Reversible variable drives and systems and methods for control in forward and reverse directions

Information

  • Patent Grant
  • 11530739
  • Patent Number
    11,530,739
  • Date Filed
    Tuesday, November 16, 2021
    3 years ago
  • Date Issued
    Tuesday, December 20, 2022
    a year ago
Abstract
A ball-planetary continuously variable transmission (CVT) capable of stable control in forward and reverse rotation over a range of speed ratios including underdrive and overdrive is provided. Imparting a skew angle (zeta) causes unbalanced forces that change the tilt angle (gamma), resulting in a change in speed ratio of the CVT. Angularly orientating a control system of the CVT with a positive offset angle (psi) configures the CVT for operation in a first direction of rotation or angularly orientating the control system with a negative offset angle (psi) configures the CVT for operation in a reverse direction of rotation. A control system for configuring the offset angle (psi) may lead or trail the planets. The control system may configure a larger offset angle for more stable control or may configure a smaller offset angle for higher sensitivity in potential rollback scenarios.
Description
BACKGROUND

To assist with the description of embodiments, the following description of the relationship between tilt and skew is provided, in which FIGS. 1A-1C depict coordinate systems in reference to embodiments of certain components of a ball-planetary continuously variable transmission (CVT).


As depicted in FIGS. 1A-1G, CVT 100 includes planets 108 in contact with sun 110 and traction rings 102, 104. Planets 108 are interposed between and in contact with first traction ring 102 and second traction ring 104 at, respectively, first angular position 112 and second angular position 114. FIG. 1A depicts global coordinate system 150 (defined herein to include axes xg, yg, zg) and planet-centered coordinate system 160 (defined herein to include axes x, y, z). Global coordinate system 150 is oriented with respect to longitudinal axis 15 of CVT 100, with the zg-axis coinciding with longitudinal axis 15 about which planets 108 are arranged. Planet-centered coordinate system 160 has its origin at the geometric center of each planet 108, with the y-axis perpendicular to longitudinal axis 15, and the z-axis parallel to longitudinal axis 15. Each of planets 108 has axle 103 defining a planet axis of rotation (defined herein as planet axis 106). Planet axis 106 may be angularly oriented in the y-z plane relative to the x-axis at tilt angle (gamma) 118. Tilt angle (gamma) 118 determines the kinematic ratio between the rotational speeds of traction rings 102 and 104. Each planet 108 has a rotational velocity ω (omega) about planet axis 106, depicted in FIG. 1A as planet rotational velocity 122. Planet axis 106 is defined by planet axle 103. In planet-centered coordinate system 160, the x-axis is directed into the plane of the page (though not shown precisely as such in FIG. 1A), and the z-axis is parallel to longitudinal axis 15. For purposes of illustration, tilt angle (gamma) 118 is generally defined in the y-z plane.


As depicted in FIGS. 1B and 1C, planet-centered coordinate system 160 is resolved further to illustrate the angular adjustments of each planet axis 106 used in embodiments of skew control systems. As depicted in FIG. 1B, tilt angle (gamma) 118 can be derived by rotating coordinate system 160 (with planet axis 106 in the y-z plane) about the x-axis to achieve first relative coordinate system 170 (x′, y′, z′). In relative coordinate system 170, planet axis 106 coincides with the z′-axis. As depicted in FIG. 1C, skew angle (zeta) 120 can be derived by rotating coordinate system 170 about the y-axis (not the y′-axis) to achieve second relative coordinate system 180 (x″, y″, z″). In relative coordinate system 180, planet axis 106 coincides with the z″-axis. Skew angle (zeta) 120 is the angular orientation relative to the y-axis in the x-z plane of the planet axis 106. In some embodiments, tilt angle (gamma) 118 is controlled, at least in part, through an adjustment of skew angle (zeta) 120.


As depicted in FIG. 1D, certain kinematic relationships between contacting components of CVT 100 explain how the inducement of a skew condition generates forces that tend to adjust tilt angle (gamma) 118. As used herein, the phrase “skew condition” refers to an orientation of planet axes 106 such that a non-zero skew angle (zeta) 120 relative to the y-axis exists. Hence, reference to “inducement of a skew condition” implies an inducement of planet axes 106 to align at non-zero skew angle (zeta) 120. In certain embodiments of CVT 100, certain spin-induced forces also act on planet 108. In CVT 100, traction rings 102, 104 and sun 110 contact planet 108 at three locations to form traction or friction contact areas. In certain embodiments, first traction ring 102 drives planet 108 at contact 1, and planet 108 transmits power to second traction ring 104 at contact 2. Traction sun 110 contacts traction planet 108 at contact 3, which may be a single point (shown) or may collectively refer to multiple contact points (not shown here for simplicity). Contact points 1, 2 and 3 are arranged in FIG. 1D to reflect a view of the x-z plane as seen from above CVT 100. However, for ease of understanding, since contact areas 1, 2 and 3 are not coplanar, contact-centered coordinate systems are used in FIG. 1D so that contact areas 1, 2 and 3 can be illustrated with the x-z plane. Subscripts 1, 2, and 3 are used to denote the specific contact area for contact-centered coordinate systems. The z1, z2, and z3 axes intersect at the center of a spherical traction planet 108.


As depicted in FIG. 1D, the surface velocity of first traction ring 102 is denoted in the negative x1 direction by vector Vr1 and the surface velocity of planet 108 is represented by a vector Vp1; the angle formed between the vectors Vr1 and Vp1 is approximately skew angle 120. The resulting relative surface velocity between first traction ring 102 and traction planet 108 is represented by a vector Vr1/p. At contact area 3 between traction planet 108 and traction sun 110, the surface velocity of traction sun 110 is represented by vector Vsv and the surface velocity of traction planet 108 is represented by vector Vps; the angle formed between Vsv and Vps is approximately skew angle 120. The relative surface velocity between traction planet 108 and traction sun 110 is represented by vector Vsv/p. Similarly, for contact 2, the surface velocity of traction planet 108 at contact area 2 is represented by vector Vp2 and the surface velocity of second traction ring 104 is represented by vector Vr2; the angle formed between Vp2 and Vr2 is approximately skew angle 120; the relative surface velocity between traction planet 108 and second traction ring 104 is represented by vector Vr2/p.


The kinematic relationships discussed above tend to generate forces at the contacting components. FIG. 1E depicts a generalized, representative traction curve that can be applied at each of contact areas 1, 2, 3, illustrating a relationship between the traction coefficient μ and the relative velocity between contacting components. The traction coefficient μ is indicative of the capacity of the fluid to transmit a force. The relative velocity, such as Vr1/p, can be a function of skew angle 120. The traction coefficient μ is the vector sum of the traction coefficient in the x-direction (μx) and the traction coefficient in the y-direction (μy) at contact area 1, 2, or 3. As a general matter, traction coefficient μ is a function of the traction fluid properties, the normal force at the contact area, and the velocity of the traction fluid in the contact area, among many other things. For a given traction fluid, the traction coefficient μ increases with increasing relative velocities of components, until the traction coefficient μ reaches a maximum capacity after which the traction coefficient μ decreases with increasing relative velocities of components. Consequently, in the presence of skew angle 120 (i.e., under a non-zero skew condition), forces are generated at contact areas 1, 2, 3 around the traction planet 108 due to kinematic conditions.


Based on the traction curve depicted in FIG. 1E and the diagrams depicted in FIGS. 1D and 1F, Vr1/p generates a traction force parallel to Vr1/p with a component side force Fs1. Increasing skew angle 120 increases Vr1/p and, thereby increases force Fs1 (according to the general relationship illustrated in FIG. 1D). Vsv/p generates force Fss, and similarly, Vr2/p generates force Fs2. Forces Fs1, Fss, and Fs2 combine to create a net moment about traction planet 108 in the y-z plane. More specifically, the summation of moments about traction planet 108 is M=R*(Fs1+Fs2+Fss), where R is the radius of traction planet 108, and forces Fs1, Fs2, and Fss are the resultant components of the contact forces in the y-z plane. The contact forces, also referred to here as skew-induced forces, in the above equation are as follows: Fs1y11N1, and Fs2y2N2 and FssysN3, where N1, N2 and N3 are the normal forces at the respective contact areas 1, 2 and 3. Since the traction coefficient μ is a function of relative velocity between contacting components, the traction coefficients μy1, μy2, and μys are consequently a function of skew angle 120 as related by the kinematic relationship. In the embodiment illustrated here, a moment is an acceleration of inertia and the moment will generate a tilt angle acceleration {umlaut over (γ)}. Therefore, the rate of change of tilt angle {dot over (γ)}, is a function of skew angle 120.



FIG. 1G depicts a top view of one embodiment of traction planet 108 having non-zero skew angle (zeta) 120, which results in planet axis of rotation 106 being non-parallel (in the yg-zg plane) to longitudinal axis 15 of CVT 100 and rotational velocity 122 of traction planet 108 is not coaxial with the z-axis. Skew angle 120 generates forces for motivating a change in tilt angle 118. In the presence of skew angle 120, traction planet 108 would have rotational velocity 122 about an axis z″, and tilt angle 118 would be formed between axis z″ and the y-z plane.


SUMMARY OF CERTAIN INVENTIVE ASPECTS

Embodiments of CVTs disclosed herein are capable of operating according to the above-mentioned principles during operation in forward direction and reverse direction, may switch between operation in forward direction and reverse direction, and may be controlled using various control schemes that enable switching between operation in forward direction and reverse direction. In particular, embodiments disclosed herein include a vehicle or equipment with a transmission, drivetrain, CVT or a control system for a CVT having a control system coupled to a plurality of trunnions coupled to each axle in a plurality of axles, wherein the control system is capable of misaligning the axles to adjust a speed ratio over a range of speed ratios between underdrive and overdrive (and including 1:1), and configurable to operate in forward and reverse directions and further configurable to operate according to different control strategies for stability and sensitivity.


Advantageously, embodiments disclosed herein may operate in either forward direction or reverse direction, allowing a CVT to be continuously adjusted to maintain a constant output speed for varying input speeds and torques, to maintain a speed ratio for variable input speeds and torques or variable output speeds and torques, or to provide variable output speeds for constant input speeds and torques. Furthermore, when radial translation of trunnion extensions results in trunnions oriented with an offset angle (psi) that reverses signs (that is, switching from positive to negative or negative to positive), embodiments may proactively, simultaneously or reactively adjust a speed ratio of a CVT. As such, if a CVT is operating in overdrive in forward and trunnion extensions are radially translated to reorient the trunnions to reverse the sign of offset angle (psi), the CVT may also be adjusted from overdrive to underdrive. Furthermore, control of a CVT between operation in forward direction and reverse direction may include radially translating trunnion extensions to change the orientation of trunnions relative to a pitch circle to accommodate a switch in the direction of rotation and compensating for the corresponding switch between overdrive and underdrive by axially translating trunnion extensions to apply a skew condition to maintain the skew angle (zeta) imparted on the planets. The processes of orienting the trunnions to an offset angle (psi) relative to the pitch circle to configure the CVT for switching between operation in forward direction and reverse direction and applying a skew angle (zeta) to adjust a tilt angle (gamma) of the CVT adjust the speed ratio of the CVT to any speed ratio between underdrive and overdrive may be performed independently, allowing for multiple possible control schemes for a CVT, such as an example CVT 200 described below.


To configure a CVT for operation in a forward direction or a reverse direction, embodiments may translate trunnion extensions radially inward or outward of a pitch circle to orient trunnions to have a positive or negative offset angle (psi). Furthermore, embodiments disclosed herein may adjust tilt angles (gamma), angular positioning (beta), skew angles (zeta) and offset angles (psi) independently or concurrently, allowing a control system to switch operation of CVT between forward and reverse rotation, and adjust or maintain a speed ratio.


Couplings between trunnions and trunnion extensions allow trunnion extensions to move axially but allow trunnions to rotate to a target offset angle (psi) about their respective z-axes.


Embodiments disclosed herein may advantageously orient trunnions at an offset angle (psi) and adjust a tilt angle (gamma) of axles for a CVT concurrently or independently, allowing for controlled operations in both forward and reverse directions, wherein an offset angle (psi) sign can change at any ratio range, and a transmission ratio (speed or torque) may be adjusted at any offset angle (psi). Advantageously, if a control system for a vehicle operating a CVT determines that a rollback scenario is occurring or likely to occur, a control system may initiate radial movement of couplings or trunnion extensions or change an orientation of trunnions to change the offset angle (psi) sign relative to the pitch circle. Instead of disconnecting power to avoid rollback damage or locking the CVT at a set angle to mitigate rollback damage, changing the offset angle (psi) independently or concurrently with changing the tilt angle (gamma) allows the control system (and therefore the operator) to maintain positive control of the CVT even in rollback scenarios.


Embodiments of a control system may also determine a control sensitivity. The control sensitivity is a function of the offset angle (psi) and dimensions of components including links. Small offset angles (psi) or short link lengths require less axial movement to achieve the same tilt angle (gamma) and allow for faster ratio adjustments but may be less stable. Larger offset angles (psi) or longer link lengths require more axial movement to achieve the same tilt angle (gamma) and may limit ratio adjustment rates but may be more stable. Embodiments of a control system may determine a control sensitivity based on operator input, sensor information, or some combination. Embodiments may also operate according to a first control sensitivity under a first set of conditions and change to a second control sensitivity under a second set of conditions. In some embodiments, a first set of conditions may correspond to operating a CVT in a forward direction and a second set of conditions may correspond to operating the CVT in a reverse direction, operating in a forward direction when reversal of rotation direction is imminent, operating in a forward direction when reversal of rotation direction is probable, in a forward direction when reversal of rotation direction is possible, operating in a forward direction under an increased load, or operating in a forward direction at higher vehicle speed. Other conditions may be based on sensor inputs. In some embodiments, if a sensor determines battery capacity is low or components are overheating, a control system may determine a control sensitivity that limits the axial movement of a coupling and reduce the offset angle (psi) to allow for reduced axial movement of the coupling or may increase the offset angle (psi) and reduce the frequency of commands for adjusting the axial movement of the coupling.


In a broad respect, embodiments disclosed herein may be generally directed to a ball planetary continuously variable transmission (CVT) comprising a plurality of spherical planets between and in contact with two traction rings and a sun, each planet having an axle and a geometric center through which an x-axis, y-axis and z-axis intersect, wherein the plurality of geometric centers define a pitch circle for the plurality of planets, wherein each axle extends through a central bore of a spherical planet and defines the z-axis and an axis of rotation. In some such embodiments, each planet axle is capable of tilting in a first skew plane, and has a skew angle defined as an angle between the central axis and the planet axle, and in a second tilting plane defining a tilt angle as the angle between the central axis and the planet axle, wherein the tilt angle defines a transmission ratio of the transmission. Some embodiments have a first carrier half coaxial with and rotatable about the central axis, the first carrier half coupled by a plurality of links to a first end of each of the planet axles; and a second carrier half coaxial with and rotatable about the central axis, the second carrier half coupled by a plurality of links to a second end of each of the planet axles. In some such embodiments, the first carrier half and second carrier half are rotatable with respect to each other to define an angular position, wherein relative rotation of the first and second carrier halves defines a non-zero angular position that imparts a non-zero skew angle, and wherein a non-zero skew angle imparts an adjustment to the tilt angle, resulting in a change in the transmission ratio of the CVT. In some embodiments, a plurality of couplings couple the plurality of links to the first and second carrier halves, wherein the plurality of couplings are adapted to allow the plurality of links to rotate out of plane with the first and second carrier halves to facilitate the tilting of the planet axles. The plurality of couplings may be ball joints. The plurality of links may be flexible. In some embodiments, the CVT further includes a pitch circle coaxial about the central axis and having a radius equal to a plurality of centers of the planet assemblies, a plurality of connections that connect the plurality of links to the plurality of planet axles. An effective offset angle is defined by the tangent of the pitch circle at a respective one of the plurality of connections and a line between an associated one of the plurality of connections and an associated one of the plurality of couplings. In such embodiments, the effective offset angle may be positive when the plurality of links are located radially outside of the pitch circle, a positive offset angle associated with a forward direction of rotation, and the effective offset angle may be negative when the plurality of links are located radially inside of the pitch circle, a negative offset angle associated with a reverse direction of rotation. In certain embodiments, the CVT further includes an actuator adapted to adjust the radial position of the plurality of couplings in order to adjust the effective offset angle. Certain of these embodiments include an actuator adapted to adjust the radial position of the plurality of couplings to a positive effective offset angle when the CVT is rotating in the forward direction, and adapted to adjust the radial position of the plurality of couplings to a negative offset angle when the CVT is rotating in the reverse direction.


