1. Field of the Invention
The present invention relates to child holding accessories suitable for use with play yards.
2. Description of the Related Art
Play yards are used to contain and provide a safe environment for a child to sleep or play. Currently, most play yards are constructed to include a frame around which a fabric element is wrapped and stretched to form the boundaries of the play yard. Due to the wide spread use of play yards, efforts have been made to increase their versatility to caregivers. For example, some child holding accessories may be added to play yards, such as changing tables (also commonly called “changers”, bassinets, and child sleep beds (also commonly called “nappers”). While these different types of accessories may provide more versatility, it may be expensive to purchase a different accessory for each use. Moreover, it may also be cumbersome to store multiple child holding accessories, or change the accessory for each different use.
Therefore, there is a need for an improved child holding accessory that may be more convenient in use, and address at least the foregoing issues.
The present application describes a reversible child holding accessory that can be attached on a rigid support frame capable of standing on a floor surface. The child holding accessory integrates multiple regions adapted to receive a child in different configurations of use. Examples of construction for these holding regions can include, without limitation, a changing table and a child sleep bed. The child holding accessory can be attached with the support frame via one or more fixtures that is adjustable to turn upward either of the first and second regions.
In some embodiments, the present application also describes a child supporting apparatus. The child supporting apparatus includes a rigid support frame, a reversible resting support, and a first and a second fixture. The resting support has a first and a second bearing surface opposite to each other, each of the first and second bearing surface being positionable to be upwardly facing to receive a child thereon, the resting support being rotatable about a pivot axis between a first state where the first bearing surface faces upward, and a second state where the second bearing surface faces upward. The first fixture is rotatably connected with the resting support and attaches the resting support with the support frame. The second fixture is provided on the resting support at a location radially offset from the pivot axis, the second fixture moving along with the resting support when the resting support is rotated about the pivot axis, the second fixture being operable to engage with the rigid support frame while the resting support is in the first and second state. An example of a child supporting apparatus including a reversible resting support as described previously includes a play yard.
At least one advantage of the structures described herein is the ability to provide a reversible resting support that has multiple regions adapted to receive a child for different configurations of use, which can provide more versatility in use.
The foregoing is a summary and shall not be construed to limit the scope of the claims. The operations and structures disclosed herein may be implemented in a number of ways, and such changes and modifications may be made without departing from this invention and its broader aspects. Other aspects, inventive features, and advantages of the invention, as defined solely by the claims, are described in the non-limiting detailed description set forth below.
The present application describes a child holding accessory that can be used in combination with a play yard. The child holding accessory can integrate multiple regions adapted to receive a child in different configurations of use. Examples of construction for these holding regions can include, without limitation, a changing table and a child sleep bed. The child holding accessory can be attached with the play yard via one or more fixtures adjustable to selectively turn upward either of the first and second regions for placement of the child.
As shown in
As shown in
The resting support 114 can be provided with fixtures 130 through which it can be attached with the upper handrails 126 of the support frame 106, for example at the two opposite sides 106A. In one embodiment, two fixtures 130 may be securely mounted with the surrounding frame 128 on a first side portion 114A of the resting support 114. The fixtures 130 may be placed at spaced apart positions adjacent to the corners of the first side portion 114A. Each of the fixtures 130 can include a clamp 132, and an adjustable coupling structure 134 that connects the resting support 114 with the clamp 132. The clamp 132 can have a C-shape including two resilient catch portions 132A adapted to clamp and unclamp a portion of the upper handrail 126 by elastic deformation. The adjustable coupling structure 134 can be constructed to pivotally connect the resting support 114 with the clamp 132.
