMLV-II L280P
33.045
0.095



MMLV-II L280Q
39.190
1.145



MMLV-II L280R
40.000
0.000



MMLV-II L280S
40.000
0.000



MMLV-II L280T
37.074
0.325



MMLV-II L280V
30.461
0.052



MMLV-II L280W
40.000
0.000



MMLV-II L280Y
40.000
0.000



MMLV-II L82A
31.729
0.308



MMLV-II L82C
31.131
0.192



MMLV-II L82D
34.280
0.227



MMLV-II L82E
32.973
0.430



MMLV-II L82F
29.760
0.030



MMLV-II L82G
33.066
0.217



MMLV-II L82H
30.098
0.078



MMLV-II L82I
31.605
0.083



MMLV-II L82K
29.258
0.015



MMLV-II L82M
30.280
0.027



MMLV-II L82N
33.074
0.323



MMLV-II L82P
38.754
1.762



MMLV-II L82Q
32.001
0.164



MMLV-II L82R
30.208
0.128



MMLV-II L82S
31.841
0.231



MMLV-II L82T
28.908
0.044



MMLV-II L82V
29.533
0.057



MMLV-II L82W
29.580
0.056



MMLV-II L82Y
28.934
0.073



MMLV-II Q299A
31.113
0.138



MMLV-II Q299C
35.953
0.542



MMLV-II Q299D
32.292
0.080



MMLV-II Q299E
31.663
0.027



MMLV-II Q299F
36.143
0.317



MMLV-II Q299G
31.929
0.131



MMLV-II Q299H
32.387
0.133



MMLV-II Q299I
37.763
1.582



MMLV-II Q299K
32.326
0.096



MMLV-II Q299L
34.807
0.180



MMLV-II Q299M
32.514
0.375



MMLV-II Q299N
34.040
0.186



MMLV-II Q299P
39.460
0.764



MMLV-II Q299R
33.044
0.354



MMLV-II Q299S
33.438
0.256



MMLV-II Q299T
35.093
0.926



MMLV-II Q299V
35.114
1.045



MMLV-II Q299W
38.998
1.417



MMLV-II Q299Y
39.055
1.336



MMLV-II T332A
30.528
0.084



MMLV-II T332C
30.785
0.135



MMLV-II T332D
33.310
0.348



MMLV-II T332E
32.711
0.106



MMLV-II T332F
33.201
0.179



MMLV-II T332G
30.424
0.054



MMLV-II T332H
31.913
0.306



MMLV-II T332I
32.072
0.115



MMLV-II T332K
31.591
0.082



MMLV-II T332L
34.011
0.133



MMLV-II T332M
29.039
0.164



MMLV-II T332N
29.500
0.135



MMLV-II T332P
33.976
0.272



MMLV-II T332Q
31.599
0.041



MMLV-II T332R
32.950
0.130



MMLV-II T332S
31.003
0.341



MMLV-II T332V
29.835
0.061



MMLV-II T332W
35.431
0.099



MMLV-II T332Y
33.384
0.164



MMLV-II V433A
30.757
0.105



MMLV-II V433C
29.901
0.305



MMLV-II V433D
34.152
0.170



MMLV-II V433E
28.868
0.011



MMLV-II V433F
31.529
0.009



MMLV-II V433G
33.663
0.412



MMLV-II V433H
31.811
0.069



MMLV-II V433I
30.460
0.071



MMLV-II V433K
30.040
0.109



MMLV-II V433L
31.758
0.063



MMLV-II V433M
30.791
0.095



MMLV-II V433N
28.566
0.074



MMLV-II V433P
37.436
1.824



MMLV-II V433Q
30.586
0.104



MMLV-II V433R
30.773
0.080



MMLV-II V433S
29.768
0.074



MMLV-II V433T
29.096
0.107



MMLV-II V433W
29.130
0.064



MMLV-II V433Y
32.676
0.279



MMLV-IV
25.979
0.043

















TABLE 35







Two-Step cDNA Synthesis by MMLV-RT stacked mutants using


oligo dT priming. The data was generated via qPCR human


normalizer assay and data is reported by Ct value.