In one broad respect, embodiments disclosed herein may be directed to a continuously variable transmission comprising a plurality of spherical planets between and in contact with two traction rings and a sun, each planet having a geometric center through which an x-axis, y-axis and z-axis intersect, wherein the plurality of geometric centers define a pitch circle for the plurality of planets, wherein an axle extends through a central bore of each of the plurality of spherical planets and defines the z-axis and an axis of rotation. In some embodiments, the control system comprises a plurality of trunnions, wherein each trunnion is coupled to each end of an axle and extends around a spherical planet to a coupling. In some embodiments, the plurality of trunnions are oriented at an offset angle (psi). In some embodiments, orientation of the plurality of traction planets such that the offset angle (psi) has a positive sign configures the CVT for operation in a first direction and orientation of the plurality of traction planets such that the offset angle (psi) has a negative sign configures the CVT for operation in a second direction. In some embodiments in which the plurality of couplings lead the spherical planets, the plurality of trunnions are oriented such that the offset angle (psi) has a positive sign for operation in a forward direction and a negative sign for operation in a reverse direction. In some embodiments in which the plurality of couplings trail the spherical planets, the plurality of trunnions are oriented such that the offset angle (psi) has a negative sign for operation in a forward direction and a positive sign for operation in a reverse direction. In some embodiments in which the axles are fixed axially to the plurality of planets, axial translation of the plurality of couplings imparts a skew condition on the plurality of traction planets to adjust a speed ratio of the CVT. In some embodiments in which the CVT further comprises a synchronizing ring coupled to the plurality of couplings, axial translation of the synchronizing ring axially translates the plurality of couplings to adjust the speed ratio of the CVT. The orientation of the plurality of trunnions is controlled by radial translation of the plurality of couplings. In some embodiments in which the couplings are fixed axially, an axial force applied to the plurality of axles imparts a skew condition on the plurality of traction planets to adjust a speed ratio of the CVT. In some embodiments in which a synchronizer is coupled to at least one end of each axle, axial translation of the synchronizer axially translates the plurality of axles to adjust a speed ratio of the CVT. In some embodiments in which the synchronizer comprises a control disc positioned on one side of the CVT, the control disc comprises a plurality of slots and an end of each axle is coupled to a slot of the plurality of slots, wherein an axial force is applied to the control disc in a first direction or a second direction opposite the first direction to adjust a speed ratio of the CVT. In some embodiments in which the synchronizer comprises a first control disc positioned on a first side of the plurality of slots and a second control disc positioned on a second side of the plurality of slots opposite the first control disc, an axial force is applied to the first control disc to apply an axial force to the axles in a first direction and an axial force is applied to the second control disc to apply an axial force to the axles in a second direction. In some embodiments in which the synchronizer comprises a plurality of arms with each arm coupled to an axle of the plurality of axles, an axial force applied to the plurality of arms applies an axial force to the plurality of axles to adjust a speed ratio of the CVT.


In another broad respect, embodiments disclosed herein may be directed to a method of controlling a continuously variable transmission (CVT) comprising a plurality of spherical planets between and in contact with two traction rings and a sun, each planet having a geometric center through which an x-axis, y-axis and z-axis intersect, wherein the plurality of geometric centers define a pitch circle for the plurality of planets, wherein an axle extends through a central bore of each of the plurality of spherical planets and defines the z-axis and an axis of rotation for that planet, and a plurality of trunnions, wherein each trunnion is coupled to each end of an axle and extends around a spherical planet coupled to the axle. In some embodiments, the method comprises rotating the plurality of trunnions about their respective z-axes to an offset angle (psi). An offset angle (psi) having a positive sign configures the CVT for operation in a first direction of rotation, and an offset angle (psi) having a negative sign configures the CVT for operation in a second direction of rotation. In some embodiments, each trunnion is coupled to a trunnion extension via a coupling with multiple degrees of freedom, wherein the method comprises axially translating the plurality of trunnion extensions to impart a skew angle (zeta) on the plurality of traction planets to cause a change in a speed ratio of the CVT, whereby the couplings allow forces generated by the axial translation to tilt the planets. In some embodiments, each trunnion is coupled to a trunnion extension with limited degrees of freedom, wherein the method comprises applying an axial force to the plurality of axles to impart the skew angle (zeta) on the plurality of traction planets to cause a change in a speed ratio of the CVT, whereby the couplings react forces generated by the axial translation of the planets to tilt the planets. In some embodiments, the method comprises axially fixing the plurality of couplings, wherein adjusting the speed ratio of the CVT comprises applying an axial force to the plurality of axles. In some embodiments, the method comprises axially fixing the plurality of axles to the plurality of traction planets, wherein adjusting the speed ratio of the CVT comprises axially translating the plurality of couplings. In some embodiments, the method comprises determining a first direction of rotation for the CVT; rotating the plurality of trunnions about their respective z-axes to a first offset angle (psi) for operation in the first direction of rotation; determining a change in direction of rotation of the CVT to a second direction of rotation; and rotating the plurality of trunnions about their respective z-axes to a second offset angle (psi) for operation in the second direction of rotation of the CVT. In some embodiments, the method comprises determining a first direction of operation; configuring the CVT for operation at a first offset angle (psi) for the first direction of rotation based on one or more of a first user input, a first operating condition and a first environmental condition; and configuring the CVT for operation at a second offset angle (psi) for the first direction of rotation based on one or more of a second user input, a second operating condition and a second environmental condition, wherein the first offset angle (psi) or the second offset angle (psi) is selected for stable operation or sensitivity.


In another broad respect, embodiments disclosed herein may be directed to a control system for a continuously variable transmission (CVT) comprising a plurality of spherical planets between and in contact with two traction rings and a sun, each planet having a geometric center through which an x-axis, y-axis and z-axis intersect, wherein the plurality of geometric centers define a pitch circle for the plurality of planets, wherein an axle extends through a central bore of each of the plurality of spherical planets and defines the z-axis and an axis of rotation. The control system comprises a controller communicatively coupled to a plurality of sensors and further coupled to a plurality of trunnions coupled to the plurality of axles, wherein each trunnion is coupled to each end of an axle and extends around a spherical planet coupled to that axle. The controller may receive signals related to performance of the CVT, performance of a prime mover coupled to the CVT, signals related to performance of a vehicle associated with the CVT, signals related to the environment, and user inputs. The controller may analyze the signals and configure the CVT. In some embodiments, the controller may configure the CVT for forward or reverse rotation. In some embodiments, the controller may configure the CVT for a desired stability or sensitivity. In some embodiments, the controller may compare the signals with values stored in memory, determine an operating condition is present and configure the CVT according to the operating condition. The operating condition may be a rollback condition, in which a vehicle containing the CVT is in a rollback condition or about to encounter a rollback condition. In some embodiments, the controller may analyze the signals and determine a rollback condition is possible and configure the CVT for increased sensitivity. Configuring the CVT for increased sensitivity may include adjusting trunnions to a smaller offset angle (psi). In some embodiments, the smaller offset angle may be less than 10 degrees. In some embodiments, configuring the CVT for increased sensitivity may include increasing the rate at which sensors send signals to the controller. In some embodiments the controller may configure the CVT for increased stability, which may include adjusting trunnions to a higher offset angle (psi). Adjusting the trunnions may comprise radially translating a control point for each trunnion to a radial position relative to a pitch circle or rotating the trunnions to an offset angle (psi). Each trunnion comprises a coupling, wherein a control point is defined along a line passing through the geometric center of each traction planet and the coupling for that traction planet, wherein a position of a plurality of control points radially outside the pitch circle configures the CVT for a first direction, wherein a position of the plurality of control points radially inside the pitch circle configures the CVT for a second direction opposite the first direction. An axial translation of the plurality of control points, an axial force applied to the plurality of axles, or a combination thereof misaligns the plurality of axles relative to a longitudinal axis of the CVT to adjust a tilt angle of the plurality of planets. In some embodiments in which the plurality of couplings lead the spherical planets, the controller may position the plurality of control points radially inward of the pitch circle for operation in a forward direction of rotation or radially outward of the pitch circle for operation in a reverse direction of rotation. In some embodiments in which the plurality of couplings trail the spherical planets, a controller may position the plurality of control points radially outward of the pitch circle for operation in a forward direction of rotation or radially inward of the pitch circle for a reverse direction of rotation. In some embodiments, the plurality of axles are axially fixed to the plurality of planets and the CVT further comprises a plurality of trunnion extensions coupled to the plurality of couplings and a synchronizing ring. A controller may control a radial position of the plurality of couplings by radial translation of the plurality of trunnion extensions. A controller may command an axial translation of the synchronizing ring to axially translate the plurality of couplings to adjust the speed ratio of the CVT. In some embodiments, the couplings are fixed axially, and a controller may command an axial force be applied to the plurality of axles to impart a non-zero skew condition to the plurality of planets. The non-zero skew condition causes the CVT to adjust a tilt angle of the plurality of spherical planets. In some embodiments, a synchronizer is coupled to at least one end of each axle, wherein a controller commanding an axial force applied to the synchronizer misaligns the plurality of axles to adjust a tilt angle of the plurality of traction planets. In some embodiments, the synchronizer comprises a control disc positioned on one side of the CVT. The control disc has a plurality of slots and an end of each axle is coupled to a slot of the plurality of slots. An axial force applied to the control disc in a first direction or a second direction opposite the first direction imparts a non-zero skew condition to adjust a tilt angle of the plurality of traction planets. In some embodiments, the synchronizer comprises a first control disc positioned on a first side of the plurality of slots and a second control disc positioned on a second side of the plurality of slots opposite the first control disc, wherein a controller commanding an axial force applied to the first control disc applies an axial force to the axles in a first direction to impart a non-zero skew condition to adjust a tilt angle of the plurality of traction planets toward underdrive, or an axial force applied to the second control disc applies an axial force to the axles in a second direction to impart a non-zero skew condition to adjust a tilt angle of the plurality of traction planets toward overdrive. In some embodiments, the synchronizer comprises a plurality of arms. Each rigid member is coupled to an axle of the plurality of axles, wherein an axial force applied to the plurality of arms applies an axial force to the plurality of axles to adjust a tilt angle of the plurality of traction planets.


In another broad respect, embodiments disclosed herein may be generally directed to a method of controlling a continuously variable transmission (CVT) comprising a plurality of spherical planets between and in contact with two traction rings and a sun, each planet having a geometric center through which an x-axis, y-axis and z-axis intersect, wherein the plurality of geometric centers define a pitch circle for the plurality of planets, wherein an axle extends through a central bore of each of the plurality of spherical planets and defines the z-axis and an axis of rotation for that planet, and a plurality of trunnions, wherein each trunnion is coupled to each end of an axle and extends around a spherical planet coupled to that axle, wherein each trunnion comprises a coupling, wherein a control point is defined along a line passing through the geometric center of each traction planet and the coupling for that traction planet. In some embodiments, rotating the plurality of trunnions about their respective z-axes to an offset angle (psi) comprises determining a control scheme and rotating the plurality of trunnions to the offset angle (psi) based on the control scheme. In some embodiments, the plurality of trunnions are rotated to a larger angle associated with a control scheme selected for stable operation or are rotated to a smaller angle associated with a control scheme selected for increased sensitivity.


In another broad respect, embodiments disclosed herein may be generally directed to a control system for a ball planetary continuously variable transmission (CVT) comprising a plurality of spherical planets between and in contact with two traction rings and a sun, each planet having a geometric center through which an x-axis, y-axis and z-axis intersect, wherein the plurality of geometric centers define a pitch circle for the plurality of planets, wherein an axle extends through a central bore of each of the plurality of spherical planets and defines the z-axis and an axis of rotation. In some embodiments, the control system comprises a plurality of trunnions coupled to the plurality of axles, wherein each trunnion comprises a first link coupled to a first end of an axle, a second link coupled to a second end of the axle, and a center link coupled to the first link and the second link. A first actuator may configure the plurality of trunnions to an offset angle (psi) relative to the pitch circle. A second actuator may rotate the center link. A controller communicatively coupled to the actuator and a plurality of sensors may be configured to receive signals from the plurality of sensors, determine a direction of rotation for the CVT, send a first signal to the first actuator to adjust the offset angle (psi) of the plurality of trunnions and send a signal to the second actuator to impart a skew angle (zeta) on the plurality of axles to adjust a tilt angle. In some embodiments, if the plurality of trunnions lead the plurality of planets and the offset angle (psi) is positive, the CVT is configured for operation in a forward direction. In some embodiments, if the plurality of trunnions trail the plurality of planets and the offset angle (psi) is negative, the CVT is configured for operation in forward direction. A speed ratio of the CVT may be based on the tilt angle, the skew angle and the offset angle. The controller may receive signals related to performance of the CVT, performance of a prime mover coupled to the CVT, signals related to performance of a vehicle associated with the CVT, signals related to the environment, and user inputs. The controller may analyze the signals and configure the CVT. In some embodiments, the controller may configure the CVT for forward or reverse rotation. In some embodiments, the controller may configure the CVT for a desired stability or sensitivity. In some embodiments, the controller may compare the signals with values stored in memory, determine an operating condition is present and configure the CVT according to the operating condition. The operating condition may be a rollback condition, in which a vehicle containing the CVT is in a rollback condition or about to encounter a rollback condition. In some embodiments, the controller may analyze the signals and determine a rollback condition is possible and configure the CVT for increased sensitivity. In some embodiments, the controller is further configured to change the offset angle (psi) in response to determining a change in the direction of rotation or receiving an input to change the direction of rotation. In some embodiments, the controller is further configured to adjust the offset angle (psi) to have a larger magnitude for a first control scheme for stable control or to have a smaller magnitude for a second control scheme for increased sensitivity.


In another broad respect, embodiments disclosed herein may be generally directed to a ball planetary continuously variable transmission (CVT) comprising a plurality of spherical planets between and in contact with two traction rings and a sun, each planet having a geometric center through which an x-axis, y-axis and z-axis intersect, wherein the plurality of geometric centers define a pitch circle for the plurality of planets, wherein an axle extends through a central bore of each of the plurality of spherical planets and defines the z-axis and an axis of rotation, and a control system. The control system may comprise a plurality of trunnions coupled to the plurality of axles, a first actuator for configuring the plurality of trunnions to an offset angle (psi) relative to the pitch circle, a second actuator for rotating the center link and a controller communicatively coupled to the actuator and a plurality of sensors. In some embodiments, each trunnion comprises a first link coupled to a first end of an axle, a second link coupled to a second end of the axle, and a center link coupled to the first link and the second link. In some embodiments, the controller is configured to receive signals from the plurality of sensors, determine a direction of rotation for the CVT, send a first signal to the first actuator to adjust the offset angle (psi) of the plurality of trunnions, and send a signal to the second actuator to impart a skew angle (zeta) on the plurality of axles to adjust a tilt angle. In some embodiments, if the plurality of trunnions lead the plurality of planets and the offset angle (psi) is positive, a controller may configure the CVT for operation in a forward direction. In some embodiments, if the plurality of trunnions trail the plurality of planets and the offset angle (psi) is negative, a controller may configure the CVT for operation in forward direction. In some embodiments, a speed ratio of the CVT may be based on the tilt angle, the skew angle and the offset angle. In some embodiments, the first link and the second link comprise rigid members.