Exemplary operation for adjusting the child holding accessory relative to the play yard is described hereafter with reference to
In case the child holding accessory is to be used as a sleep bed, the resting support 114 can be flipped by rotation about the pivot axis X until the resting support 114 reaches a second position lying approximately horizontal over a second area A2 of the play yard inner space 110 contiguous to the first area A1, as shown in
In the aforementioned embodiment, the fixtures 130 embody two attachments to secure the child holding accessory with the play yard. However, additional attachment may also provided, as illustrated in
The release button 144 can have a generally U-shape including two side push portions 158, and a junction 160 connected with the push portions 158. The release button 144 is mounted over the collar portion 148 in a saddling way with the push portions 158 movably passing through the openings 156 so as to lie adjacent to the inner sidewalls of the catch portions 150. The spring 146 can be mounted in an inner gap defined between the collar portion 148 of the clamp 142 and the junction 160 of the release button 144, and is respectively anchored with protrusions 162 and 164 formed on the collar portion 148 and inner surface of the junction 160. The inner sidewalls of the push portions 158 can also include stop abutments 166 provided adjacent to a side of the collar portion 148 opposite to the side of the spring 146. The stop abutments 166 can contact with the collar portion 148 to limit the extension of the spring 146 and define the initial position of the release button 144.
Depending on the orientation of the resting support 114, the fixture 140 can be pivoted relative to the resting support 114 so as to adequately orient the catch portions 150 for clamping the adjacent upper handrail 126. For example, when the first region R1 is oriented upward, the fixture 140 can be turned to orient the catch portions 150 in a direction opposite to the first region R1 so that it can engage with the corresponding side 106B of the support frame 106. Should the fixture 140 be reversely adjusted to have the second region R2 turned upward, the fixture 140 can be turned to orient the catch portions 150 in a direction opposite to the second region R2.
As shown in
To unlock the fixture 140, the release button 144 can be pushed down so that the push portions 158 can respectively push against the angled surfaces 154 and cause the catch portions 150 to deflect laterally away from each other. As a result, the flanges 152 of the clamp 142 can disengage from the distal end edges 172 of the joining sleeve 170 to unlock the fixture 140.
With the additional fixture 140, the child holding accessory 102 can be securely attached with at least three sides of the support frame 106 to provide stable support. While the aforementioned embodiments provide a child holding accessory 102 that can be adjusted to occupy two different areas A1 and A2 above the play yard 104 (as shown in
In an embodiment, the adjustable coupling structure 222 can include a first coupling element 232 connected with the resting support 202, and a second coupling element 234 adapted to detachably connect with the clamp 220. The first coupling element 232 can be affixed with the surrounding frame 212 at the side 202A of the resting support 202. The second coupling element 234 can include a protruding shaft portion 236 that is assembled through a hole 238 of the first coupling element 232 to define a pivot axis X1 about which the first coupling element 232 can rotate relative to the second coupling element 234. The second coupling element 234 can also include a tongue portion 240 provided with a resilient latch 242. The tongue portion 240 can insert through the socket 226 until the resilient latch 242 engages through an opening 244 formed on a sidewall of the socket 226 to securely fasten the adjustable coupling structure 222 with the clamp 220. If needed, the resilient latch 242 can be pushed inward to disengage from the opening 244, whereby the adjustable coupling structure 222 can be removed from the clamp 220.
The adjustable coupling structure 252 can include a first coupling element 262 connected with the resting support 202, and a second coupling element 264 adapted to detachably connect with the clamp 250. The first coupling element 262 can be affixed with the surrounding frame 212 at the side 202B of the resting support 202. The second coupling element 264 can include a circular shaft portion 266 that is assembled through a slot 268 of the first coupling element 262 to define a pivot axis X2 about which the first coupling element 262 can rotate relative to the second coupling element 264. The slot 268 can have a width substantially equal to the diameter of the shaft portion 266, and a length greater than the shaft portion 266. Relative displacement of the shaft portion 266 along the length of the slot 268 is thereby permitted to guide vertical movements of the first coupling element 262 relative to the second coupling element 264.
The second coupling element 264 can also include a tongue portion 270 provided with a resilient latch 272. The tongue portion 270 can insert through the socket 256 until the resilient latch 272 engages through an opening 274 formed on a sidewall of the socket 256. The coupling structure 252 can be thereby fastened with the clamp 250 to form the fixture 206. If needed, the resilient latch 272 can be pushed inward to disengage from the opening 274, whereby the adjustable coupling structure 252 is removed from the clamp 250 to disassemble the fixture 206.
