The present invention is directed to a ramming tool. The tool comprises a housing having an elongate internal chamber having opposed ends. A fixed first anvil is situated within and supported by the housing at one end of the chamber, and a fixed second anvil is situated within and supported by the housing at the second end of the chamber. A reciprocating striker is positioned within the chamber between the anvils. The tool further comprises a fluid distribution block fixedly positioned within the chamber. The block comprises a forward fluid path, and a reverse fluid path. The reverse fluid path is fluidly communicable with the forward fluid path. Fluid flow through the communicating forward and reverse fluid paths causes the striker to impact the second anvil. Fluid flow through the forward fluid path, in isolation of the reverse fluid path, causes the striker to impact the first anvil. A valve is also supported within the block that is adapted to selectively isolate the forward and reverse fluid paths.
With reference to
Once in position, the tool 10 is activated so as to percussively thrust the burst head 14 forward through the existing pipe 22. The burst head 14 operates to crack the existing pipe 22 and expand shards 24 into the surrounding soil as the tool 10 forces the burst head 14 forward. Simultaneously, the tool 10 pulls the new pipe 18 through the subsurface so as to replace the previously existing pipe 22.
The tool 10 is powered by a compressor (not shown) positioned at the ground surface 26 above the opening of the existing pipe 22. The compressor supplies compressed air or fluid to the tool 10 via a first and second hose 28, 30 attached to the rear end 20 of the housing 12. During operation, the hoses 28, 30 are disposed within the new pipe 18 and must stretch the entire length of the new pipe, which may be 300 to 500 feet long.
A winch 32 positioned at the ground surface 26 above the end of the existing pipe 22 is used to help pull the tool 10 forward during operation. The winch 32 pulls a cable 34 secured to the burst head 14 through the existing pipe 22.
When the ramming tool 10 reaches the end of the existing pipe 22, it is detached from the burst head 14. Once detached, the tool 10 is pulled back through the new pipe 18 to the ground surface 26 using the hoses 28, 30. The burst head 14 is pulled to the ground surface by the winch 32.
The burst head 14 is attached to the front end 16 of the housing 12 via a taper lock. The taper lock is formed by engagement of the tapered front end 16 of the housing 12 with a complementary tapered bore (not shown) formed in the burst head 14. Forward movement of the tool 10 tightly engages the tapered front end 16 with the tapered bore. In contrast, rearward movement of the tool 10 disengages the front end 16 from the tapered bore. Thus, when the tool 10 reaches the end of the existing pipe 22, the tool 10 is switched into a reverse until the tool 10 is detached from the burst head 14. In reverse, the tool 10 is configured to move percussively in a rearward direction.
Turning to
With reference to
A reciprocating striker 48 is positioned within the chamber 36 between the first and second anvil 42, 44. Movement of fluid within the chamber 36 powers movement of the striker 48. A compressed fluid, such as air, is distributed throughout chamber 36 via a fluid distribution block 50 positioned at least partially within the chamber 36.
The block 50 has a rear end 52 joined to a front end 53, shown in
Continuing with
An endless groove 58 is formed in the outer surface of the rear end 52 of the block 50. The groove 58 is formed complementary to an endless groove 60 formed in the internal walls of the second anvil 44. An isolator 62 is positioned within the adjoining grooves 58, 60. The isolator 62 maintains the axial and concentric positioning of the block 50 within the internal chamber 36. The isolator 62 also provides shock absorption for the block 50 during operation.
With reference to
A series of timing ports 68 are formed in the walls of the striker 48 surrounding its central bore 64. Movement of the striker 48 over the front end 53 of the block 50 seals the timing ports 68 from fluid communication with the central bore 64. One or more seals 70 may be positioned around the outer surface of the front end 53 of the block 50 to help maintain pressure during operation.
Continuing with
With reference to
As fluid flow into the central bore 64 continues, fluid pressure builds within the bore 64, which is sealed from the internal chamber 64. The central bore 64 remains sealed from the internal chamber 36 until the timing ports 68 are moved in front of the front end 53 of the block 50, as shown in
Entry of fluid into the chamber 36 causes pressure to increase outside of the striker 48 and decrease within the central bore 64. This pressure change causes the striker 48 to move rearwardly over the distribution block 50. Rearward movement of the striker 48 re-seals the timing ports 68 from fluid communication with the internal chamber 36.
Contemporaneously, fluid within the internal chamber 36 may exhaust from the tool 10 through a plurality of primary exhaust passages 80 formed within the walls of the second anvil 44, as shown in
As fluid exhausts from the chamber 36, fluid is allowed to again fill the central bore 64 of the striker 48 and force the striker forward towards the first anvil 42. The constant feed of fluid through the forward fluid path causes the striker 48 to percussively strike the first anvil 42 and move the tool 10 in a forward direction.