In another broad respect, embodiments disclosed herein may be generally directed to a control system for a continuously variable transmission (CVT) comprising a plurality of spherical planets between and in contact with two traction rings and a sun, each planet having a geometric center through which an x-axis, y-axis and z-axis intersect, wherein the plurality of geometric centers define a pitch circle for the plurality of planets, wherein an axle extends through a central bore of each of the plurality of spherical planets and defines the z-axis and an axis of rotation. The control system comprises a first carrier member located on a first side of the CVT, a first plurality of arms on the first side of the CVT, a second carrier member located on a second side of the CVT, a second plurality of arms, a first actuator for rotating one or more of the first carrier and the second carrier to an angular orientation of the first carrier relative to the second carrier member, and a controller communicatively coupled to the actuator and a plurality of sensors. A first end of each arm of the first plurality of arms is coupled to a first end of an axle and a second end of each arm of the first plurality of arms is coupled to the first carrier member. A first end of each arm of the second plurality of arms is coupled to a second end of an axle and a second end of each arm of the second plurality of arms is coupled to the second carrier member. The controller configured to receive signals from the plurality of sensors and command the first actuator to rotate the first carrier member relative to the second carrier member, wherein rotation of the first carrier member relative to the second carrier member imparts a skew condition on the plurality of planets to tilt the plurality of axles to a tilt angle associated with a speed ratio for the CVT. In some embodiments, the first plurality of arms are movable relative to the first carrier member and the second plurality of arms are movable relative to the second carrier member and the control system further comprises a second actuator for radially rotating one or more of the first plurality of arms and the second plurality of arms to an offset angle (psi) to configure the CVT for operation in a forward direction of rotation or reverse direction of rotation. The controller may receive signals related to performance of the CVT, performance of a prime mover coupled to the CVT, signals related to performance of a vehicle associated with the CVT, signals related to the environment, and user inputs. The controller may analyze the signals and configure the CVT. In some embodiments, the controller may configure the CVT for forward or reverse rotation. In some embodiments, the controller may configure the CVT for a desired stability or sensitivity. In some embodiments, the controller may compare the signals with values stored in memory, determine an operating condition is present and configure the CVT according to the operating condition. The operating condition may be a rollback condition, in which a vehicle containing the CVT is in a rollback condition or about to encounter a rollback condition. In some embodiments, the controller may analyze the signals and determine a rollback condition is possible and configure the CVT for increased sensitivity. In some embodiments, the controller is further configured to change the offset angle (psi) in response to determining a change in the direction of rotation or receiving an input to change the direction of rotation. In some embodiments, the controller is further configured to adjust the offset angle (psi) to have a larger magnitude for a first control scheme for stable control or to have a smaller magnitude for a second control scheme for increased sensitivity. In some embodiments, the controller is configured to receive a user input for one or more of a direction of rotation, a control mode, and a speed ratio. In some embodiments, orientation of the first plurality of arms to a positive first offset angle (psi) relative to the first carrier member and orientation of the second plurality of arms to a positive second offset angle (psi) relative to the second carrier member configures the CVT for operation in a first direction of rotation, wherein orientation of the first plurality of arms to a negative first offset angle (psi) relative to the first carrier member and orientation of the second plurality of arms to a negative second offset angle (psi) relative to the second carrier member configures the CVT for operation in a second direction of rotation. In some embodiments, if the first carrier member and the second carrier member lead the plurality of axles, orientation of the first plurality of arms to a positive first offset angle (psi) and orientation of the second plurality of arms to a positive second offset angle (psi) configures the CVT for operation in forward direction and orientation of the first plurality of arms to a negative first offset angle (psi) and orientation of the second plurality of arms to a negative second offset angle (psi) configures the CVT for operation in reverse direction, and wherein if the first carrier member and the second carrier member trail the plurality of axles, orientation of the first plurality of arms to a positive first offset angle (psi) and orientation of the second plurality of arms to a positive second offset angle (psi) configures the CVT for operation in reverse direction and orientation of the first plurality of arms to a negative first offset angle (psi) and orientation of the second plurality of arms to a negative second offset angle (psi) configures the CVT for operation in forward direction. In some embodiments, at least one of the first plurality of arms and the second plurality of arms is formed as a resilient member. In some embodiments, at least one of the first plurality of arms and the second plurality of arms is formed with directional resiliency.


In another broad respect, embodiments disclosed herein may be generally directed to a continuously variable transmission (CVT) comprising a plurality of spherical planets between and in contact with two traction rings and a sun, each planet having a geometric center through which an x-axis, y-axis and z-axis intersect, wherein the plurality of geometric centers define a pitch circle for the plurality of planets, wherein an axle extends through a central bore of each of the plurality of spherical planets and defines the z-axis and an axis of rotation. In some embodiments, orientation of the first plurality of arms to a positive first offset angle (psi) relative to the first carrier member and orientation of the second plurality of arms to a positive second offset angle (psi) relative to the second carrier member configures the CVT for operation in a first direction of rotation. In some embodiments, orientation of the first plurality of arms to a negative first offset angle (psi) relative to the first carrier member and orientation of the second plurality of arms to a negative second offset angle (psi) relative to the second carrier member configures the CVT for operation in a second direction of rotation. In some embodiments, if the first carrier member and the second carrier member lead the plurality of axles, orientation of the first plurality of arms to a positive first offset angle (psi) and orientation of the second plurality of arms to a positive second offset angle (psi) configures the CVT for operation in forward direction and orientation of the first plurality of arms to a negative first offset angle (psi) and orientation of the second plurality of arms to a negative second offset angle (psi) configures the CVT for operation in reverse direction. In some embodiments, if the first carrier member and the second carrier member trail the plurality of axles, orientation of the first plurality of arms to a positive first offset angle (psi) and orientation of the second plurality of arms to a positive second offset angle (psi) configures the CVT for operation in reverse direction and orientation of the first plurality of arms to a negative first offset angle (psi) and orientation of the second plurality of arms to a negative second offset angle (psi) configures the CVT for operation in forward direction. In some embodiments, at least one of the first link and the second link is formed as a resilient member. In some embodiments, at least one of the first link and the second link is formed with directional resiliency.


In another broad respect, embodiments disclosed herein may be generally directed to a method of adjusting a speed ratio of a continuously variable transmission (CVT) comprising a plurality of spherical planets between and in contact with two traction rings and a sun, each planet having a geometric center through which an x-axis, y-axis and z-axis intersect, wherein the plurality of geometric centers define a pitch circle for the plurality of planets, wherein an axle extends through a central bore of each of the plurality of spherical planets and defines the z-axis and an axis of rotation. In some embodiments, the method comprises rotating a first carrier member relative to a second carrier member, wherein the first carrier member is coupled to a first plurality of arms, wherein each arm of the first plurality of arms is coupled to a first end of an axle of a traction planet, wherein the second carrier member is coupled to a second plurality of arms, wherein each arm of the second plurality of arms coupled to a second end of the axle of a traction planet, wherein rotating the first carrier member relative to the second carrier member misaligns the plurality of axes of rotation relative to a longitudinal axis of the CVT to change a speed ratio of the CVT. In some embodiments, the method includes adjusting an offset angle (psi) for the first plurality of arms and the second plurality of arms, wherein a positive offset angle (psi) configures the CVT for operation in a first direction of rotation, wherein a negative offset angle (psi) configures the CVT for operation in a second direction of rotation. In some embodiments, adjusting an offset angle (psi) for the first plurality of arms and the second plurality of arms comprises adjusting a magnitude of the offset angle (psi). In some embodiments, the magnitude is based on a control scheme, wherein the offset angle (psi) is adjusted to a larger magnitude for stable control or adjusted to a smaller magnitude for increased sensitivity. In some embodiments, one or more of the control scheme, the direction of rotation and the speed ratio are user input received from a user interface.


These, and other, aspects of the disclosed technology will be better appreciated and understood when considered in conjunction with the following description and the accompanying drawings. The following description, while indicating various embodiments of the disclosed technology and numerous specific details thereof, is given by way of illustration and not of limitation. Many substitutions, modifications, additions or rearrangements may be made within the scope of the disclosed technology, and the disclosed technology includes all such substitutions, modifications, additions or rearrangements.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings accompanying and forming part of this specification are included to depict certain aspects of the disclosed technology. A clearer impression of the disclosed technology, and of the components and operation of systems provided with the disclosed technology, will become more readily apparent by referring to the exemplary, and therefore non-limiting, embodiments illustrated in the drawings, wherein identical reference numerals designate the same components. Note that the features illustrated in the drawings are not necessarily drawn to scale.



FIG. 1A depicts a schematic diagram of a continuously variable transmission relative to global and planet-centered coordinate systems;



FIGS. 1B and 1C depict schematic diagrams of planet-centered coordinate systems and relative coordinate systems, illustrating relationships between skew and tilt in ball-planetary continuously variable transmissions;



FIG. 1D depicts a schematic diagram of certain kinematic relationships between contacting components of a CVT, illustrating how the inducement of a skew condition generates forces that tend to adjust a tilt angle;



FIG. 1E depicts a generalized, representative traction curve that can be applied at each of contact areas 1, 2, 3, illustrating a relationship between the traction coefficient μ and the relative velocity between contacting components;



FIGS. 1F and 1G depict front and top schematic diagrams, illustrating traction forces exerted relative to a planet under non-zero skew conditions;



FIGS. 2A-2J depict partial perspective, side and front views of a CVT, illustrating one embodiment of a control system capable of operation in forward direction and reverse direction;



FIGS. 3A-3J depict front partial views of a CVT, illustrating one embodiment of a control system capable of operation in forward direction and reverse direction; and



FIGS. 4A-4O depict partial perspective, side and front views of a CVT, illustrating one embodiment of a control system capable of operation in forward direction and reverse direction.





DETAILED DESCRIPTION OF CERTAIN ILLUSTRATIVE EMBODIMENTS

Systems and methods and advantageous details thereof are explained more fully with reference to the non-limiting embodiments that are illustrated in the accompanying drawings and detailed in the following description. Descriptions of well-known starting materials, processing techniques, components and equipment are omitted so as not to unnecessarily obscure the disclosed technology in detail. It should be understood, however, that the detailed description and the specific examples, while indicating certain embodiments of the disclosed technology, are given by way of illustration only and not by way of limitation. Various substitutions, modifications, additions and/or rearrangements within the spirit and/or scope of this disclosure will become apparent to those skilled in the art from this disclosure.


Embodiments disclosed herein comprise ball-planetary continuously variable transmissions (CVTs) in which a plurality of planets are interposed between and in contact with traction rings and a sun, in which tilting of the planets changes a speed ratio of the CVT.


Speed ratio may vary between underdrive and overdrive. In underdrive, power enters a first traction ring with a first torque and a first speed and is transferred through planets to a second traction ring with a second torque higher than the first torque and a second speed lower than the first speed. In overdrive, power enters the first traction ring with a first torque and a first speed and is transferred through planets to the second traction ring with a lower torque greater than the first torque and a second speed higher than the first speed.


Each planet has a geometric center, with an x-axis, y-axis and z-axis for that planet intersecting at its geometric center. The geometric centers of planets arranged angularly around a longitudinal axis collectively define a pitch circle for the plurality of planets.


Each planet is coupled to an axle. Each axle defines an axis of rotation, which is aligned with a z-axis of a planet. Tilting axles to a non-zero tilt angle (gamma) causes contact points between planets and traction rings to change, adjusting a speed ratio of a CVT. Those skilled in the art will appreciate that for a change in speed ratio of a CVT, there is also a reciprocal change in torque ratio. Thus, a change that results in an increase in speed ratio will have a decrease in torque ratio, and a change that results in a decrease in speed ratio will have an increase in torque ratio.


As used herein, the terms “axial”, “axially” and the like refer to a direction along or parallel to a longitudinal axis of the CVT.


As used herein, the terms “radial”, “radially” and the like refer to a direction perpendicular to a longitudinal axis of the CVT.


For ease of understanding, direction 25 refers to a forward rotation (also referred to as a design direction) and direction 26 refers to reverse rotation, and in the embodiments illustrated power is transferred from first traction ring 102 to second traction ring 104.


Embodiments disclosed herein may include a control system configurable to adjust a CVT, such as CVT 200, to a target speed ratio for operation in a forward direction or a reverse direction, including maintaining a speed ratio during a switch between operation in forward direction and operation in a reverse direction, and operate according to a control scheme for increased stability or sensitivity. FIGS. 2A-2J depict front and side views of CVT 200 comprising a plurality of planets 108 interposed between traction rings 102, 104 and sun 110, illustrating CVT 200 configured for operation at 1:1, underdrive and overdrive speed ratios in forward and reverse directions.


As depicted in FIGS. 2A-2J, planets 108 are coupled to tiltable axles 103 that define axes of rotation 106 which are coaxial with the z-axes for planets 108. Axles 103 are coupled to planets 108 such the planets 108 may rotate about axes of rotation 106. If present, bearings 107 may facilitate rotation of axles 103 in trunnions 220. In embodiments depicted in FIGS. 2A-2J, bearings 107 allow axles 103 to rotate relative to trunnions 220 but axially fix axles 103 relative to trunnions 220.


Trunnions 220 may be machined or otherwise formed as rigid members for coupling to axles 103 to allow a control system to adjust an orientation of planets 108 in operation to adjust a speed ratio in forward direction and reverse direction. Trunnions 220 are rotatably coupled to axles 103 on either side of planets 108. FIGS. 2A-2J depict embodiments of trunnions 220 formed as arcuate rigid members. However, trunnions 220 may be formed having any shape capable of coupling to both ends of axle 103 and not contacting planets 108. FIGS. 2A-2J depict embodiments in which trunnions 220 are formed such that axles 103 and bearings 107 may be accessible via openings 223. However, trunnions 220 may be formed with smaller openings 223 such that only axles 103 are accessible, including without openings 223. Trunnions 220 are formed having an effective length defined along line 23 between a first intersection A of line 23 and radial line 20 and a second intersection B of line 23 and radial line 22. Offset 40 may result in an angular offset, allow clearance between trunnions 220 and planets 108, allow for ease in assembly, and other advantages.


Couplings 215 on trunnions 220 allow trunnions 220 one or more degrees of freedom relative to trunnion extensions 213. FIGS. 2A-2J depict CVT 200 with one embodiment of coupling 215 as a ball and socket coupling, which allows for multiple degrees of freedom. Other shapes and configurations of coupling 215 may be used to provide fewer or more degrees of freedom.


Trunnion extensions 213 may be coupled to ring 212 such that axial translation and circumferential rotation of trunnion extensions 213 are fixed relative to ring 212, but radial translation of trunnion extensions 213 and rotation about radial lines 22 are possible. For example, as depicted in FIGS. 2A-2J, trunnion extensions 213 are cylindrical and ring 212 is formed with openings 216 such that trunnion extensions 213 are restricted to radial translation along radial lines 22 and/or rotation about radial lines 22.


For purposes of describing concepts related to embodiments such as CVT 200, FIGS. 2B-2J refer to point A and point B, which are approximate locations. For example, point A is depicted as coincident with the intersection of axis of rotation 106 and a midplane of axle 103, but the exact location of point A will depend on factors such as tilt angle (gamma) 28, skew angle (zeta) 27, offset angle (psi) 24, the input speed of first traction ring 102, the output speed of second traction ring 104, a friction coefficient between components, the presence and characteristics of a traction fluid. Thus, at 1:1 ratio, point A may be generally coincident with the intersection of axis of rotation 106 and a midplane of axle 103. At full underdrive or full overdrive, point A may not be coincident with the intersection of axis of rotation 106 and a midplane of axle 103. Similarly, point B is depicted as coincident with an intersection of radial line 22 and line 23 passing through a geometric center of planets 108, but the exact position of point B will depend on factors such as tilt angle (gamma) 28, skew angle (zeta) 27, offset angle (psi) 24, the input speed of first traction ring 102, the output speed of second traction ring 104, a friction coefficient between components, and the presence and characteristics of a traction fluid. Accordingly, when referring to point A or point B in the accompanying figures, an arrow depicts an approximate location of point A or point B.


Radial translation or axial translation of trunnion extensions 213 may be controlled by an actuator. In some embodiments, ring 212 may be coupled to one or more actuators (not shown). An actuator may axially translate ring 212 or radially translate trunnion extensions 213. An actuator may be actuated manually, such as by a person adjusting a lever or twisting a grip, or an actuator may be controlled electronically, such as by a controller operating a set of instructions and communicatively coupled to an electronic servo, encoder, or hydraulic pump.


Axial translation of ring 212 distance D axially translates each trunnion extension 213 distance D to rotate trunnion 220, axle 103 and planet 108 about point A. Multiple degrees of freedom associated with coupling 215 allow ring 212 to translate axially but allow each trunnion 220, axle 103 or planet 108 to be rotated about its respective y-axis.


In operation, an actuator (controlled manually or by an electronic controller) may orient trunnions 220 to an offset angle (psi) 24 relative to pitch circle 12. Offset angle (psi) 24 may have a first sign (e.g., positive) during forward rotation and an opposite sign (e.g., negative) during reverse rotation. For embodiments such as those depicted with respect to FIGS. 2A-2J in which couplings 215 lead planets 108 in forward rotation and trail planets 108 in reverse rotation, a positive offset angle (psi) (that is, coupling 215 is translated radially inward to orient trunnions 220 to a positive offset angle (psi) 24 relative to pitch circle 12) configures CVT 200 for operation in a forward direction, and a negative offset angle (psi) 24 (that is, coupling 215 is translated radially outward to orient trunnions 220 to a negative offset angle (psi) 24 relative to pitch circle 12) configures CVT 200 for operation in a reverse direction. Offset angle (psi) 24 of trunnions 220 may be changed independently or concurrently with a change in axial translation D of couplings 215 or skew angle (zeta) 27 of axles 103.



FIGS. 2A-2J depict embodiments at 1:1, underdrive and overdrive, in forward rotation and reverse rotation. Each trunnion 220 is movably coupled to trunnion extension 213 coupled to ring 212. Ring 212 may be translated axially relative to longitudinal axis 15 a distance D to misalign axles 103 (and therefore axes of rotation 106) of planets 108. Skew angle (zeta) 27 in conjunction with axial constraint of planets 108 results in spin-induced forces causing axles 103 to tilt to tilt angle (gamma) 28. Skew angle (zeta) 27 to which axles 103 are misaligned may be determined based on an axial translation of synchronizing ring 212 relative to center plane 14 of CVT 200 as defined by the geometric centers of planets 108. In some embodiments, offset angle (psi) 24 depends on a distance that trunnion extensions 213 are translated radially outward or inward of pitch circle 12.