As better shown in
The latching element 280 can be mounted in an inner cavity between the first and second coupling elements 262 and 264, and is movable along an axis parallel to the pivot axis X2. A spring 286 can be connected between the latching element 280 and the second coupling element 264, and is adapted to bias the latching element 280 toward the first coupling element 262. The spring 286 and the latching element 280 can be formed as an integral part by plastic injection molding. The latching element 280 can also include an actuator portion 280A that can protrude outward from the second coupling element 264 for facilitating operation of the latching element 280, and an angled tip 280B adapted to engage with either of the guide track 282 and one of the grooves 284A and 284B.
It is worth noting that the engagement of the latching element 280 may also accomplished by interchanging the positions of the guide track 282 and grooves 284A and 284B with respect to the first and second coupling element, for example, the guide track 282 and grooves 284A and 284B can also be disposed on the second coupling element 264.
Exemplary operation for adjusting the orientation of the resting support 202 is described hereafter with reference to
In case the resting support 202 is to be adjusted to turn the second region R2 upward, the actuator portion 280A may be pushed toward the second coupling element 264 (as shown by the arrow D) to disengage the latching element 280 from the groove 284A. The side 202B of the resting support 202 then can be slightly pulled so that the first coupling element 262 moves upward relative to the second coupling element 264, until the latching element 280 engages with the guide track 282 under the biasing action of the spring 286. The engagement of the latching element 280 with the guide track 282 in shown in
Once the second region R2 is properly oriented, the resting support 202 can be pushed downward, which causes the first coupling element 262 to push the latching element 280 toward the second coupling element 264 and disengage from the guide track 282 owing to the interaction of the angled edge 285A and the angled tip 280B of the latching element 280. Once the groove 284B becomes aligned with the latching element 280, the spring 286 can push the latching element 280 to engage with the groove 284B to lock the resting support 202 in place, as shown in
The adjustable coupling structure 352 can include a first coupling element 362 connected with the surrounding frame 212 of the resting support 202, and a second coupling element 364 adapted to detachably connect with the clamp 350. The first coupling element 362 can be affixed with the surrounding frame 212 at the side 202B of the resting support 202. The second coupling element 364 can include a circular shaft portion 366 that is assembled through a slot 368 of the first coupling element 362 to define a pivot axis X2 about which the first coupling element 362 can rotate relative to the second coupling element 364. The slot 368 can have a width substantially equal to the diameter of the shaft portion 366, and a length greater than the diameter of the shaft portion 366. Relative displacement of the shaft portion 366 along the length of the slot 368 is thereby permitted to guide vertical movements of the first coupling element 362 relative to the second coupling element 364.
As better shown in
As better shown in
It is worth noting that the above locking engagement for holding the resting support 202 in place may also be achieved by interchanging the positions of index posts 385A and 385B and the guide track 382 and two recessed grooves 384A and 384B with respect to the first and second coupling elements. For example, the guide track 382 and the two recessed grooves 384A and 384B can be disposed on the first coupling element 362, and the two index posts 385A and 385B can be disposed on the second coupling element 364.
In addition, the adjustable coupling structure 352 can include a latching element 386 that is assembled in an inner cavity between the first and second coupling elements 362 and 364. In this embodiment, the latching element 386 can be mounted adjacent to the position of the recessed groove 384A, and pivotally connected with the second coupling element 364 via a pivot connection 388. The latching element 386 can include an actuator portion 386A that is accessible from an upper side of the second coupling element 364, and a tip 386B adapted to engage with either of the index posts 385A and 385B, for example by engaging through an opening 387 formed through each of the posts 385A and 385B. A spring element, such as resilient arm 386C, may also be provided to bias the latching element 386 into locking engagement with either of the index posts 385A and 385B. The latching element 386 may also have a stop protrusion 386D that can abut against an inner edge of the first coupling element 362 to restrict the range of displacement of the latching element 386 when biased by the resilient arm 386C. In one embodiment, the resilient arm 386C and the stop protrusion 386D may be integrally formed with the latching element 386, and have a distal end abutting against an inner sidewall of the second coupling element 364.