Temperature
Ct
Ct Standard


MMLV-RT Variant
(° C.)
Mean
Deviation





MMLV-II
42
25.207
0.025


MMLV-II
55
28.180
0.022


MMLV-II
42
25.287
0.068


Q68R/Q79R/L99R/E282D
55
26.442
0.044


MMLV-II
42
25.344
0.065


Q68R/Q79R/L99R/E282D/V433R
55
26.586
0.077


MMLV-II
42
25.266
0.112


Q68R/Q79R/L99R/E282D/I593E
55
27.389
0.069


MMLV-II
42
25.357
0.087


Q68R/Q79R/L99R/E282D/Q299E
55
26.953
0.034


MMLV-II
42
25.394
0.011


Q68R/Q79R/L82R/L99R/E282D
55
27.171
0.028


MMLV-II
42
25.371
0.061


Q68R/Q79R/L99R/E282D/Q299E/
55
26.689
0.068


I593E


MMLV-II
42
25.258
0.035


Q68R/Q79R/L82R/L99R/E282D/
55
26.979
0.034


Q299E/I593E


MMLV-II
42
25.171
0.006


Q68R/Q79R/L99R/E282D/Q299E/
55
26.299
0.025


V433R/I593E


MMLV-II
42
25.146
0.052


Q68R/Q79R/L82R/L99R/E282D/
55
26.320
0.036


Q299E/V433R/I593E


MMLV-II
42
25.176
0.044


Q68R/Q79R/L82R/L99R/E282D/
55
26.750
0.040


Q299E/T332E/I593E


MMLV-II
42
25.110
0.046


Q68R/Q79R/L82R/L99R/E282D/
55
26.587
0.049


Q299E/T332E/V433R/I593E


MMLV-IV
42
25.184
0.025


MMLV-IV
55
25.153
0.037


SuperScript-IV
42
25.082
0.073


SuperScript-IV
55
25.080
0.047
















TABLE 36







Two-Step cDNA Synthesis by MMLV-RT stacked mutants using random priming. The data


was generated via qPCR human normalizer assay and data is reported by Ct value.











Temperature
Ct
Ct Standard


MMLV-RT Variant
(C)
Mean
Deviation





MMLV-II
42
25.264
0.019


MMLV-II
55
28.443
0.014


MMLV-II Q68R/Q79R/L99R/E282D
42
25.399
0.040



55
26.484
0.072


MMLV-II Q68R/Q79R/L99R/E282D/V433R
42
25.324
0.063



55
26.794
0.065


MMLV-II Q68R/Q79R/L99R/E282D/I593E
42
25.278
0.025



55
27.616
0.058


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
42
25.281
0.079



55
27.148
0.025


MMLV-II Q68R/Q79R/L82R/L99R/E282D
42
25.279
0.053



55
27.243
0.008


MMLV-II Q68R/Q79R/L99R/E282D/Q299E/I593E
42
25.409
0.065



55
26.704
0.066


MMLV-II
42
25.581
0.062


Q68R/Q79R/L82R/L99R/E282D/Q299E/I593E
55
26.605
0.028


MMLV-II
42
25.355
0.158


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E
55
26.305
0.066


MMLV-II
42
25.418
0.120


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E
55
26.403
0.055


MMLV-II
42
25.374
0.115


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E
55
26.747
0.065


MMLV-II
42
25.426
0.082


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/
55
26.481
0.017


I593E


MMLV-IV
42
25.394
0.162


MMLV-IV
55
25.185
0.022


SuperScript-IV
42
25.299
0.132


SuperScript-IV
55
25.214
0.021
















TABLE 37







One-Step cDNA Synthesis by MMLV-RT stacked mutants by gene


specific priming. The data was generated via qPCR human


normalizer assay and data is reported by Ct value.