As depicted in FIGS. 2A-2C and 2F-2H, center plane 13 of carrier 212 is coplanar with center plane 14 of CVT 200 such that a distance D between center plane 13 of carrier 212 and center plane 14 of CVT 200 is zero. Under these conditions, skew angle (zeta) 27 applied to planets 108 is zero. As axles 103 react to unbalanced forces and tilt to an equilibrium state, tilt angle (gamma) 28 adjusts to zero, and the speed ratio of CVT 200 is 1:1 (minus any losses). As depicted in FIGS. 2A-2D, when coupling 215 is radially inward of pitch circle 12, trunnions 220 are oriented to a positive offset angle (psi) 24 and CVT 200 is configured for forward rotation 25.


As depicted in FIG. 2D, synchronizing ring 212 may be translated distance D toward second traction ring 104 such that trunnion extension 213 and coupling 215 are translated axially toward second traction ring 104. Since planets 108 are axially constrained but capable of rotation about their respective y-axes, an axial translation of couplings 215 imparts a skew angle (zeta) 27 on axles 103, with skew angle (zeta) 27 being a function of one or more of distance D of axial translation of synchronizing ring 212, width 222 of trunnions 220, and the length of line AB. Tilt angle (gamma) 28 is a function of one or more of skew angle (zeta) 27 and offset angle (psi) 24. FIG. 2D depicts CVT 200 with a positive offset angle (psi) 24 and configured in underdrive for forward rotation 25.


As depicted in FIG. 2E, synchronizing ring 212 may be translated axially toward first traction ring 102 such that trunnion extensions 213 and couplings 215 are translated axially toward first traction ring 102. If axles 103 are axially fixed relative to planets 108, the axial translation imparts skew angle (zeta) 27 on trunnions 220, with skew angle (zeta) 27 being a function of one or more of distance D of axial translation of trunnion extensions 215, width 222 of trunnions 220, and the length of line AB. Rotation of each planet 108 about a corresponding y-axis results in spin-induced (traction) forces on that planet 108. As these forces are exerted on planets 108, friction and other forces in CVT 200 act to return CVT 200 to a balanced state. If trunnion extension 213 is maintained axial distance D from center plane 14 of CVT 200, returning to a balanced state results in planet axles 103 (and therefore planets 108) tilting to a new tilt angle (gamma) 28 corresponding to a zero-skew condition. Embodiments described herein may continuously adjust distance D to adjust a speed ratio of CVT 200. Tilt angle (gamma) 28 is a function of one or more of skew angle (zeta) 27 and offset angle (psi) 24. FIG. 2E depicts CVT 200 with a positive offset angle (psi) 24 and configured in overdrive for forward rotation 25.


As depicted in FIGS. 2F-2H, center plane 13 of carrier 212 may be translated axially to a position that is coplanar with center plane 14 of CVT 200 such that a distance D between center plane 13 of carrier 212 and center plane 14 of CVT 200 is zero. Under these conditions, skew angle (zeta) 27 is zero, which may be characterized as having zero or minimal spin-induced forces. A lack of spin-induced forces causes planets 108 to tilt to an equilibrium position in which tilt angle (gamma) 28 is zero, and the speed ratio of CVT 200 is 1:1 (minus any losses). As depicted in FIGS. 2F-2H, when coupling 215 is radially outward of pitch circle 12 of planets 108, offset angle (psi) 24 is negative and CVT 200 is configured for reverse direction 26.


As depicted in FIG. 2J, synchronizing ring 212 may be translated distance D toward second traction ring 104 such that trunnion extension 213 and coupling 215 are translated axially toward second traction ring 104. If axles 103 are axially fixed relative to planets 108, the axial translation imparts skew angle (zeta) 27 on trunnions 220, with skew angle (zeta) 27 being a function of one or more of distance D of axial translation of trunnion extensions 215, width 222 of trunnions 220, and the length of line AB. Rotation of each planet 108 about a corresponding y-axis results in spin-induced (traction) forces on that planet 108. As these forces are exerted on planets 108, friction and other forces in CVT 200 act to return CVT 200 to a balanced state. If trunnion extensions 213 are maintained axial distance D from center plane 14 of CVT 200, returning to a balanced state results in planet axles 103 (and therefore planets 108) tilting to a new tilt angle (gamma) 28 corresponding to a zero-skew condition. Embodiments described herein may continuously adjust distance D to adjust a speed ratio of CVT 200. Tilt angle (gamma) 28 is a function of one or more of skew angle (zeta) 27 and offset angle (psi) 24. FIG. 21 depicts CVT 200 with a negative offset angle (psi) 24 and configured in overdrive for operation in reverse direction 26.


As depicted in FIG. 2J, synchronizing ring 212 may be translated axially toward first traction ring 102 such that trunnion extension 213 and coupling 215 are translated axially toward first traction ring 102. If axles 103 are axially fixed relative to planets 108, the geometric center of planets 108 may serve as control points. The axial translation rotates trunnions 220 to skew angle (zeta) 27, with skew angle (zeta) 27 being a function of one or more of distance D of axial translation of trunnion extensions 215, width 222 of trunnions 220, and the length of line AB. Rotation of each planet 108 about a corresponding y-axis results in spin-induced (traction) forces on that planet 108. As these forces are exerted on planets 108, friction and other forces in CVT 200 act to return CVT 200 to a balanced state. If trunnion extensions 213 are maintained axial distance D from center plane 14 of CVT 200, returning to a balanced state results in planet axles 103 (and therefore planets 108) tilting to a new tilt angle (gamma) 28 corresponding to a zero-skew condition. Embodiments described herein may continuously adjust distance D to adjust a speed ratio of CVT 200. Tilt angle (gamma) 28 is a function of one or more of skew angle (zeta) 27 and offset angle (psi) 24. FIG. 21 depicts CVT 200 with a negative offset angle (psi) 24 and configured in underdrive for operation in reverse rotation 26.


Offset angle (psi) 24 may be adjusted to any angle within a range of positive and negative angles. In some embodiments, a range of offset angle (psi) 24 may be selected to allow operation of CVT 200 in forward or reverse direction and capable of operating according to different control schemes. Persons skilled in the art will appreciate that rotation of trunnions 220 to new offset angles (psi) 24 results in one or more of the following states:

    • for increased offset angle (psi) 24, CVT 200 becomes more stable but sensitivity is decreased, resulting in adjusting speed ratios taking more time or adjusting at a slower rate;
    • for offset angles (psi) that approach zero, the speed at which speed ratios may be adjusted may be faster, but the stability of CVT 200 is diminished.


For example, a range may include larger angles (for example, but not limited to, up to +15 degrees) to allow CVT 200 to use a control scheme for stable operation during forward rotation or for increased sensitivity, and may include larger angles (for example, but not limited to, up to −15 degrees) to also allow CVT 200 to use a control scheme for stable operation or for increased sensitivity during operation in reverse direction 26. In other embodiments, a range may include larger angles (for example, but not limited to, up to +15 degrees) to allow CVT 200 to use a control scheme for stable operation during forward rotation or for increased sensitivity, but may include smaller angles (for example, but not limited to, up to −5 degrees) to allow CVT 200 to use a control scheme for increased sensitivity during operation in reverse direction 26.


Adjustment of CVT 200 may involve changing the sign of offset angle (psi) 24. In some embodiments, radial translation of couplings 215 from a position radially outward of pitch circle 12 of planets 108 to a position radially inward of pitch circle 12 of planets 108 (or vice versa) changes the sign of offset angle (psi) 24 from positive to negative or negative to positive, respectively. As depicted in FIGS. 2E-2H, when couplings 215 are radially outward of pitch circle 12 of planets 108, offset angle (psi) 24 is negative, and CVT 200 is configured for operation in reverse direction 26.


Embodiments may change skew angle (zeta) 27 to accommodate changes in offset angle (psi) 24. For example, if CVT 200 is operating in forward direction 25 in underdrive and CVT 200 needs to be operating in reverse direction 26 in underdrive, embodiments may configure CVT 200 by changing offset angle (psi) 24 from a first sign (e.g., positive) to a second sign (e.g., negative) and axially translating couplings 215 from a first side of center plane 14 of CVT 200 to a second side of center plane 14 of CVT 200 opposite the first side.


As described in relation to FIGS. 2A-2J, adjusting a CVT may include axial constraint between a planet and a trunnion and adjustment may be accomplished by axial translation of a trunnion extension. Variations are possible. For example, in some embodiments, couplings 215 may be fixed axially and adjustment of CVT 200 may be accomplished by axial translation of axles 103 relative to planets 108. In these embodiments, bearings 107, axles 103, or planets 108 may allow for axial translation of planets 108 relative to axles 103. In some embodiments, an actuator may be coupled to a torus plate, a control disc, spider arms, or other synchronizer (not shown) coupled to axles 103 or trunnions 220. The actuator may translate the synchronizer to impart an axial translation of axles 103 relative to planets 108. Axial translation of axles 103 relative to planets 108 while restricting axial movement of coupling 215 will impart a non-zero skew angle (zeta) 24 on planets 108, adjusting axles 103 to a target tilt angle (gamma) 28 such that CVT 200 operates at a target speed ratio. In some embodiments, a synchronizer may comprise a single control disc coupled to one end of axles 103. In other embodiments, a synchronizer may comprise a first control disc coupled to a first end of axles 103 and a second control disc coupled to a second end of axles 103. The pair of control discs may be coupled such that axial translation of one control disc equals axial translation of the second control disc.


Embodiments disclosed herein may refer to a CVT with a control system capable of controlling a tilt angle using two carrier halves coupled to links. In these embodiments, one or both carrier halves are rotatable independently or collectively to an angular position (beta) to impart a skew angle (zeta) on planet axles to adjust a tilt angle (gamma) for a plurality of planets coupled to the planet axles. Furthermore, to enable forward and reverse rotation, the control system may control an offset angle (psi) of the links) for operation in forward direction and reverse directions or for a selected sensitivity.



FIGS. 3A-3J depict CVT 300 in which two carrier halves 310A, 310B may be rotated relative to each other to angular position (beta) 29, imparting a non-zero skew angle (zeta) 27 on axles 103 to cause axles 103 to adjust a speed ratio of CVT 300. A non-zero skew angle (zeta) 27 causes a non-zero skew condition, and spin-induced (traction) forces generated by the geometry and configuration of CVT 300 adjusts a tilt angle (gamma) 28 of axles 103. During forward rotation, links 321 may be rotated about axes of rotation 106 (coaxial with the z-axes of axles 103) to a positive offset angle (psi) as depicted in FIGS. 3A-3E, and during reverse rotation, links 321 may be rotated about axes of rotation 106 to a negative offset angle (psi) as depicted in FIGS. 3F-3J.


Links 321 comprise a first end coupled to axles 103 and a second end coupled to pins 312. Pins 312 may translate along slots 313 in carrier arms 311A on carrier half 310A and pins 312 may translate along slots 313 in carrier arms 311B on carrier half 310B. Pins 312 may be located at a first radial position in slots 313 in carrier arms 311A and pins 312 may be located at a second radial position in slots 313 in carrier arms 311B. Thus, a first offset angle (psi) 24A on a first side of CVT 300 and a second offset angle (psi) 24B on a second side of CVT 300 may be, but are not required to be, the same angle, or even the same sign. The difference between first offset angle (psi) 24A and second offset angle (psi) 24B is the effective offset angle (psi) 24 for CVT 300. Assuming a positive effective offset angle (psi) 24 is more stable for operation in a forward direction, CVT 300 may be configured for operation in a forward direction with each of first offset angle (psi) 24A and second offset angle (psi) 24B having any angle such that effective offset angle (psi) 24 is positive, including combinations in which first offset angle (psi) 24A and second offset angle (psi) 24B are both positive, first offset angle (psi) 24A is negative and second offset angle (psi) 24B is positive and larger in magnitude than first offset angle 24A, or first offset angle (psi) 24A is positive and second offset angle (psi) 24B is negative but first offset angle 24A is larger in magnitude than second offset angle 24B. Similarly assuming a negative effective offset angle (psi) 24 is more stable for operation in reverse direction 26, CVT 300 may be configured for operation in reverse direction 26 with each of first offset angle (psi) 24A and second offset angle (psi) 24B having any angle such that effective offset angle (psi) 24 is negative, including combinations in which first offset angle (psi) 24A and second offset angle (psi) 24B are both negative, first offset angle (psi) 24A is positive and second offset angle (psi) 24B is negative and greater in magnitude than first offset angle (psi) 24A or first offset angle (psi) 24A is negative and second offset angle (psi) 24B is positive but first offset angle (psi) 24A is greater in magnitude than second offset angle (psi) 24B.


Embodiments disclosed herein may be controlled or configured such that only carrier half 310A is rotated, only carrier half 310B is rotated, or both carrier 310A and 310B are rotated to angular position (beta) 29.


If the effective offset angle (psi) 24 is negative but needs to be positive, a controller may determine which offset angle (psi) 24A or 24B is positive and which offset angle (psi) is negative, and changing one or both offset angles (psi) to be positive or changing one offset angle (psi) 24A or 24B to a positive angle such that the effective offset angle (psi) 24 changes from negative to positive. Furthermore, in embodiments depicted in FIGS. 3A-3J, both links 321 are oriented in the same direction (i.e., both trailing planets 108). However, embodiments may also be configured with one link 321 oriented in a forward direction and the other link 321 oriented in a reverse direction. In these configurations, control of CVT 300 results in one link 321 being in tension and the other link 321 being in compression. Control of CVT 300 may involve only adjusting one link 321 of a pair of links.



FIGS. 3A-3J depict side and front partial views of CVT 300, illustrating carrier 310 formed with carrier halves 310A, 310B rotatable about longitudinal axis 15 to angular position (beta) 29 for imparting a skew angle (zeta) 27 on axles 103 to cause an adjustment of a tilt angle of axles 103 and therefore adjust to a target speed ratio of CVT 300 in, underdrive, overdrive configurations and 1:1 ratio, and in forward and reverse configurations.


As depicted in FIGS. 3A-3J, CVT 300 may be configured with links 321 trailing planets 108. However, variations are possible, including embodiments in which links 321 are leading planets and embodiments in which one link 321 is leading and the other link 321 is trailing. Embodiments in which one link 321 is leading and the other link 321 is trailing may avoid situations in which links 321 buckle or bind due to two forces being applied in the same general direction.


CVT 300 comprises planets 108 located between and in contact with traction rings 102, 104 and sun 110. Each planet 108 has a geometric center, with an x-axis, y-axis and z-axis intersecting at a geometric center of planet 108. The geometric centers collectively define pitch circle 12 for the plurality of planets 108. Planets 108 are rotatably coupled to axles 103. Tilting axles 103 to a non-zero tilt angle (gamma) causes contact points between planets 108 and traction rings 102, 104 to change, thereby adjusting a speed ratio of CVT 300.


Axles 103 are rotatably coupled to planets 108 to allow planets 108 to rotate about axes of rotation 106 defined by axles 103. Bearings 107 allow rotation of planets 108 about axles 103. In some embodiments, bearings 107 allow planets 108 to rotate about axles 103 but constrain planets 108 from movement along axles 103.


Links 321 are coupled to axles 103 on either side of planets 108. As depicted in FIGS. 3A-3J, links 321 are coupled to carrier arms 311A, 311B of carrier halves 310A, 310B. Couplings 312 between links 321 and carrier arms 311A, 311B allows for adjustment of offset angle (psi) 24A, 24B of links 321 about axes of rotation 106 when carrier halves 310A, 310B rotate. Couplings 312 between links 321 and carrier arms 311A, 311B may comprise pin 312 movable in slot 313 (as depicted) or some other coupling. Links 321, couplings 312, or carrier arms 311A, 311B may be configured to allow axles 103 to be adjusted in any direction while maintaining planets 108 centered between traction rings 102, 104. In some embodiments, couplings 312 comprise pins formed with arcuate surfaces. In some embodiments, links 321 may be formed as resilient members capable of deflection. In some embodiments, carrier arms 311A, 311B may be formed such that couplings 312 or links 321 are capable of some axial movement. Combinations of these embodiments and other embodiments are possible.


In operation, links 321 may be rotated about axes of rotation 106 to offset angle (psi) 24 and one or more of carrier halves 310A, 310B may be rotated relative to each other to angular position (beta) 29 to impart skew angle (zeta) 27.



FIGS. 3A-3C depict CVT 300 with links 321 coupled to carrier arms 311A, 311B, wherein links 321 coupled to carrier arms 311A are configured at first offset angle (psi) 24A and links 321 coupled to carrier arms 311B are configured at second offset angle (psi) 24B for forward rotation. Carrier halves 310A, 310B are rotated relative to each other to angular position (beta) 29. As depicted in FIGS. 3A-3C, carriers 310A, 310B may be rotated relative to each other such that an angular position (beta) 29 is zero. Skew angle (zeta) 27 applied to axles 103 is zero, tilt angle (gamma) is zero, and power output on one side of CVT 300 equals power input on the opposite side (minus any losses).



