1. Field of the Invention
This invention relates to the lighting arts and, more particularly, to a direct-indirect lighting fluorescent luminaire comprising a field-reversible reflector that may be installed to achieve efficient and uniform illumination of a floor and ceiling area, or of just a floor area as necessitated by a specific installation.
2. Description of the Related Art
Fluorescent lighting technology has greatly advanced since its inception in the late 1930s responsive to market requirements for energy efficient lighting systems. Lamp and ballast manufacturers have developed fluorescent lamp-ballast systems with vastly improved energy efficiency that are convenient to use and install. As one example, ANSI T-5 lamps are a type of fluorescent lamp currently used which operate very efficiently at temperatures above ambient room temperature.
Direct-indirect lighting systems are known in the art. Suspended indirect lighting systems are those in which a luminaire containing a lamp or lamps directs light onto a ceiling surface whereby it is reflected downwardly to the area below or simply used to illuminate the area above. These luminaires normally provide a direct or “down” lighting component as well as an indirect or “up” lighting component through the top of the luminaire housing which is either open, has slots disposed in a portion of the luminaire, or includes a light transmitting element such as a lens cover.
Many up light and down light luminaires are designed to produce varying up and down light patterns, depending primarily on the design of a reflector or reflectors disposed proximate the lamps in the luminaire housing. However, this arrangement often requires a purchaser or lighting designer to know exactly what type of lighting is necessary for a given location when ordering or purchasing the fixtures. In many applications, up light is not necessarily required or desirable and as such, a fixture that is configured for up lighting can not be used in a strictly down lighting application.
Fluorescent luminaires utilizing up and down light reflectors have enjoyed widespread acceptance because of their efficiency in converting electrical energy to light energy, their favorable spectral emissions, and their ability to direct light in several directions. However, there have remained problems in their use and manufacture. One disadvantage with existing direct-indirect lighting luminaires is that in many designs, the luminaires are not capable of providing both direct and indirect lighting, or only direct lighting as required by the installation application.
Another disadvantage in the prior art is that luminaires capable of selectively providing both direct-indirect lighting and direct only lighting have complex structures that are not well adapted for field configuration and installation. A proliferation of plates, clips, screws, bolts, nuts and other fasteners is typically required when attempting to convert a direct-indirect type luminaire to a direct only luminaire in the field. These small parts are easily lost, dropped and misplaced and are often difficult to find thereafter.
Additionally, the field installer of these prior art devices requires a great deal of additional labor time, and thus money, to convert from one type of luminaire to another. Furthermore, the complexity of the parts necessary to provide conversion kits for these prior art luminaires makes them more costly than a luminaire that is ordered for a specific application. Accordingly, it is desirable to have a luminaire that is capable of being converted from a direct-indirect lighting type of fixture to a direct only type of fixture with minimal effort and with very few additional parts.
The present invention generally relates to industrial and commercial lighting fixtures and more particularly to luminaires that provide both direct and indirect lighting, so-called “direct-indirect” luminaires. The invention finds particular application in the field of fluorescent lighting where ambient light is produced from a fluorescent lamp or lamps mounted in an elongated housing having a predetermined length and characteristic cross-sectional shape.
The present invention includes a luminaire having an industrial up light reflector, and, more particularly, to a luminaire housing a fluorescent lamp, for example an ANSI T-5 lamp or the like, where the housing includes a plurality of slots or apertures in a down light reflector and a corresponding plurality of slots or apertures in the body portion of the luminaire. This luminaire efficiently provides direct down lighting and uniform indirect up lighting when appropriately configured.
Uses of the instant invention include but are not limited to retail stores, such as grocery, drug, and department stores, where the fixtures are commonly mounted in continuous rows. The fixtures may also be used in warehouses, factories or other industrial and commercial settings where direct-indirect lighting may be required.
The direct/indirect fluorescent lighting system of the instant invention permits and installer to customize a luminaire to provide direct light only or indirect and direct light simultaneously. In one embodiment of the present invention, the luminaire is selectively configurable such that a first portion of the luminaire may supply direct and indirect light while a second portion thereof may supply only direct illumination.
The luminaire disclosed herein provides direct down lighting as well as selectable indirect up lighting by utilizing a plurality of reversible light reflectors having a reflective surface and a plurality of slots or apertures therein that may be positioned to either align with or block complementary slots in the luminaire housing. This reflective surface may be convex, divergent, concave, flat, or even have an irregular shape as required. Each reflector may be sized to correspond to a given lamp region or a plurality of lamp regions within a single luminaire housing so that individual lamps or lamp sets may provide direct or indirect illumination depending upon the corresponding reflector configuration.
The instant invention has a structural design that permits a configurable direct-indirect illumination type luminaire to be manufactured and assembled with very few parts as well as be easily and quickly configured in the field.