Temperature
Concentration
Ct
Ct Standard


MMLV-RT Variant
(° C.)
of RT (nM)
Mean
Deviation














MMLV-II
50
0.28
26.401
0.022




1.4
24.701
0.061




7.0
24.664
0.007



60
0.28
31.134
0.205




1.4
28.109
0.042




7.0
27.644
0.061


MMLV-II
50
0.28
25.171
0.046


Q68R/Q79R/L99R/

1.4
24.440
0.037


E282D

7.0
24.406
0.010



60
0.28
28.848
0.114




1.4
25.905
0.066




7.0
25.618
0.057


MMLV-II
50
0.28
24.967
0.068


Q68R/Q79R/L99R/

1.4
24.386
0.015


E282D/V433R

7.0
24.433
0.079



60
0.28
28.516
0.051




1.4
25.803
0.063




7.0
25.620
0.035


MMLV-II
50
0.28
24.660
0.053


Q68R/Q79R/L99R/

1.4
24.377
0.028


E282D/I593E

7.0
24.355
0.021



60
0.28
27.488
0.074




1.4
25.413
0.049




7.0
25.209
0.136


MMLV-II
50
0.28
25.044
0.094


Q68R/Q79R/L99R/

1.4
24.422
0.023


E282D/Q299E

7.0
24.528
0.055



60
0.28
28.818
0.137




1.4
25.953
0.082




7.0
25.754
0.098


MMLV-II
50
0.28
25.014
0.152


Q68R/Q79R/L82R/

1.4
24.467
0.020


L99R/E282D

7.0
24.507
0.046



60
0.28
28.743
0.076




1.4
26.662
0.012




7.0
25.883
0.022


MMLV-II
50
0.28
24.771
0.027


Q68R/Q79R/L99R/

1.4
24.501
0.008


E282D/Q299E/I593E

7.0
24.485
0.087



60
0.28
27.721
0.057




1.4
25.836
0.030




7.0
25.199
0.016


MMLV-II
50
0.28
24.777
0.029


Q68R/Q79R/L82R/

1.4
24.432
0.033


L99R/E282D/Q299E/

7.0
24.435
0.024


I593E
60
0.28
27.854
0.035




1.4
25.613
0.028




7.0
25.072
0.030


MMLV-II
50
0.28
24.550
0.003


Q68R/Q79R/L99R/

1.4
24.333
0.033


E282D/Q299E/V433R/

7.0
24.345
0.030


I593E
60
0.28
26.399
0.051




1.4
25.236
0.040




7.0
25.105
0.050


MMLV-II
50
0.28
24.562
0.047


Q68R/Q79R/L82R/

1.4
24.350
0.039


L99R/E282D/Q299E/

7.0
24.302
0.015


V433R/I593E
60
0.28
26.459
0.022




1.4
25.247
0.069




7.0
25.001
0.050


MMLV-II
50
0.28
24.614
0.047


Q68R/Q79R/L82R/

1.4
24.420
0.051


L99R/E282D/Q299E/

7.0
24.361
0.021


T332E/I593E
60
0.28
26.769
0.089




1.4
25.609
0.041




7.0
25.348
0.043


MMLV-II
50
0.28
24.594
0.075


Q68R/Q79R/L82R/

1.4
24.402
0.045


L99R/E282D/Q299E/

7.0
24.291
0.057


T332E/V433R/I593E
60
0.28
26.591
0.018




1.4
25.517
0.048




7.0
25.193
0.027


MMLV-IV
50
0.28
24.397
0.091




1.4
24.303
0.062




7.0
24.189
0.039



60
0.28
25.807
0.045




1.4
25.180
0.037




7.0
24.625
0.011


SuperScript-IV
50
0.28
24.743
0.049




1.4
24.213
0.017




7.0
24.008
0.036



60
0.28
26.124
0.103




1.4
24.681
0.070




7.0
24.180
0.082
















TABLE 38







Sequences of quadruple or more mutant MMLV RTase variants.









SEQ ID NO:
Construct
Construct Sequence (AA)





686
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L99R/E282D/
RLGIKPHIRRLLDQGILVPCQSPWNTPLRPVKKPG



V433R
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP




PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGQLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRQLREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLRILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LQHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHIHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





687
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L99R/E282D/
RLGIKPHIRRLLDQGILVPCQSPWNTPLRPVKKPG



I593E
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP




PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGQLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRQLREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LQHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYINSRYAFATAHEHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





688
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L99R/E282D/
RLGIKPHIRRLLDQGILVPCQSPWNTPLRPVKKPG



Q299E
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP




PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGQLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRELREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LQHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYINSRYAFATAHIHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





689
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L99R/E282D/
RLGIKPHIRRLLDQGILVPCQSPWNTPLRPVKKPG



T332E
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP




PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGQLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRQLREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGELFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LQHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHIHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





690
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q681/Q791/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L99R/L280R
RLGIKPHIRRLLDQGILVPCQSPWNTPLRPVKKPG




TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP




PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGQLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWR




TEARKETVMGQPTPKTPRQLREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LQHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHIHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





691
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L99R/L280R/
RLGIKPHIRRLLDQGILVPCQSPWNTPLRPVKKPG



E282D
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP




PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGQLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWR




TDARKETVMGQPTPKTPRQLREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LQHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHIHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





692
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/L82R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L99R/E282D
RLGIKPHIQRLRDQGILVPCQSPWNTPLRPVKKPG




TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP




PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGQLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRQLREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LQHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHIHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





693
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L82R/L99R/
RLGIKPHIRRLRDQGILVPCQSPWNTPLRPVKKPG



E282D
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP




PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGQLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRQLREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LQHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHIHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





694
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L99R/E282D/
RLGIKPHIRRLLDQGILVPCQSPWNTPLRPVKKPG



Q299E/I593E
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP




PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGQLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRELREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LQHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHEHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





695
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L82R/L99R/
RLGIKPHIRRLRDQGILVPCQSPWNTPLRPVKKPG



E282D/Q299E/
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP



I593E
PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGQLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRELREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LQHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHEHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





696
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L99R/E282D/
RLGIKPHIRRLLDQGILVPCQSPWNTPLRPVKKPG



Q299E/V433R/
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP



I593E
PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGQLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRELREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLRILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LQHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYINSRYAFATAHEHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





697
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L82R/L99R/
RLGIKPHIRRLRDQGILVPCQSPWNTPLRPVKKPG



E282D/Q299E/
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP



V433R/I593E
PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGQLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRELREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLRILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LQHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYINSRYAFATAHEHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





698
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L82R/L99R/
RLGIKPHIRRLRDQGILVPCQSPWNTPLRPVKKPG



E282D/Q299E/
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP



T332E/I593E
PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGQLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRELREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGELFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LQHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYINSRYAFATAHEHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





699
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L82R/L99R/
RLGIKPHIRRLRDQGILVPCQSPWNTPLRPVKKPG



E282D/Q299E/
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP



T332E/V433R/
PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP



I593E
EMGISGQLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRELREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGELFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLRILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LQHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYINSRYAFATAHEHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF









BIBLIOGRAPHY



  • 1. Coffin et al., “The discovery of reverse transcriptase,” Ann. Rev. Virol. 3(1): 29-51 (2016).

  • 2. Hogrefe et al., “Mutant reverse transcriptase and methods of use,” U.S. Pat. No. 9,783,791.

  • 3. Kotewicz et al., “Cloned genes encoding reverse transcriptase lacking RNase H activity,” U.S. Pat. No. 5,405,776.

  • 4. Kotewicz et al., “Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribonuclease H activity,” Nucleic Acids Res. 16(1): 265-77 (1988).

  • 5. Rogers et al., “Novel Reverse Transcriptases for Use in High Temperature Nucleic Acid Synthesis.” U.S. Patent Application Publication No. US 2015/0210989 A1.