FIG. 3D depicts a partial cutaway view of one embodiment of CVT 300 with pins 312 radially positioned in slots 313 of carrier arms 311A, 311B. Links 321 coupled to carrier arms 311A may be configured at first offset angle (psi) 24A and links 321 coupled to carrier arms 311B are configured at second offset angle 24B, whereby CVT 300 has an effective offset angle (psi) 24 for forward rotation. Carrier halves 310A, 310B may be rotated relative to each other to angular position (beta) 29. For each non-zero angular position, axles 103 (and therefore axes of rotation 106) are misaligned from a longitudinal axis of CVT 300, imparting a non-zero skew angle (zeta) 27. Rotation of each planet 108 about a corresponding y-axis results in spin-induced (traction) forces on that planet 108. As these forces are exerted on planets 108, friction and other forces in CVT 300 act to return CVT 300 to a balanced state, causing axles 103 to tilt to non-zero tilt angle (gamma) 28, resulting in CVT 300 operating in underdrive in forward rotation 25.



FIG. 3E depicts a partial cutaway view of one embodiment of CVT 300 with pins 312 radially positioned in slots 313 of carrier arms 311A, 311B. Links 321 coupled to carrier arms 311A are configured at first offset angle (psi) 24A and links 321 coupled to carrier arms 311B are configured at second offset angle 24B, whereby CVT 300 has an effective offset angle (psi) 24 for forward rotation. To adjust speed ratio, carrier halves 310A, 310B may be rotated relative to each other to angular position (beta) 29. For each non-zero angular position, axles 103 (and therefore axes of rotation 106) are misaligned from a longitudinal axis of CVT 300, imparting a non-zero skew angle (zeta) 27. Rotation of each planet 108 about a corresponding y-axis results in spin-induced (traction) forces on that planet 108. As these forces are exerted on planets 108, friction and other forces in CVT 300 act to return CVT 300 to a balanced state, causing axles 103 to tilt to non-zero tilt angle (gamma) 28, resulting in CVT 300 operating in overdrive in forward rotation 25.



FIGS. 3F-3H depict partial side and front views of one embodiment of CVT 300 configured for operating in reverse direction 26 at a 1:1 ratio. Comparing the radial positioning of pins 312 in slots 313 in carrier arms 311A in FIGS. 3A and 3F, pins 312 are positioned radially outward of pitch circle 12 in FIG. 3A such that offset angle (psi) 24A is positive, whereas pins 312 are positioned radially inward of pitch circle 12 in FIG. 3F such that offset angle (psi) 24A is negative. Similarly, comparing the radial positioning of pins 312 in slots 313 in carrier arms 311B in FIGS. 3C and 3H, pins 312 are positioned radially outward of pitch circle 12 in FIG. 3C such that offset angle (psi) 24B is positive, whereas pins 312 are positioned radially inward of pitch circle 12 in FIG. 3H such that offset angle (psi) 24B is negative.


As described above, CVT 300 depicted in FIGS. 3A-3J has links 321 trailing planets 108, and effective offset angle (psi) 24 is positive for operation in forward direction 25 and negative for operation in reverse direction 26. Furthermore, radially outward positioning pins 312 for both links 321 may not be required for operation in forward direction 25, as long as effective offset angle (psi) 24 composed of first offset angle (psi) 24A and second offset angle (psi) 24B is positive. Similarly, radially inward positioning pins 312 for both links 321 may not be required for operation in reverse direction 26, as long as effective offset angle (psi) 24 composed of first offset angle (psi) 24A and second offset angle (psi) 24B is negative.



FIG. 3I depicts a partial cutaway view of one embodiment of CVT 300 with pins 312 radially positioned in slots 313 of carrier arms 311A, 311B. Links 321 coupled to carrier arms 311A are configured at first offset angle (psi) 24A and links 321 coupled to carrier arms 311B are configured at second offset angle (psi) 24B, whereby CVT 300 has an effective offset angle (psi) 24 for reverse rotation. To adjust speed ratio, carrier halves 310A, 310B may be rotated relative to each other to angular position (beta) 29. For each non-zero angular position, axles 103 (and therefore axes of rotation 106) are misaligned from a longitudinal axis of CVT 300, imparting a non-zero skew angle (zeta) 27. Rotation of each planet 108 about a corresponding y-axis results in spin-induced (traction) forces on that planet 108. As these forces are exerted on planets 108, friction and other forces in CVT 300 act to return CVT 300 to a balanced state, causing axles 103 to tilt to non-zero tilt angle (gamma) 28, resulting in CVT 300 operating in underdrive in reverse rotation 26.



FIG. 3J depicts a partial cutaway view of one embodiment of CVT 300 with pins 312 radially positioned in slots 313 of carrier arms 311A, 311B. Links 321 coupled to carrier arms 311A are configured at first offset angle (psi) 24A and links 321 coupled to carrier arms 311B are configured at second offset angle 24B, whereby CVT 300 has an effective offset angle (psi) 24 for reverse rotation. To adjust speed ratio, carrier halves 310A, 310B may be rotated relative to each other to angular position (beta) 29. For each non-zero angular position, axles 103 (and therefore axes of rotation 106) are misaligned from a longitudinal axis of CVT 300, imparting a non-zero skew angle (zeta) 27. Rotation of each planet 108 about a corresponding y-axis results in spin-induced (traction) forces on that planet 108. As these forces are exerted on planets 108, friction and other forces in CVT 300 act to return CVT 300 to a balanced state, causing axles 103 to tilt to non-zero tilt angle (gamma) 28, resulting in CVT 300 operating in overdrive in reverse rotation 26.


In some embodiments, carrier halves 310A, 310B or links 321 may be coupled to one or more actuators (not shown). An actuator may rotate one or both carrier halves 310A, 310B to angular position (beta) 29 to impart non-zero skew angle (zeta) 27 to cause axles 103 to tilt to tilt angle (gamma) 28 to adjust a speed ratio of CVT 300. An actuator may translate pins 312 radially inward or outward to adjust offset angle (psi) 24 to be positive or negative to configure CVT 300 for operation in forward direction 25 or reverse direction 26. An actuator may be actuated manually, such as by a person adjusting a lever or twisting a grip, or an actuator may be controlled electronically, such as by a controller operating a set of instructions and communicatively coupled to an electronic servo, encoder, hydraulic pump, or other form of actuation. An electronic controller may determine if CVT is to be operated in forward direction 25 or reverse direction 26 and adjust offset angle (psi) independently or concurrently with adjusting an angular position (beta), skew angle (zeta) 27 or tilt angle (gamma) 28.


A CVT capable of operation in forward direction and reverse direction is described herein with respect to FIGS. 4A-4O in which axles 103 are coupled to and controlled by a control system with trunnions 420, in which each planet 108 has a corresponding trunnion 420 that is rotatable about a radial axis to induce a (non-zero) skew condition on planet 108 and is further translatable radially to a positive offset angle (psi) 24 or a negative offset angle (psi) 24, wherein CVT 400 is configured for operation in forward rotation 25 or reverse rotation 26 depending on whether offset angle (psi) 24 is positive or negative and whether trunnion 420 leads or trails planet 108. FIGS. 4A-4O depict embodiments in which trunnions 420 trail planets 108 for operation in forward direction 25 and lead planets 108 for operation in reverse direction 26. Variations are possible in which trunnions 420 lead planets 108 in forward direction 25 and trail planets 108 in reverse direction 26.


Rotating trunnion extension 213 rotates center link 422, advancing one link 421 and receding a corresponding link 421. The advancement and recession of links 421 may apply a non-zero skew condition on axles 103 coupled to planets 108. A non-zero skew condition generates unbalanced forces, and the geometry and configuration of CVT 400 causes axles 103 to tilt. Tilting axles 103 to a non-zero tilt angle (gamma) 28 causes contact points between planets 108 and traction rings 102, 104 to change, adjusting a speed ratio of CVT 400.


CVT 400 comprises planets 108 located between and in contact with traction rings 102, 104 and sun 110. Planets 108 are rotatably coupled to axles 103 such that planets 108 rotate about axes of rotation 106 defined by axles 103. If present, bearings 107 allow rotation of planets 108 about axles 103. In some embodiments, bearings 107 allow planets 108 to rotate about axles 103 but constrain planets 108 from axial movement along axles 103.


Planets 108 are fixed axially due to their position between traction rings 102, 104 and traction sun 110, and are controllable due to their coupling via axles 103, links 421, center link 422, trunnion extension 213 and synchronizing ring 212.


Each trunnion 420 comprises trunnion extension 213 coupled to center link 422, which is coupled at each end to a pair of links 421. Trunnion extension 213 comprises a rigid member radially translatable in opening 216 of synchronizing ring 212 and rotatable about axis 22. Center link 422 is rigidly coupled to trunnion extension 213, whereby rotation of trunnion extension 213 rotates center link 422. Each link 421 is coupled to one end of an axle 103 and center link 422, whereby rotation of center link 422 advances a first link 421 and recedes a second link 421.


Trunnions 420 may be formed or configured for selected degrees of freedom between trunnion extensions 213 and planet axles 103. For example, in some embodiments, axles 103 may rotate about their y-axes 22 but are constrained or fixed axially. In these embodiments, a coupling between links 421 and axles 103 may have only one degree of freedom. In other embodiments, spherical joints or other couplings 415 allow multiple degrees of freedom between links 421 and axles 103. In some embodiments, at least one link 421 may be formed as a resilient member to provide at least one additional degree of freedom. In some embodiments, links 421 may be formed with directional resiliency or rigidity, whereby links 421 behave as rigid members relative to a first direction but behave as resilient members in a second direction. For example, when a torque is applied to links 421 relative to their z-axes, links 421 may behave as rigid members. However, when an axial force is applied to links 421, links 421 may behave as resilient members in the axial direction and allow some axial deflection, returning to their original configuration when the force is removed. An advantage to directional resiliency in a control system for CVT 400 may be an increased range of speed ratios or a smaller volume necessary for the control system or CVT 400. For example, if trunnion extension 213, center link 422 and axles 103 are formed as rigid members, rotation of trunnion extension 213 may be limited based on dimensions such as the width of trunnions 420, the width of center link 422, or the effective length of links 421, and rotation or translation of trunnions 420 may exceed tolerances. However, links 421 having resilient properties, coupling 415 allowing multiple degrees of freedom, or other couplings relative to an axial direction may allow a control system for CVT 400 to flex or twist to remain within tolerances, which may extend the ratio range of CVT 400.


Operationally, trunnion extension 213 is rotatable to skew angle (zeta) 27 about radial line 22 to impart a non-zero skew condition on planet axles 103. A non-zero skew condition, along with the geometry and configuration of CVT 400, generate unbalanced forces on planets 108. The generation of forces due to the non-zero skew condition is a function of the rotation of trunnion 213, the length of center link 422, the effective length of links 421, distance 424 between links 421, the length of axles 103, the direction of rotation of CVT 400 or other factors. Unbalanced forces cause axles 103 to adjust toward tilt angle (gamma) 28 corresponding to a force-balanced state and a zero-skew condition.


In addition to rotating trunnion 420s about axes 22 to skew angle (zeta) 27, trunnion extensions 213 may be translated radially inward or outward to rotate trunnions 420 about the z-axes for planets 108 to offset angle (psi) 24, in which offset angle (psi) 24 may be defined as an angle between tangent line 21 and line 23 passing through the intersection of radial line 22 and center plane 14 which bisects center links 422. A magnitude of offset angle (psi) 24 determines the stability and sensitivity for operation in forward direction 25 and reverse direction 26.


To enable control in forward direction 25, trunnion extension 213 may be radially translated to rotate trunnion 420 about z-axis of planets 108 to offset angle (psi) 24. Rotation of trunnions 420 to a positive or negative offset angle (psi) 24 results in a radial position of center links 422 inward or outward of pitch circle 12. Radial positioning of center links 422 outward of pitch circle 12 enables control of CVT 400 in forward rotation 25. Radial positioning of center links 422 inward of pitch circle 12 enables control of CVT 400 in reverse rotation 26.



FIGS. 4A-4C depict partial front and side views of one embodiment of CVT 400 configured with center links 422 translated radially outward relative to pitch circle 12 for forward direction 25 and with trunnion extensions 213 rotated about axes 22 such that skew angle (zeta) 27 is zero, wherein forces are balanced and tilt angle (gamma) 28 is zero, whereby variator 400 is operating at a speed ratio of 1:1 (i.e., a rotational speed of second traction ring 104 is substantially equal to a rotational speed of first traction ring 102 minus any friction losses).



FIGS. 4D-4F depict partial front, side, and back views of one embodiment of CVT 400 configured with center links 422 translated radially outward of pitch circle 12 for operation in a forward direction, and with trunnion extensions 213 rotated about axes 22 to non-zero skew angle (zeta) 27, wherein unbalanced forces (e.g., spin-induced forces) cause axles 103 to adjust to a non-zero tilt angle (gamma) 28, whereby CVT 400 is operating in underdrive in forward direction 25.



FIGS. 4G-4H depict partial front and side views of one embodiment of CVT 400 configured with center links 422 translated radially outward of pitch circle 12 for operation in a forward direction 25, and with trunnion extensions 213 rotated about axes 22 to non-zero skew angle (zeta) 27 to cause axles 103 to adjust to a non-zero tilt angle (gamma) 28, whereby CVT 400 is operating in overdrive.



FIGS. 4I-4K depict partial front and back views of one embodiment of variator 400 configured with center links 422 translated radially inward of pitch circle 12 for operation in a reverse direction 26, and with trunnion extensions 213 rotated about axes 22 to non-zero skew angle (zeta) 27 to cause an adjustment of axles 103 to a non-zero tilt angle (gamma) 28 such that CVT 400 is operating at a 1:1 ratio.



FIGS. 4L-4M depict partial front and back views of one embodiment of CVT 400 configured with center links 422 translated radially inward of pitch circle 12 for operation in a reverse direction 26, and with trunnion extensions 213 rotated about axes 22 to non-zero skew angle (zeta) 27 to cause an adjustment of axles 103 to a non-zero tilt angle (gamma) 28 whereby CVT 400 is operating in underdrive.



FIGS. 4N-4O depict partial front and back views of one embodiment of CVT 400 configured with center links 422 translated radially inward of pitch circle 12 for stable operation in a reverse direction 26, and with trunnion extensions 213 rotated about axes 22 to non-zero skew angle (zeta) 27 to cause an adjustment of axles 103 to a non-zero tilt angle (gamma) 28 whereby CVT 400 is operating in overdrive.


Embodiments disclosed in FIGS. 4A-4O may be controlled manually, such as by a person rotating a hand grip, lever, or other mechanical actuator. Embodiments disclosed in FIGS. 4A-4O may also be controlled electronically, such as by a controller communicatively coupled to one or more actuators (not shown), whereby the controller receives input regarding a target operating condition of CVT 400 and adjusts one or more of skew angle (zeta) 27 and offset angle (psi) 24 to adjust a tilt angle (gamma) 28 of CVT 400 for operation in forward direction 25 or reverse direction 26. The target operating condition may be a target speed ratio, target ratio, output speed or input speed. The controller may determine a direction of operation (e.g., forward direction 25 or reverse direction 26) and adjust offset angle (psi) 24 accordingly. As the magnitude of offset angle (psi) 24 increases, the stability of CVT 400 increases. As the magnitude of offset angle (psi) 24 nears zero, the sensitivity of CVT 400 increases.


As mentioned above, CVTs described herein may be operated in forward and reverse directions, such as by rotating trunnions 220, 320 or 420 about the z-axes of planets 108 to an offset angle (psi) 24 associated with forward direction 25 or reverse direction 26. In addition to enabling control in forward and reverse, embodiments disclosed herein may be configured for more stability or more sensitivity.


Referring to FIGS. 2A-2J, the more radially inward or outward coupling 215 is moved (i.e., a magnitude of an offset angle (psi) is closer to a maximum possible magnitude for psi), the more stable CVT 200 may operate, whereas radial translation of coupling 215 toward a neutral offset angle (psi) 24 (i.e., a magnitude of an offset angle (psi) is closer to zero), the faster CVT 200 may be adjusted.

    • In some embodiments, a controller may be configured to determine a target offset angle (psi) based on a target stability or sensitivity. For example, a controller may control CVT by configuring trunnion 220 to a maximum offset angle (psi) for stability and reducing the frequency at which zeta angle is changed. This example may work well in scenarios in which undesirable or unexpected rollback or operation in reverse direction 26 is unlikely to occur. An advantage to this control scheme may be reduced power consumption by an actuator used to adjust a speed ratio of CVT 200.
    • In some embodiments, operating CVT 200 with the magnitude of offset angles (psi) 24 always close to zero may be useful in scenarios in which an unexpected or unfavorable rollback or operation in reverse direction 26 may occur. An advantage to this control scheme may be the ability to rapidly switch between operation in forward direction and reverse direction. A controller may be configured with at least two control schemes, wherein one control scheme configures CVT 200 into a stable configuration with higher magnitude offset angles (psi), and a sensitive configuration with the magnitude of offset angles (psi) closer to zero.