In order to maintain the tool in its forward operating mode, the reverse fluid path, shown by arrows 83 in
With reference to
A shuttle 92 positioned within the valve 76 is configured to selectively isolate the outlet port 88 from fluid communication with the first inlet port 84. The shuttle 92 comprises a first portion 94 joined to a second portion 96 via a tapered portion 98. The first portion 94 has a maximum cross-sectional dimension greater than that of the second portion 96. A central bore 100 is formed within the shuttle 92 that opens on the end of the first portion 94. The end of the second portion 96 is closed. The tapered portion 98 is configured to tightly engage with a tapered seat 102 formed in the walls of the first inlet port 84. One or more seals 104 may be positioned around the outer surface of the shuttle 92 to maintain pressure during operation. In alternative embodiments, the shuttle 92 may have different shapes, such as that of a cone or ball.
With reference to
As the shuttle 92 moves forward, the tapered portion 98 of the shuttle 92 engages with the tapered seat 102. Such engagement closes the outlet port 88 and prevents fluid from passing between the first inlet port 84 and the outlet port 88. When the outlet port 88 is closed, there is no fluid flow along the reverse fluid path.
Movement of the shuttle 92 towards the second inlet port 86 exposes the outlet port 88 to the first inlet port 84. After the outlet port 88 is opened, fluid communication is established between the forward fluid path and the reverse fluid path 83, shown in
Movement of fluid through the reverse fluid path causes the tool 10 to operate in reverse. Fluid in the reverse fluid path travels from the first passage 72, into the central bore 64 of the striker 48. Fluid in the central bore 64 is permitted to flow into the valve 76 through the first inlet port 84. Once in the valve 76, the fluid flows through the outlet port 88 and into the groove go.
As fluid fills the groove go, fluid also fills the central bore 64 of the striker 48. Fluid pressure is allowed to build within the central bore 64 because it is sealed from the internal chamber 36. The central bore 64 remains sealed from the internal chamber 36 until the timing ports 68 are moved in-line with the groove 90. Upon exposure of the timing ports 68 to the groove 90, fluid within groove go may flow through the timing ports 68 and into the internal chamber 36.
Entry of fluid into the chamber 36 causes pressure to increase outside of the striker 48 and decrease within the striker. This pressure change causes the striker 48 to move rearwardly over the distribution block 50 until the striker 48 impacts the second anvil 44. Contemporaneously, fluid within the internal chamber 36 may exhaust from the tool 10 through the primary exhaust passages 80 formed within the walls of the second anvil 44 shown in
As fluid exhausts from the chamber 36, fluid is allowed to again fill the central bore 64 of the striker 48 and force the striker forward towards the first anvil 42. Once the timing ports 68 are exposed to the groove go, the striker 48 is again forced to move rearwardly towards the second anvil 44. The constant feed of fluid through the reverse fluid path causes the striker 48 to percussively strike the second anvil 44 and move the tool 10 in a rearward direction.
Fluid within the central bore 64 is exhausted more quickly from the central bore 64 when the outlet port 88 is open, as compared to when it is closed. As a result, less fluid fills the central bore 64 when the outlet port 88 is open. The reduced fluid level results in a reduced pressure in the central bore 64, as compared to the chamber 36. This pressure imbalance causes rearward motion of the striker 48.
In reversible ramming tools known in the art, the forward and reverse flow paths are not selectively placed in fluid communication with one another. Rather, the paths are completely isolated from one another. The paths are also not powered by a single hose. Rather, the forward fluid path is powered by a single large hose and the reverse fluid path is powered by a single large hose. The hoses may each have a minimum diameter of around 1.25 inches. This construction requires two large hoses to stretch the entire length of the new pipe 18, shown in
In contrast, the tool 10 utilizes a single first hose 28 to power both the forward and reverse fluid paths. The tool 10 uses a much smaller second hose 30 to operate the valve 76 in order to switch the fluid between the forward and reverse paths. The first hose 28 typically has a minimum diameter of around 1.25 inches, while the second hose 30 may have a minimum diameter of 0.5 inches. Thus, the burden and labor associated with the hoses is significantly reduced. The minimum diameter of the second hose 30 may be small because the minimum diameter of the second passage 74 is less than half the size of the minimum diameter of the first passage 72, as shown in
Changes may be made in the construction, operation and arrangement of the various parts, elements, steps and procedures described herein without departing from the spirit and scope of the invention as described in the following claims.
Number | Date | Country | |
---|---|---|---|
62580967 | Nov 2017 | US |