Claims
  • 1: An isolated Moloney murine leukemia virus (MMLV) reverse transcriptase (RTase) mutant comprising the amino acid sequence of SEQ ID NO: 717, wherein the amino acid sequence of the MMLV RTase mutant further comprises at least two amino acid substitutions that are: (a) a glutamine to arginine substitution at position 68 (Q68R);(b) a glutamine to arginine substitution at position 79 (Q79R);(c) a leucine to tyrosine at position 82 (L82Y);(d) a leucine to arginine substitution at position 99 (L99R);(e) a leucine to isoleucine at position 280 (L280I);(f) a glutamic acid to aspartic acid substitution at position 282 (E282D);(g) a glutamine to glutamic acid substitution at position 299 (Q299E);(h) threonine to lysine at position 306 (T306K);(i) a valine to asparagine at position 433 (V433N);(j) a valine to arginine at position 433 (V433R);(k) an isoleucine to glutamic acid at position 593 (1593E); or(l) an isoleucine to tryptophan at position 593 (I593W).
  • 2: The isolated MMLV RTase mutant of claim 1, wherein the amino acid sequence of the MMLV RTase mutant comprises the amino acid substitutions: (a) a glutamine to arginine substitution at position 68 (Q68R);(b) a glutamine to arginine substitution at position 79 (Q79R);(c) a leucine to tyrosine substitution at position 82 (L82Y);(d) a leucine to arginine substitution at position 99 (L99R);(e) a leucine to isoleucine substitution at position 280 (L280I);(f) a glutamic acid to aspartic acid substitution at position 282 (E282D);(g) a glutamine to glutamic acid substitution at position 299 (Q299E);(h) a threonine to lysine substitution at position 306 (T306K);(i) a valine to asparagine substitution at position 433 (V433N); and(j) an isoleucine to tryptophan substitution at position 593 (I593W).
  • 3: The isolated MMLV RTase mutant of claim 1, wherein the amino acid sequence of the MMLV RTase mutant comprises the amino acid substitutions: (a) a glutamine to arginine substitution at position 68 (Q68R);(b) a glutamine to arginine substitution at position 79 (Q79R);(c) a leucine to tyrosine substitution at position 82 (L82Y);(d) a leucine to arginine substitution at position 99 (L99R);(e) a leucine to isoleucine substitution at position 280 (L280I);(f) a glutamic acid to aspartic acid substitution at position 282 (E282D);(g) a glutamine to glutamic acid substitution at position 299 (Q299E);(h) a threonine to lysine substitution at position 306 (T306K);(i) a valine to arginine substitution at position 433 (V433R); and(j) an isoleucine to glutamic acid substitution at position 593 (I593E).
  • 4: The isolated MMLV Rtase mutant of claim 1, wherein the MMLV RTase mutant comprises an amino acid sequence as set forth in any one of SEQ ID NOs: 716-731.
  • 5: The isolated MMLV Rtase mutant of claim 4, wherein the MMLV RTase mutant comprises an amino acid sequence as set forth in SEQ ID NO: 725.
  • 6: The isolated MMLV Rtase mutant of claim 4, wherein the MMLV RTase mutant comprises an amino acid sequence as set forth in SEQ ID NO: 731.
  • 7: The MMLV RTase mutant of any one of claims 1 to 6, wherein the MMLV RTase mutant lacks RNase H activity.
  • 8: The MMLV RTase mutant of any one of claims 1 to 6, wherein the MMLV RTase mutant possesses at least one of the following characteristics: enhanced DNA synthesis, increased fidelity, or enhanced thermostability.
  • 9: An isolated nucleic acid molecule comprising a nucleotide sequence encoding the MMLV Rtase mutant of any one of claims 1 to 6.
  • 10: A composition comprising the isolated MMLV RTase mutant of any one of claims 1 to 6.
  • 11: The composition of claim 10, wherein the isolated MMLV RTase mutant lacks RNase H activity.
  • 12: The composition of claim 11, wherein the isolated MMLV RTase mutant possesses at least one of the following characteristics: enhanced DNA synthesis, increased fidelity, or enhanced thermostability.
  • 13: A kit comprising the isolated MMLV RTase mutant of mutant of any one of claims 1 to 6.
  • 14: The kit of claim 13, wherein the isolated MMLV RTase mutant lacks RNAse H activity.
  • 15: The kit of claim 14, wherein the isolated MMLV RTase mutant possesses at least one of the following characteristics: enhanced DNA synthesis, increased fidelity, or enhanced thermostability.
  • 16: A method for synthesizing complementary deoxyribonucleic acid (cDNA) comprising: (a) providing the isolated MMLV RTase mutant of any one of claims 1 to 6; and(b) contacting the isolated MMLV RTase mutant with a nucleic acid template to permit synthesis of cDNA.
  • 17: A method for performing reverse transcription-polymerase chain reaction (RT-PCR) comprising: (a) providing the isolated MMLV RTase mutant of any one of claims 1 to 6; and(b) contacting the isolated MMLV RTase mutant with a nucleic acid template to replicate and amplify the nucleic acid template.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. application Ser. No. 17/380,982, filed on Jul. 20, 2021, which claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 63/054,228, filed on Jul. 20, 2020. Each of the above-identified applications are hereby incorporated by reference herein in their entireties for all purposes.

Provisional Applications (1)
Number Date Country
63054228 Jul 2020 US
Continuation in Parts (1)
Number Date Country
Parent 17380982 Jul 2021 US
Child 17578275 US