Referring to FIGS. 3A-3J, the larger offset angle (psi) 24 to which links 321 are rotated (i.e., a magnitude of an offset angle (psi) is closer to a maximum possible magnitude for psi), the more stable CVT 300 may operate, whereas the smaller offset angle (psi) 24 to which links 321 are rotated (i.e., a magnitude of an offset angle (psi) is closer to zero), the faster CVT 300 may be adjusted for a given skew angle (zeta) 27. A controller may be configured to determine offset angle (psi) based on a target stability or sensitivity.

    • In some embodiments, a controller may control CVT by configuring trunnion 320 to a maximum offset angle (psi) 24 for stability and reducing the frequency at which skew angle (zeta) 27 is changed. This example may work well in scenarios in which unfavorable or unexpected rollback or operation in reverse direction 26 is unlikely to occur. An advantage to this control scheme may be reduced power consumption by an actuator used to adjust a speed ratio of CVT 300.
    • In some embodiments, operating CVT 300 with the magnitude of offset angles (psi) 24 always close to zero may be useful in scenarios in which an unexpected or unfavorable rollback or operation in reverse direction 26 may occur. An advantage to this control scheme may be the ability to rapidly switch between operation in forward direction and reverse direction.


A controller may be configured with at least two control schemes, wherein one control scheme configures CVT 300 into a stable configuration with higher magnitude offset angles (psi), and a sensitive configuration with the magnitude of offset angles (psi) closer to zero. In some embodiments, an offset angle (psi) greater than 10 degrees may provide a stable configuration. In some embodiments, an offset angle (psi) greater than 12 degrees may provide a stable configuration. In some embodiments, an offset angle (psi) greater than 15 degrees may provide a stable configuration. In some embodiments, an offset angle (psi) less than 10 degrees may provide a sensitive configuration. In some embodiments, an offset angle (psi) less than 7 degrees may provide a sensitive configuration. In some embodiments, an offset angle (psi) less than 5 degrees may provide a sensitive configuration.


A controller may be coupled to a user interface and a plurality of sensors. User inputs may be received by the controller from the user interface. A user input may include a target speed ratio, a direction of rotation, a control scheme, or some combination. In some embodiments, a user input may be interpreted by the controller. For example, a user may select “Economy” and “Forward” and the controller may interpret the user input to configure a CVT with a positive, larger magnitude offset angle (psi) 24 for stable control in forward rotation, or a user may select “Low” and “Forward” and the controller may recognize that operation in this combination may be an indicator that rollback is likely and configure a CVT with a positive, lower magnitude offset angle (psi).


Referring to FIGS. 4A-4O, the more radially inward or outward that center links 422 are positioned (i.e., the larger offset angle (psi) 24 to which links 421 are rotated such that a magnitude of an offset angle (psi) is closer to a maximum possible magnitude), the more stable CVT 400 may operate, whereas the closer to pitch circle 12 that center links 422 are positioned, the faster CVT 400 may be adjusted for a given skew angle (zeta) 27.

    • In some embodiments, a controller may be configured to determine offset angle (psi) 24 based on a target stability or sensitivity. For example, a controller may control CVT 400 by positioning center links 422 to configure CVT 400 with a maximum offset angle (psi) 24 for stability and reducing the frequency at which skew angle (zeta) 27 is changed. This example may work well in scenarios in which undesirable or unexpected rollback or operation in reverse direction 26 is unlikely to occur. An advantage to this control scheme may be reduced power consumption by an actuator used to adjust a speed ratio of CVT 400.
    • In some embodiments, operating CVT 400 with the magnitude of offset angle (psi) 24 always close to zero may be useful in scenarios in which an unexpected or unfavorable rollback or operation in reverse direction 26 may occur. An advantage to this control scheme may be the ability to rapidly switch between operation in forward direction and reverse direction. A controller may be configured with at least two control schemes, wherein one control scheme configures CVT 400 into a stable configuration with higher magnitude offset angles (psi), and a sensitive configuration with the magnitude of offset angles (psi) closer to zero.


As described herein, planets 108 may be in contact with traction rings 102, 104 and sun 110. Contact may be direct or may include embodiments in which a traction fluid between contact points allows CVT 200, 300 or 400 to behave as if there is direct contact between components.


Operation in reverse direction 26, as described herein, may refer to powered and unpowered events in which a CVT is rotated in a direction opposite a design direction.


Embodiments disclosed herein may include a controller executing a set of instructions for a control process. As used herein, the term “shutdown” refers to a process or sequence in which power is removed from all electronic components. Shutdown may therefore include removing power from an electronic control unit (ECU), user displays, and the like, and may also include removing power from actuators, hydraulic and lubrication pumps, fans and other auxiliary and accessory devices.


A control process may include a controller tracking speed ratio, which may involve the controller tracking tilt angle (gamma) 28. Referring to embodiments of CVT 200, 300 or 400, in some embodiments, a controller may track speed ratio based on skew angle (zeta) 27. In some embodiments, a controller may track speed ratio relative to distance D that ring 212 is translated axially in CVT 200. In some embodiments, a controller corresponding to CVT 300 may track speed ratio based on a relative angular position (beta) of carrier halves 310A, 310B. In some embodiments, a controller corresponding to CVT 400 may track speed ratio based on skew angle (zeta) 27 of trunnion extensions 213. Variations in CVT geometry and components will allow for other ways to track speed ratio directly or indirectly. In some embodiments, tracking speed ratio using direct or indirect measurements may be performed once reverse speed is detected, and a controller may remain on an upshift (forward adjustment) side of the tracked speed ratio.


Examples of operation in reverse direction include the following scenarios:


In this scenario, vehicle speed is zero prior to shutdown, the prime mover is turned off, the controller is powered down, a range box (if part of the drivetrain) is in gear (forward or reverse), and the vehicle rolls in a direction opposite of the gear range selection. An example of this scenario occurs when a vehicle is stopped in a gear range on flat ground and powered off, but the vehicle is pushed or pulled in an opposite direction of the range. The controller is powered down, so downshift cannot be tracked as the vehicle rolls back and the CVT may lock if the planet axles translate into certain configurations. A control process may include the controller sensing when the vehicle stops (or is about to stop). The controller may impart a skew angle (zeta) to cause a slight upshift to the speed ratio before the controller is powered down, or the controller may, upon receiving a signal to power down, impart a skew angle (zeta) to cause a slight upshift to the speed ratio. In some embodiments, when the controller identifies a condition or set of conditions that may possibly result in a rollback situation, the controller may execute a set of instructions that result in a control system operating with a magnitude of an offset angle (psi) being closer to zero and with higher frequency data sampling. The magnitude of the offset angle (psi) may be greater than 3 degrees but less than 10 degrees, less than 5 degrees, or some other angle or range of angles that allows control of the CVT and is able to switch directions if needed.


In this scenario, vehicle speed is zero prior to shutdown, the prime mover is turned off, the controller is powered down, a range box (if part of the drivetrain) is in gear (forward or reverse), and the vehicle rolls in opposite direction of range selection. An example is if the vehicle stalls when traversing a hill and subsequently rolls backward. This scenario might be more common than the standard shutdown since there might not be enough time to adjust the transmission to underdrive. A challenge is that a tilt angle of the planet axles might not be tracked as the vehicle rolls back and the CVT may lock if the planet axles translate into certain configurations. A control process may include the controller sensing when the vehicle stalls (or is about to stall) and imparting a skew angle (zeta) to cause a slight upshift to the speed ratio before the controller powers down or changing an offset angle (psi) to, or the controller, upon receiving a signal indicating the engine has stalled and the controller is about to power down, imparting a skew angle (zeta) to cause a slight upshift to the speed ratio. In some embodiments, when the controller identifies a condition or set of conditions that are likely to result in a rollback situation, the controller may execute a set of instructions that result in a control system operating with a magnitude of an offset angle (psi) being closer to zero and with higher frequency data sampling. The magnitude of the offset angle (psi) may be greater than 3 degrees but less than 7 degrees, less than 5 degrees, or some other angle or range of angles that allows control of the CVT and is able to switch directions if needed.


In this scenario, the vehicle speed may be zero, with the prime mover speed below a clutch engagement point, such that even with a range box in gear (either forward or reverse), the vehicle rolls in the opposite direction of range selection. An example of this scenario is when a driver stops on a slope and releases the brake before either applying sufficient throttle to go forward or engaging a parking brake to prevent the vehicle from rolling backward. There may be different control processes, depending on the circumstances. The controller performs a control process to adjust a CVT to a slight upshift (forward adjustment) when the vehicle stops. If the vehicle is equipped with accelerometers or other sensors that allow the vehicle to detect slopes, a control process performs a slight upshift when a vehicle comes to a stop and a controller has determined that the vehicle is on a slope. Once reverse speed is detected, a controller may ensure a CVT remains on an upshift side of a target speed ratio. In some embodiments, when the controller identifies a condition or set of conditions that indicate a rollback situation, the controller may execute a set of instructions that result in a control system changing a sign of the offset angle (psi), operating with a magnitude of an offset angle (psi) being closer to zero, and with higher frequency data sampling. The magnitude of the offset angle (psi) may be greater than 3 degrees but less than 10 degrees, less than 5 degrees, or some other angle or range of angles that allows control of the CVT and is able to switch directions if needed.


In this scenario, the vehicle speed is zero, the prime mover speed is above a clutch engagement point, but the clutch is slipping and not transmitting torque to the drivetrain, the range box is in gear (forward or reverse) but the vehicle rolls in an opposite direction of the range selection. This may be due to the slope, towing, pushing, or some other external factor. This scenario may occur when a vehicle is on a steeper grade and the driver remains on the throttle but not enough to overcome the grade. In some embodiments, the controller executes instructions in a control process to adjust a CVT to a slight upshift (perform a forward adjustment) when the vehicle speed reaches zero. In some embodiments, tracking speed ratio using direct or indirect measurements may be performed once reverse speed is detected, and a controller may remain on an upshift (forward adjustment) side of the tracked speed ratio. A challenge with this scenario or control process is that timing of an upshift may be critical, as the timing between when wheel speed is zero and rollback begins may be very short. In some embodiments, when the controller identifies a condition or set of conditions that indicate a powered rollback situation, the controller may execute a set of instructions that result in a control system changing an offset angle (psi) of the CVT, operating with a magnitude of an offset angle (psi) closer to zero, changing the skew angle (zeta) to keep the CVT operating in a target range (overdrive or underdrive), and increasing the rate of frequency data sampling. Using CVT 200 depicted in FIGS. 2A-2J as an example, if CVT 200 is operating in overdrive in a forward direction (such as depicted in FIG. 2E) and encounters a powered rollback situation, a controller may execute a set of instructions to restrict the magnitude of the offset angle (psi) to be greater than 3 degrees but less than 10 degrees and ring 212 may be axially translated from a position near first traction ring 102 to a position near second traction ring 104 to keep CVT 200 in overdrive (as depicted in FIG. 21), or an axial position of ring 212 may be maintained to switch operation of CVT 200 from overdrive to underdrive (as depicted in FIG. 2J). The CVT may be operated at some other angle or range of angles that allows control of the CVT and is able to switch directions if needed.


In this scenario, the vehicle speed is non-zero and the range box is in gear. There may be a fast transition from throttle to brake, the prime mover speed may remain high and the clutch may be engaged. Furthermore, the brakes may be applied hard, inducing wheel lock. This scenario may occur, for example, when there is an emergency stop on a slope, and the driver then releases the brake before reapplying the throttle or engaging a parking brake, or may occur if there is an emergency stop on flat ground but is then pushed or towed in an opposite direction. In some embodiments, a controller executes a set of instructions in a control process to downshift the CVT rapidly to avoid stalling the engine, such that power is constantly applied to the CVT controller. A control process may include the controller slightly upshifting (forward adjustment) a speed ratio of the CVT as the wheel speed nears zero. In some embodiments, once reverse speed is detected, the controller may execute a set of instructions to keep a CVT on an upshift (forward adjustment) of a target speed ratio. A challenge may be to the difficulty in smoothly tracking a relationship between wheel and engine speed at high wheel deceleration rates. A challenge is that rollback may be more likely when the throttle is reengaged if the CVT is not fully downshifted.


In this scenario, the vehicle speed is non-zero and the range box is in gear. The wheels lose traction and spin, so the transmission upshifts (adjusts forward). The vehicle may slow to a stop and the driver releases the throttle, so the prime mover is at idle and the clutch is open. The vehicle may roll in the opposite direction of range selection. This scenario may occur, for example, if the vehicle is climbing a hill of loose material, there is loss of traction, and the driver releases the throttle. The controller performs a control process to increase a speed ratio of the CVT when the wheels break loose. The controller may also perform a control process to slightly increase the speed ratio of the CVT when the wheel speed reaches zero. A control process may include tracking a ratio (or track a corresponding parameter such as tilt angle (gamma) 28) with beta angle 29, remaining in an upshift side of present speed ratio. A challenge with existing CVTs includes the difficulty in smoothly tracking a relationship between wheel speed and engine speed at high wheel acceleration rates. Also, in some prior approaches, tilt angle (gamma) 28 must be tracked through a full ratio sweep. Embodiments disclosed herein may mitigate this challenge by allowing a controller to execute a control process that is able to independently adjust speed ratio and offset angle, such that the CVT may be adjusted quickly for a wide range of conditions. If the transmission is already at the highest speed ratio, further increases are not possible and a controller may execute a set of instructions to maintain a maximum skew angle (zeta) and the rate of data sampling may decrease.


In this scenario, the vehicle speed is non-zero and the range box is in gear. The wheels lose traction and spin, so the speed ratio of a CVT increases. The vehicle may slow but then regain traction, so the driver remains on the throttle and the input clutch experiences slipping. The vehicle may roll in the opposite direction of range selection. This scenario may occur, for example, if the vehicle is climbing a loose hill, there is loss of traction, but the driver remains on the throttle and traction is regained. A control process may be a rapid increase of speed ratio when the wheels break loose. A control process for a CVT may include increasing a skew angle (zeta) to cause a slight upshift when the wheel speed reaches zero. In some embodiments, a controller may track a speed ratio and adjust the skew angle (zeta) to remain in upshift side of a target speed ratio. Tracking a relationship between wheel speed and engine speed at high wheel acceleration rates may be difficult, rollback may be more likely due to an upshift prior to stalling, and tilt angle (gamma) must be tracked through a full ratio sweep. Embodiments disclosed herein may mitigate this challenge by allowing a controller to execute a control process that is able to independently adjust speed ratio and offset angle, such that the CVT may be adjusted quickly for a wide range of conditions. If the transmission is already fully upshifted to full overdrive, further upshifting to enable rollback is not possible. Embodiments disclosed herein may address operation in reverse direction—including rollback—of continuously variable transmissions. Embodiments described herein may be particularly useful for controlling CVTs by imparting a skew angle (zeta) on a plurality of planets to control a transmission ratio.


A drivetrain may include a prime mover, a CVT, and a control system. A prime mover generates power. Power may be delivered at a constant speed level or at varying (including modulating) speed levels, which depend on, among other things, user inputs or output power. A planetary gear set allows a drive train having a CVT to operate in various modes. By selectively locking or unlocking one or more of a sun gear, a set of planet gears, or a ring gear, the drive train can operate in various modes including, but not limited to, low mode, high mode, forward mode, or reverse mode. For example, power may be input through the sun gear, and by locking a ring gear, power exits the set of planet gears, but in a reverse direction. A control system receives signals indicating operating conditions for one or more of the prime mover, clutches, a planetary gear set, a CVT and a differential, and sends control signals to one or more of the prime mover, the clutches, the planetary gear set and the CVT. The control signals ensure a target performance of the drivetrain. In some embodiments, signals indicating operating conditions of a prime mover are not received. However, in other embodiments, signals indicating operating conditions of a prime mover are received, allowing embodiments to take advantage of the capabilities of a CVT and optimize performance of the prime mover as well as the performance of an auxiliary device or accessory on a vehicle. A control system for a CVT employing a plurality of tiltable balls may receive signals indicating a target direction of rotation and an actual direction of rotation. Signals indicating a target direction of rotation may include user inputs, signals from an accelerometer, throttle or other vehicle sensor, signals from a global positioning system (GPS) or other external source, including combinations thereof. Signals indicating an actual direction of rotation may include signals from accelerometers or similar systems indicating relative movement, signals from pickups or other sensors directly sensing (or measuring) parameters of internal components, or environmental sensors capable of determining motion of a vehicle based on changes in the surroundings. In some embodiments, the control system is configured to determine an unintended change in the direction of rotation based on an indication of brake pressure or an increase in brake pressure and/or reduced vehicle speed or a vehicle speed below a predetermined threshold. The threshold may be constant or may vary according to several factors, including but not limited to, a load, a pitch angle, a roll angle, wheel speed, vehicle speed, hydraulic pressure, brake pressure, or some other factor or combination of factors. For example, if the wheel speed is low relative to vehicle speed, embodiments may determine the vehicle is slipping, or high brake pressure in combination with any non-zero vehicle speed may determine the vehicle operator is trying to stop the vehicle. Hydraulic pressure may indicate a load. A pitch angle and a roll angle (and the combination) are examples of factors that might help determine conditions in which rollback is more likely to occur. A control system may be configured to determine an unintended change in the direction of rotation based on a comparison of engine speed and vehicle speed, including acceleration (a rate of change of vehicle speed). For example, a controller may receive signals from an engine speed sensor indicating the engine is operating at an increased speed and a vehicle speed sensor indicating the vehicle speed is decreasing. This comparison may indicate the wheels are slipping. The controller may then perform any processes necessary to counteract the effects of operation in reverse direction of a CVT. For example, in some embodiments, a control system is configured to impart an additional skew condition to each planet. In some embodiments, a control system is configured to send an indication to increase throttle of the prime mover. Other signals and indicators may be used to determine when operation in reverse direction is possible or likely. For example, in some embodiments, a control system is configured to determine if a clutch is slipping, if the vehicle is on a slope likely to result in the vehicle stalling.