The instant invention accomplishes these objectives by providing a direct-indirect luminaire comprised of a pair of opposing lamp holders, a plurality of reversible light reflectors including a plurality of slots and a housing having complementary slots.
Other features and advantages of the invention will become apparent from the detailed description of the preferred embodiments herein below, taken in conjunction with the accompanying drawing Figures.
Referring now to
Housing 20 further comprises a plurality of pairs of lamp holders 24, spaced apart one from other a distance sufficient to accommodate a fluorescent lamp. Luminaire 10 and lamp holders 24 may be sized and spaced in a wide variety of configurations to accommodate the use of a plurality of different lamp sizes as necessitated by the overall housing 20 shape, which is not limited to the generally rectangular configuration shown in the drawing Figures.
Housing 20 may further include a wire way 30 through which electrical wiring is routed and inside of which electrical ballasts required to start fluorescent lamps may be mounted. In the luminaires 10 shown in the drawing Figures wire ways 30 are shown as generally situated longitudinally between two pairs of lamp holders 24. This central location facilitates the ease of manufacture of luminaire 10 as well as ease of connecting power wiring thereto in the field.
As best seen in
Referring again to
Upper surface 22 further includes a plurality of apertures 28, shown in exemplary form in the drawing Figures as slots having a generally rectangular shape. As best seen in
The luminaire 10 of the present invention further comprises a plurality of reversible reflectors 80 each having a plurality of apertures 82 or slots therein. In one embodiment of the invention as best seen in
In this embodiment of the invention each reversible reflector 80 is secured to housing 20 and accommodates a pair of adjacent lamps installed in adjacent pairs of lamp holders 24. However, it should be understood that reversible reflector 80 may be configured to accommodate a single lamp, or a plurality thereof without departing from the scope of the present invention. Referring again to
Referring now to
As can be readily seen from the description herein above luminaries 10 in accordance with the instant invention may be quickly and easily configured to provide up light and down light, or down light only, simply depending upon the orientation of reflectors 80 as they are installed in housing 20. In a yet further embodiment of the invention a single luminaire 10 may be configured to provide up light and down light from a pair of lamps while providing only down light from an adjacent pair of lamps by simply installing a pair of reflectors 80 in opposite orientations.
The reflectors 80 shown in the drawing Figures have a four aperture 82/five aperture 82 configuration for use in adjacent four aperture 28/five aperture lamp regions 26. However, one of ordinary skill in the art will understand that a wide variety of aperture shapes and locations in both reflector 80 and housing 20 may be used as long as reflector 80 apertures 82 generally align with housing apertures 28 in a first reflector 80 orientation and generally block or cover housing apertures 28 in a second reflector 80 orientation.
As one example, a plurality of generally circular apertures 82 may be provided on each reflector 80 to align with generally circular apertures 28 disposed proximate each lamp region of housing 20. The plurality of circular apertures 82 may be arranged on reflector 80 so that they align with the circular apertures 28 of housing 20 when the reflector 80 is in a first orientation, but block apertures 28 when reflector 80 is in a second orientation. In this fashion, the apertures 28 and 82 may be shaped in a wide variety of different shapes, and be spaced in a plurality of patterns in both housing 20 and reflectors 80 to establish specific up light illumination patterns which may be desirable in lighting installations.
While the present invention has been shown and described herein in what are considered to be the preferred embodiments thereof, illustrating the results and advantages over the prior art obtained through the present invention, the invention is not limited to those specific embodiments. Thus, the forms of the invention shown and described herein are to be taken as illustrative only and other embodiments may be selected without departing from the scope of the present invention, as set forth in the claims appended hereto.
The instant application claims the benefit of and priority to U.S. Provisional Application for Patent Ser. No. 60/805,029 entitled “Reversible Light Reflector”, filed on Jun. 16, 2006.
Number | Name | Date | Kind |
---|---|---|---|
2337745 | Garstang | Dec 1943 | A |
4598344 | Nadler | Jul 1986 | A |
5038254 | Fabbri et al. | Aug 1991 | A |
5086375 | Fabbri et al. | Feb 1992 | A |
5160193 | Fabbri et al. | Nov 1992 | A |
5272608 | Engle | Dec 1993 | A |
5289357 | Fabbri | Feb 1994 | A |
5343373 | Tillotson | Aug 1994 | A |
5727870 | Grierson | Mar 1998 | A |
5921666 | Preston et al. | Jul 1999 | A |
6174069 | Plunk et al. | Jan 2001 | B1 |
6247828 | Herst | Jun 2001 | B1 |
6402345 | Fishman | Jun 2002 | B1 |
6505953 | Dahlen | Jan 2003 | B1 |
6776509 | Warner | Aug 2004 | B1 |
6793368 | Ladstatter | Sep 2004 | B2 |
6837592 | Dahlen | Jan 2005 | B1 |
20050231952 | Garrett et al. | Oct 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20070291495 A1 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
60805029 | Jun 2006 | US |