Exemplary operation of the fixture 306 is described hereafter with reference to
In case the resting support 202 is to be adjusted to turn the second region R2 upward, the actuator portion 386A may be pushed to disengage the latching element 386 from the index post 385A, as shown in
Once the second region R2 is properly oriented, the resting support 202 can be pushed downward, which causes the index posts 385A and 385B to respectively engage with the recessed grooves 384B and 384A for blocking rotation of the resting support 202. As the resting support 202 is being pushed downward, the latching element 386 can also be pushed away by the angled edge 389 of the index post 385B. Once it is properly aligned, the biasing action of the resilient arm 386C can push the latching element 386 to engage with the index post 385B to prevent accidental disengagement of the index posts from their respective recessed grooves, as shown in
As shown in
With the foregoing construction, the resting support 202 can occupy approximately the same area regardless of whether it is the first or second region R1 or R2 that is currently configured for use. This may reduce the range of movement of the resting support 202 during adjustment.
The fixture 404 can include a clamp 422 adapted to removably attach with the play yard, and an adjustable coupling structure 424 that connects the resting support 402 with the clamp 422. The adjustable coupling structure 424 can be formed as a ball and socket joint. For example, the adjustable coupling structure 424 can include a coupling arm 425 that is affixed with the surrounding frame 412 and is provided with a ball 426, and a socket 428 formed at an upper portion of the clamp 422 and adapted to engage with the ball 426. With this construction, the resting support 402 can be rotated about a axis X3 to turn upward either of the first and second regions R1 and R2, and rotated about axis X4 to facilitate vertical displacement of the side 402B of the resting support 402 relative to the corresponding side of the support frame 106 to either engage or disengage the fixture 406.
The fixture 406 can be formed as a clamp that is pivotally connected with the surrounding frame 412 and can engage with the corresponding side of the support frame 106. When either of the first region R1 and second region R2 is turned upward, the fixture 406 can be pivoted relative to the frame portion 412 of the resting support 402 to which it is mounted so as to adequately orient the clamp for engaging with the upper handrail 126.
At least one advantage of the structures described herein is the ability to provide a child holding accessory that can integrate two opposite regions adapted to receive the placement of a child in different configurations of use. Accordingly, the child holding accessory can be more versatile and occupy less space.
Realizations in accordance with the present invention therefore have been described only in the context of particular embodiments. These embodiments are meant to be illustrative and not limiting. Many variations, modifications, additions, and improvements are possible. Accordingly, plural instances may be provided for components described herein as a single instance. Structures and functionality presented as discrete components in the exemplary configurations may be implemented as a combined structure or component. These and other variations, modifications, additions, and improvements may fall within the scope of the invention as defined in the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
2011 1 0188042 | Jul 2011 | CN | national |
This patent application is a continuation of parent U.S. patent application Ser. No. 13/206,589 filed on Aug. 10, 2011, which respectively claims priority to U.S. Provisional Patent Application No. 61/401,310 filed on Aug. 11, 2010, and to U.S. Provisional Patent Application No. 61/455,901 filed on Oct. 28, 2010, and to U.S. Provisional Patent Application No. 61/463,390 filed on Feb. 16, 2011, and to Chinese Patent Application No. 201110188042.9 filed on Jul. 6, 2011, all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5918329 | Huang | Jul 1999 | A |
6173462 | Huang et al. | Jan 2001 | B1 |
6948197 | Chen | Sep 2005 | B1 |
7263729 | Paesang et al. | Sep 2007 | B2 |
7958578 | Shan et al. | Jun 2011 | B2 |
8011036 | Tuckey | Sep 2011 | B2 |
8973180 | Zeng et al. | Mar 2015 | B2 |
20060080776 | Clapper et al. | Apr 2006 | A1 |
20060225205 | Troutman | Oct 2006 | A1 |
20100162484 | Thomas et al. | Jul 2010 | A1 |
20120204347 | Li | Aug 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20150296999 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61401310 | Aug 2010 | US | |
61455901 | Oct 2010 | US | |
61463390 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13206589 | Aug 2011 | US |
Child | 14755044 | US |