In operation, a prime mover generates power having an associated torque and speed. Power may be transmitted directly to the CVT, such as by a direct coupling the prime mover to the CVT, or indirectly through an element such as a shaft, sprocket, chain, belt, pulley or planetary gear set to the CVT. Power from the CVT may be transmitted either directly or indirectly to a downstream gear set. A gear set may be configured for an output torque or speed. For example, power may enter a planetary gear set via an outer ring but may exit the planetary gear set via a sun gear. Alternatively, a planetary gear set may be configured to allow power to enter via a carrier, a sun gear, a planet gear or some combination. Similarly, a planetary gear set may be configured to allow power to exit the planetary gear set via the outer ring, the planet gears, the carrier, the sun gear, or some combination. A control system receives signals related to the operation of the prime mover or CVT and optimizes one or more of the prime mover operation or the CVT operation based on a target output parameter or operating condition. For example, a result may be based on efficiency or acceleration (power transfer).


Embodiments disclosed herein may provide additional advantages. For example, embodiments disclosed with respect to CVT 200 and 400 are free from side components, which may allow for better circulation of lubrication using unpowered techniques (e.g., “splash lubrication”), whereas embodiments disclosed with respect to CVT 300 may include lubrication channels, ports, or other fluid delivery systems in carriers 310A, 310B for powered or directed lubrication.


Embodiments disclosed herein are exemplary. Other modifications may be possible that are still within the scope of the disclosure. For example, FIGS. 2A-2J depict embodiments in which axles 103 are axially fixed to planets 108 and planets 108 are axially fixed by other components including first traction ring 102, second traction ring 104, and sun 110 such that tilting planets 108 is accomplished by an axial translation of trunnion extensions 215.


A variation of an embodiment of FIGS. 2A-2J is also described in which trunnion extensions 215 are axially fixed, and axles 103 are axially translatable relative to planets 108 to tilt planets 108. A person of skill in the art will appreciate, after reading this disclosure, that a variation may be possible in which a third point is located along the line AB between point A (the intersection of axis of rotation 106 and a midplane of axles 103) and point B (a geometric center of couplings 215) in which axles 103 may be translated axially in a first direction and couplings 215 may be translated axially in an opposite direction to cause planets 108 to tilt, wherein the distance that point A and point B are translated depend on the location of the third point on line AB.


As another example of variations possible within the scope of the disclosed technology, FIGS. 3A-3J depict one embodiment in which links 321 are coupled between axles 103 and carrier arms 311 via pins or other couplings 312. Rotation of carriers 310A, 310B to adjust carrier arms 311 may require multiple degrees of freedom. Pins 312 are depicted in slots 313. Pins may be spherical or have some other arcuate surface to provide multiple degrees of freedom. Links 321 may also provide one or more degrees of freedom. Other configurations and materials may provide other degrees of freedom, may improve degrees of freedom, may provide directional degrees of freedom. In FIGS. 3A-3J, carrier arms 311A, 311B are depicted generally as radial spokes. However, in some embodiments, carrier arms 311A, 311B may be curved (in an axial, radial or angular direction), angled, or otherwise configured to provide degrees of freedom.


As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, article, or apparatus.


Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. That is, the term “or” as used herein is generally intended to mean “and/or” unless otherwise indicated. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).


As used herein, a term preceded by “a” or “an” (and “the” when antecedent basis is “a” or “an”) includes both singular and plural of such term unless the context clearly dictates otherwise. Also, as used herein, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.


Additionally, any examples or illustrations given herein are not to be regarded in any way as restrictions on, limits to, or express definitions of, any term or terms with which they are utilized. Instead, these examples or illustrations are to be regarded as being described with respect to one particular embodiment and as illustrative only. Those of ordinary skill in the art will appreciate that any term or terms with which these examples or illustrations are utilized will encompass other embodiments that may or may not be given therewith or elsewhere in the specification and all such embodiments are intended to be included within the scope of that term or those terms.


Reference throughout this specification to “one embodiment,” “an embodiment,” or “a specific embodiment” or similar terminology means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment and may not necessarily be present in all embodiments. Thus, respective appearances of the phrases “in one embodiment,” or “in an embodiment,” or similar terminology in various places throughout this specification are not necessarily referring to the same embodiment. Furthermore, the particular features, structures, or characteristics of any particular embodiment may be combined in any suitable manner with one or more other embodiments. It is to be understood that other variations and modifications of the embodiments described and illustrated herein are possible in light of the teachings herein and are to be considered as part of the spirit and scope of the disclosed technology.


Although the disclosed technology has been described with respect to specific embodiments thereof, these embodiments are merely illustrative, and not restrictive of the disclosed technology. The description herein of illustrated embodiments of the disclosed technology is not intended to be exhaustive or to limit the disclosed technology to the precise forms disclosed herein (and in particular, the inclusion of any particular embodiment, feature or function is not intended to limit the scope of the disclosed technology to such embodiment, feature or function). Rather, the description is intended to describe illustrative embodiments, features and functions in order to provide a person of ordinary skill in the art context to understand the disclosed technology without limiting the disclosed technology to any particularly described embodiment, feature or function. While specific embodiments of, and examples for, the disclosed technology are described herein for illustrative purposes only, various equivalent modifications are possible within the spirit and scope of the disclosed technology, as those skilled in the relevant art will recognize and appreciate. As indicated, these modifications may be made to the disclosed technology in light of the foregoing description of illustrated embodiments of the disclosed technology and are to be included within the spirit and scope of the disclosed technology. Thus, while the disclosed technology has been described herein with reference to particular embodiments thereof, a latitude of modification, various changes and substitutions are intended in the foregoing disclosures, and it will be appreciated that in some instances some features of embodiments of the disclosed technology will be employed without a corresponding use of other features without departing from the scope and spirit of the disclosed technology as set forth. Therefore, many modifications may be made to adapt a particular situation or material to the essential scope and spirit of the disclosed technology.


In the description herein, numerous specific details are provided, such as examples of components and/or methods, to provide a thorough understanding of embodiments of the disclosed technology. One skilled in the relevant art will recognize, however, that an embodiment may be able to be practiced without one or more of the specific details, or with other apparatus, systems, assemblies, methods, components, materials, parts, and/or the like. In other instances, well-known structures, components, systems, materials, or operations are not specifically shown or described in detail to avoid obscuring aspects of embodiments of the disclosed technology. While the disclosed technology may be illustrated by using a particular embodiment, this is not and does not limit the disclosed technology to any particular embodiment and a person of ordinary skill in the art will recognize that additional embodiments are readily understandable and are a part of this disclosed technology.


Although the steps, operations, or computations may be presented in a specific order, this order may be changed in different embodiments. In some embodiments, to the extent multiple steps are shown as sequential in this specification, some combination of such steps in alternative embodiments may be performed at the same time. The sequence of operations described herein can be interrupted, suspended, or otherwise controlled by another process.


It will also be appreciated that one or more of the elements depicted in the drawings/figures can also be implemented in a more separated or integrated manner, or even removed or rendered as inoperable in certain cases, as is useful in accordance with a particular application. Additionally, any signal arrows in the drawings/figures should be considered only as exemplary, and not limiting, unless otherwise specifically noted.

Claims
  • 1. A continuously variable transmission (CVT) having a central axis, the CVT comprising: first and second traction rings rotatable about the central axis;a sun rotatable about the central axis;a plurality of planet assemblies configured to transfer power between the first and second traction rings, each planet assembly coupled to the first and second traction rings and the sun, each planet assembly comprising a planet rotatable about a planet axle, the planet axle defining an axis of rotation of the planet, each planet axle capable of being skewed to form a skew angle in a first direction between the central axis and the planet axle and of tilting to form a tilt angle in a second direction between the central axis and the planet axle, the tilt angle defining a transmission ratio of the CVT;a first carrier half coaxial with and at least partially rotatable about the central axis, the first carrier half coupled by a plurality of first links to a first end of each of the planet axles;a second carrier half coaxial with and at least partially rotatable about the central axis, the second carrier half coupled by a plurality of second links to a second end of each of the planet axles, the first carrier half and second carrier half being rotatable with respect to each other to define an angular position, the first carrier half and the second carrier half being limited in relative rotation with respect to each other to a maximum angular position, a non-zero angular position of the relative rotation of the first and second carrier halves imparting a non-zero skew angle on each of the planet axles, the non-zero skew angle imparting an adjustment to the tilt angle of each of the planet axles, thereby resulting in a change in the transmission ratio of the CVT;a plurality of first couplings configured to couple the plurality of first links to the first carrier half; anda plurality of second couplings configured to couple the plurality of second links to the second carrier half, the plurality of first and second couplings configured to allow the plurality of first and second links to rotate out of plane with the first and second carrier halves to facilitate tilting of the planet axles.
  • 2. The CVT of claim 1, wherein the plurality of first and second couplings comprise ball joints.
  • 3. The CVT of claim 1, wherein the plurality of first and second links are flexible.
  • 4. The CVT of claim 1, further comprising: a pitch circle coaxial about the central axis and having a radius equal to a plurality of centers of the planet assemblies; anda plurality of first and second connections configured to connect the plurality of first and second links to the plurality of planet axles, an effective offset angle defined by a tangent of the pitch circle at a respective one of the plurality of first and second connections and a line between an associated one of the plurality of first and second connections and an associated one of the plurality of first and second couplings, the effective offset angle being positive when the plurality of first and second links are located radially outside of the pitch circle, a positive offset angle associated with a forward direction of rotation, and the effective offset angle being negative when the plurality of first and second links are located radially inside of the pitch circle, a negative offset angle associated with a reverse direction of rotation.
  • 5. The CVT of claim 4, further comprising an actuator configured to adjust the radial position of the plurality of first and second couplings in order to adjust the effective offset angle.
  • 6. The CVT of claim 5, wherein the actuator is configured to adjust the radial position of the plurality of first and second couplings to a positive effective offset angle when the CVT is rotating in the forward direction of rotation, and wherein the actuator is configured to adjust the radial position of the plurality of first and second couplings to a negative offset angle when the CVT is rotating in the reverse direction of rotation.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. Nonprovisional Application Ser. No. 16/799,025, filed Feb. 24, 2020, now U.S. Pat. No. 11,174,922, which claims the benefit of U.S. Provisional Application No. 62/810,832, filed Feb. 26, 2019, which are hereby incorporated by reference in their entirety.

US Referenced Citations (1044)
Number Name Date Kind
225933 Kellogg Mar 1880 A
719595 Huss Feb 1903 A
721663 Brooke Mar 1903 A
1121210 Hans Dec 1914 A
1175677 Barnes Mar 1916 A
1207985 Null Dec 1916 A
1380006 Nielsen May 1921 A
1390971 Samain Sep 1921 A
1558222 Beetow Oct 1925 A
1629092 Crockett May 1927 A
1629902 Arter May 1927 A
1686446 Gilman Oct 1928 A
1774254 Daukus Aug 1930 A
1793571 Vaughn Feb 1931 A
1847027 Thomsen Feb 1932 A
1850189 Weiss Mar 1932 A
1858696 Weiss May 1932 A
1865102 Hayes Jun 1932 A
1903228 Thomson Mar 1933 A
1947044 Gove Feb 1934 A
1978439 Sharpe Oct 1934 A
2030203 Gove Feb 1936 A
2060884 Madle Nov 1936 A
2086491 Dodge Jul 1937 A
2097631 Madle Nov 1937 A
2100629 Chilton Nov 1937 A
2109845 Madle Mar 1938 A
2112763 Cloudsley Mar 1938 A
2123008 Hayes Jul 1938 A
2131158 Almen Sep 1938 A
2134225 Christiansen Oct 1938 A
2152796 Erban Apr 1939 A
2196064 Erban Apr 1940 A
2209254 Ahnger Jul 1940 A
2259933 Holloway Oct 1941 A
2269434 Brooks Jan 1942 A
2325502 Georges Jul 1943 A
RE22761 Wemp May 1946 E
2461258 Brooks Feb 1949 A
2469653 Kopp May 1949 A
2480968 Ronai Sep 1949 A
2553465 Barthelemy May 1951 A
2563370 Reese Aug 1951 A
2586725 Schottler Feb 1952 A
2595367 Picanol May 1952 A
2596538 Dicke May 1952 A
2597849 Uno May 1952 A
2675713 Acker Apr 1954 A
2696888 Chillson Dec 1954 A
2716357 Rennerfelt Aug 1955 A
2730904 Rennerfelt Jan 1956 A
2748614 Weisel Jun 1956 A
2868038 Billeter Jan 1959 A
2873911 Perrine Feb 1959 A
2874592 Oehrli Feb 1959 A
2883883 Chillson Apr 1959 A
2891213 Kern Jun 1959 A
2901924 Banker Sep 1959 A
2913932 Oehrli Nov 1959 A
2931234 Hayward Apr 1960 A
2931235 Hayward Apr 1960 A
2949800 Neuschotz Aug 1960 A
2959063 De Brie Perry Nov 1960 A
2959070 Flinn Nov 1960 A
2959972 Madson Nov 1960 A
2964959 Beck Dec 1960 A
2982154 Zapletal May 1961 A
3008061 Mims Nov 1961 A
3028778 Hayward Apr 1962 A
3035460 Guichard May 1962 A
3048056 Wolfram Aug 1962 A
3051020 Hartupee Aug 1962 A
3081641 Iseman Mar 1963 A
3086704 Hurtt Apr 1963 A
3087348 Kraus Apr 1963 A
3088704 Grady May 1963 A
3154957 Kashihara Nov 1964 A
3163050 Kraus Dec 1964 A
3176542 Werner Apr 1965 A
3184983 Kraus May 1965 A
3204476 Rouverol Sep 1965 A
3207248 Strom Sep 1965 A
3209606 Yamamoto Oct 1965 A
3211364 Wentling Oct 1965 A
3216283 General Nov 1965 A
3229538 Schottler Jan 1966 A
3237468 Schottler Mar 1966 A
3246531 Kashihara Apr 1966 A
3248960 Schottler May 1966 A
3273468 Allen Sep 1966 A
3277745 Harned Oct 1966 A
3280646 Lemieux Oct 1966 A
3283614 Hewko Nov 1966 A
3292443 Perruca Dec 1966 A
3340895 Osgood, Jr. Sep 1967 A
3407687 Hayashi Oct 1968 A
3413896 Wildhaber Dec 1968 A
3430504 Dickenbrock Mar 1969 A
3439563 Petty Apr 1969 A
3440895 Fellows Apr 1969 A
3464281 Hiroshi Sep 1969 A
3477315 Macks Nov 1969 A
3487726 Burnett Jan 1970 A
3487727 Gustafsson Jan 1970 A
3574289 Shelter Apr 1971 A
3581587 Dickenbrock Jun 1971 A
3661404 Bossaer May 1972 A
3695120 Titt Oct 1972 A
3707888 Schottler Jan 1973 A
3727473 Bayer Apr 1973 A
3727474 Fullerton Apr 1973 A
3736803 Horowitz Jun 1973 A
3743063 Blechschmidt Jul 1973 A
3745844 Schottler Jul 1973 A
3768715 Tout Oct 1973 A
3769849 Hagen Nov 1973 A
3800607 Zurcher Apr 1974 A
3802284 Sharpe Apr 1974 A
3810398 Kraus May 1974 A
3820416 Kraus Jun 1974 A
3866985 Whitehurst Feb 1975 A
3891235 Shelly Jun 1975 A
3934493 Hillyer Jan 1976 A
3954282 Hege May 1976 A
3984129 Hege Oct 1976 A
3987681 Keithley Oct 1976 A
3996807 Adams Dec 1976 A
4023442 Woods May 1977 A
4098146 McLarty Jul 1978 A
4103514 Grosse-Entrup Aug 1978 A
4159653 Koivunen Jul 1979 A
4169609 Zampedro Oct 1979 A
4177683 Moses Dec 1979 A
4227712 Dick Oct 1980 A
4314485 Adams Feb 1982 A
4345486 Olesen Aug 1982 A
4369667 Kemper Jan 1983 A
4382186 Denholm May 1983 A
4382188 Cronin May 1983 A
4391156 Tibbals, Jr. Jul 1983 A
4456233 Mueller Jun 1984 A
4459873 Black Jul 1984 A
4464952 Stubbs Aug 1984 A
4468984 Castelli Sep 1984 A
4494524 Wagner Jan 1985 A
4496051 Ortner Jan 1985 A
4501172 Kraus Feb 1985 A
4515040 Takeuchi May 1985 A
4526255 Hennessey Jul 1985 A
4546673 Shigematsu Oct 1985 A
4560369 Hattori Dec 1985 A
4567781 Russ Feb 1986 A
4569670 McIntosh Feb 1986 A
4574649 Seol Mar 1986 A
4585429 Marier Apr 1986 A
4592247 Mutschler Jun 1986 A
4617838 Anderson Oct 1986 A
4628766 de Brie Perry Dec 1986 A
4630839 Seol Dec 1986 A
4631469 Tsuboi Dec 1986 A
4643048 Hattori Feb 1987 A
4651082 Kaneyuki Mar 1987 A
4663990 Itoh May 1987 A
4667525 Schottler May 1987 A
4700581 Tibbals, Jr. Oct 1987 A
4706518 Moroto Nov 1987 A
4713976 Wilkes Dec 1987 A
4717368 Yamaguchi Jan 1988 A
4735430 Tomkinson Apr 1988 A
4738164 Kaneyuki Apr 1988 A
4744261 Jacobson May 1988 A
4756211 Fellows Jul 1988 A
4781663 Reswick Nov 1988 A
4838122 Takamiya Jun 1989 A
4856374 Kreuzer Aug 1989 A
4857035 Anderson Aug 1989 A
4869130 Wiecko Sep 1989 A
4881925 Hattori Nov 1989 A
4884473 Lew Dec 1989 A
4900046 Aranceta-Angoitia Feb 1990 A
4909101 Terry, Sr. Mar 1990 A
4918344 Chikamori Apr 1990 A
4961477 Sweeney Oct 1990 A
4964312 Kraus Oct 1990 A
4976170 Hayashi Dec 1990 A
5006093 Itoh Apr 1991 A
5020384 Kraus Jun 1991 A
5025685 Kobayashi Jun 1991 A
5033322 Nakano Jul 1991 A
5033571 Morimoto Jul 1991 A
5037361 Takahashi Aug 1991 A
5044214 Barber, Jr. Sep 1991 A
5059158 Bellio Oct 1991 A
5069655 Schievelbusch Dec 1991 A
5083982 Sato Jan 1992 A
5099710 Nakano Mar 1992 A
5121654 Fasce Jun 1992 A
5125677 Ogilvie Jun 1992 A
5138894 Kraus Aug 1992 A
5156412 Meguerditchian Oct 1992 A
5166879 Greene Nov 1992 A
5194052 Ueda Mar 1993 A
5230258 Nakano Jul 1993 A
5236211 Meguerditchian Aug 1993 A
5236403 Schievelbusch Aug 1993 A
5261858 Browning Nov 1993 A
5267920 Hibi Dec 1993 A
5269726 Swanson Dec 1993 A
5273501 Schievelbusch Dec 1993 A
5318486 Lutz Jun 1994 A
5319486 Vogel Jun 1994 A
5330396 Lohr Jul 1994 A
5355749 Obara Oct 1994 A
5356348 Bellio Oct 1994 A
5375865 Terry, Sr. Dec 1994 A
5379661 Nakano Jan 1995 A
5383000 Michaloski Jan 1995 A
5383677 Thomas Jan 1995 A
5387000 Sato Feb 1995 A
5401221 Fellows Mar 1995 A
5413540 Streib May 1995 A
5451070 Lindsay Sep 1995 A
5476019 Cheever Dec 1995 A
5489003 Ohyama Feb 1996 A
5508574 Vlock Apr 1996 A
5514047 Tibbles May 1996 A
5526261 Kallis Jun 1996 A
5531510 Yamane Jul 1996 A
5562564 Folino Oct 1996 A
5564998 Fellows Oct 1996 A
5577423 Mimura Nov 1996 A
5601301 Liu Feb 1997 A
5607373 Ochiai Mar 1997 A
5645507 Hathaway Jul 1997 A
5651750 Imanishi Jul 1997 A
5664636 Ikuma Sep 1997 A
5669845 Muramoto Sep 1997 A
5669846 Moroto Sep 1997 A
5683322 Meyerle Nov 1997 A
5690346 Keskitalo Nov 1997 A
5701786 Kawakami Dec 1997 A
5720687 Bennett Feb 1998 A
D391824 Larson Mar 1998 S
D391825 Larson Mar 1998 S
5722502 Kubo Mar 1998 A
5746676 Kawase May 1998 A
5755303 Yamamoto May 1998 A
D396396 Larson Jul 1998 S
5799541 Arbeiter Sep 1998 A
5819864 Koike Oct 1998 A
5823052 Nobumoto Oct 1998 A
5823058 Arbeiter Oct 1998 A
5839083 Sugiyama Nov 1998 A
5846155 Taniguchi Dec 1998 A
5857387 Larson Jan 1999 A
5888160 Miyata Mar 1999 A
5895337 Fellows Apr 1999 A
5899827 Nakano May 1999 A
5902207 Sugihara May 1999 A
5964123 Arbeiter Oct 1999 A
5967933 Valdenaire Oct 1999 A
5976054 Yasuoka Nov 1999 A
5984826 Nakano Nov 1999 A
5995895 Watt Nov 1999 A
6000707 Miller Dec 1999 A
6003649 Fischer Dec 1999 A
6004239 Makino Dec 1999 A
6006151 Graf Dec 1999 A
6012538 Sonobe Jan 2000 A
6015359 Kunii Jan 2000 A
6019701 Mori Feb 2000 A
6029990 Busby Feb 2000 A
6042132 Suenaga Mar 2000 A
6045477 Schmidt Apr 2000 A
6045481 Kumagai Apr 2000 A
6047230 Spencer Apr 2000 A
6053833 Masaki Apr 2000 A
6053841 Koide Apr 2000 A
6054844 Frank Apr 2000 A
6056661 Schmidt May 2000 A
6066067 Greenwood May 2000 A
6071210 Kato Jun 2000 A
6074320 Miyata Jun 2000 A
6076846 Clardy Jun 2000 A
6079726 Busby Jun 2000 A
6083139 Deguchi Jul 2000 A
6085140 Choi Jul 2000 A
6085521 Folsom Jul 2000 A
6086506 Petersmann Jul 2000 A
6095940 Ai Aug 2000 A
6095945 Graf Aug 2000 A
6099431 Hoge Aug 2000 A
6101895 Yamane Aug 2000 A
6113513 Itoh Sep 2000 A
6119539 Papanicolaou Sep 2000 A
6119800 McComber Sep 2000 A
6125314 Graf Sep 2000 A
6146297 Kimura Nov 2000 A
6159126 Oshidari Dec 2000 A
6171210 Miyata Jan 2001 B1
6171212 Reuschel Jan 2001 B1
6174260 Tsukada Jan 2001 B1
6182000 Ohta Jan 2001 B1
6186922 Bursal Feb 2001 B1
6188945 Graf Feb 2001 B1
6210297 Knight Apr 2001 B1
6217473 Ueda Apr 2001 B1
6217478 Vohmann Apr 2001 B1
6241636 Miller Jun 2001 B1
6243638 Abo Jun 2001 B1
6251038 Ishikawa Jun 2001 B1
6251043 Gierling Jun 2001 B1
6258003 Hirano Jul 2001 B1
6261200 Miyata Jul 2001 B1
6266931 Erickson Jul 2001 B1
6296593 Gotou Oct 2001 B1
6311113 Danz Oct 2001 B1
6312358 Goi Nov 2001 B1
6322475 Miller Nov 2001 B2
6325386 Shoge Dec 2001 B1
6340067 Fujiwara Jan 2002 B1
6356817 Abe Mar 2002 B1
6358174 Folsom Mar 2002 B1
6358178 Wittkopp Mar 2002 B1
6367833 Horiuchi Apr 2002 B1
6371878 Bowen Apr 2002 B1
6375412 Dial Apr 2002 B1
6390945 Young May 2002 B1
6390946 Hibi May 2002 B1
6406399 Ai Jun 2002 B1
6414401 Kuroda Jul 2002 B1
6419608 Miller Jul 2002 B1
6425838 Matsubara Jul 2002 B1
6434960 Rousseau Aug 2002 B1
6440035 Tsukada Aug 2002 B2
6440037 Takagi Aug 2002 B2
6449548 Jain Sep 2002 B1
6459978 Taniguchi Oct 2002 B2
6461268 Milner Oct 2002 B1
6470252 Tashiro Oct 2002 B2
6482094 Kefes Nov 2002 B2
6492785 Kasten Dec 2002 B1
6494805 Ooyama Dec 2002 B2
6499373 Van Cor Dec 2002 B2
6513405 Stuermer Feb 2003 B1
6514175 Taniguchi Feb 2003 B2
6520878 Leclair Feb 2003 B1
6522965 Gierling Feb 2003 B1
6527662 Miyata Mar 2003 B2
6532890 Chen Mar 2003 B2
6551210 Miller Apr 2003 B2
6558285 Sieber May 2003 B1
6561941 Nakano May 2003 B2
6571920 Sturmer Jun 2003 B1
6575047 Reik Jun 2003 B2
6588296 Wessel Jul 2003 B2
6658338 Joe Dec 2003 B2
6659901 Sakai Dec 2003 B2
6672418 Makino Jan 2004 B1
6676559 Miller Jan 2004 B2
6679109 Gierling Jan 2004 B2
6681652 Auer Jan 2004 B2
6682432 Shinozuka Jan 2004 B1
6684143 Friedrich Jan 2004 B2
6689012 Miller Feb 2004 B2
6694241 Kim Feb 2004 B2
6718247 Graf Apr 2004 B1
6721637 Abe Apr 2004 B2
6723014 Shinso Apr 2004 B2
6723016 Sumi Apr 2004 B2
6805654 Nishii Oct 2004 B2
6808053 Kirkwood Oct 2004 B2
6839617 Mensler Jan 2005 B2
6849020 Sumi Feb 2005 B2
6859709 Joe Feb 2005 B2
6868949 Braford, Jr. Mar 2005 B2
6909953 Joe Jun 2005 B2
6931316 Joe Aug 2005 B2
6932739 Miyata Aug 2005 B2
6942593 Nishii Sep 2005 B2
6945903 Miller Sep 2005 B2
6949049 Miller Sep 2005 B2
6958029 Inoue Oct 2005 B2
6991575 Inoue Jan 2006 B2
6991579 Kobayashi Jan 2006 B2
6994189 Chen Feb 2006 B2
7000496 Wessel Feb 2006 B2
7004487 Matsumoto Feb 2006 B2
7011600 Miller Mar 2006 B2
7011601 Miller Mar 2006 B2
7011602 Makiyama Mar 2006 B2
7014591 Miller Mar 2006 B2
7029418 Taketsuna Apr 2006 B2
7032914 Miller Apr 2006 B2
7036620 Miller May 2006 B2
7044884 Miller May 2006 B2
7063195 Berhan Jun 2006 B2
7063640 Miller Jun 2006 B2
7074007 Miller Jul 2006 B2
7074154 Miller Jul 2006 B2
7074155 Miller Jul 2006 B2
7077777 Miyata Jul 2006 B2
7086979 Frenken Aug 2006 B2
7086981 Ali Aug 2006 B2
7094171 Inoue Aug 2006 B2
7111860 Grimaldos Sep 2006 B1
7112158 Miller Sep 2006 B2
7112159 Miller Sep 2006 B2
7125297 Miller Oct 2006 B2
7131930 Miller Nov 2006 B2
7140999 Miller Nov 2006 B2
7147586 Miller Dec 2006 B2
7153233 Miller Dec 2006 B2
7156770 Miller Jan 2007 B2
7160220 Shinojima Jan 2007 B2
7160222 Miller Jan 2007 B2
7163485 Miller Jan 2007 B2
7163486 Miller Jan 2007 B2
7163846 Sakai Jan 2007 B2
7166052 Miller Jan 2007 B2
7166056 Miller Jan 2007 B2
7166057 Miller Jan 2007 B2
7166058 Miller Jan 2007 B2
7169076 Miller Jan 2007 B2
7172529 Miller Feb 2007 B2
7175564 Miller Feb 2007 B2
7175565 Miller Feb 2007 B2
7175566 Miller Feb 2007 B2
7192381 Miller Mar 2007 B2
7197915 Luh Apr 2007 B2
7198582 Miller Apr 2007 B2
7198583 Miller Apr 2007 B2
7198584 Miller Apr 2007 B2
7198585 Miller Apr 2007 B2
7201693 Miller Apr 2007 B2
7201694 Miller Apr 2007 B2
7201695 Miller Apr 2007 B2
7204777 Miller Apr 2007 B2
7207918 Shimazu Apr 2007 B2
7214159 Miller May 2007 B2
7217215 Miller May 2007 B2
7217216 Inoue May 2007 B2
7217219 Miller May 2007 B2
7217220 Careau May 2007 B2
7226379 Ibamoto Jun 2007 B2
7232395 Miller Jun 2007 B2
7234873 Kato Jun 2007 B2
7235031 Miller Jun 2007 B2
7238136 Miller Jul 2007 B2
7238137 Miller Jul 2007 B2
7238138 Miller Jul 2007 B2
7238139 Roethler Jul 2007 B2
7246672 Shirai Jul 2007 B2
7250018 Miller Jul 2007 B2
7261663 Miller Aug 2007 B2
7275610 Kuang Oct 2007 B2
7285068 Hosoi Oct 2007 B2
7288042 Miller Oct 2007 B2
7288043 Shioiri Oct 2007 B2
7320660 Miller Jan 2008 B2
7322901 Miller Jan 2008 B2
7343236 Wilson Mar 2008 B2
7347801 Guenter Mar 2008 B2
7383748 Rankin Jun 2008 B2
7383749 Schaefer Jun 2008 B2
7384370 Miller Jun 2008 B2
7393300 Miller Jul 2008 B2
7393302 Miller Jul 2008 B2
7393303 Miller Jul 2008 B2
7395731 Miller Jul 2008 B2
7396209 Miller Jul 2008 B2
7402122 Miller Jul 2008 B2
7410443 Miller Aug 2008 B2
7419451 Miller Sep 2008 B2
7422541 Miller Sep 2008 B2
7422546 Miller Sep 2008 B2
7427253 Miller Sep 2008 B2
7431677 Miller Oct 2008 B2
7452297 Miller Nov 2008 B2
7455611 Miller Nov 2008 B2
7455617 Miller Nov 2008 B2
7462123 Miller Dec 2008 B2
7462127 Miller Dec 2008 B2
7470210 Miller Dec 2008 B2
7478885 Urabe Jan 2009 B2
7481736 Miller Jan 2009 B2
7510499 Miller Mar 2009 B2
7540818 Miller Jun 2009 B2
7547264 Usoro Jun 2009 B2
7574935 Rohs Aug 2009 B2
7591755 Petrzik Sep 2009 B2
7632203 Miller Dec 2009 B2
7651437 Miller Jan 2010 B2
7654928 Miller Feb 2010 B2
7670243 Miller Mar 2010 B2
7686729 Miller Mar 2010 B2
7717815 Tenberge May 2010 B2
7727101 Miller Jun 2010 B2
7727106 Maheu Jun 2010 B2
7727107 Miller Jun 2010 B2
7727108 Miller Jun 2010 B2
7727110 Miller Jun 2010 B2
7727115 Serkh Jun 2010 B2
7731300 Gerstenslager Jun 2010 B2
7731615 Miller Jun 2010 B2
7762919 Smithson Jul 2010 B2
7762920 Smithson Jul 2010 B2
7770674 Miles Aug 2010 B2
7785228 Smithson Aug 2010 B2
7828685 Miller Nov 2010 B2
7837592 Miller Nov 2010 B2
7871353 Nichols Jan 2011 B2
7882762 Armstrong Feb 2011 B2
7883442 Miller Feb 2011 B2
7885747 Miller Feb 2011 B2
7887032 Malone Feb 2011 B2
7909723 Triller Mar 2011 B2
7909727 Smithson Mar 2011 B2
7914029 Miller Mar 2011 B2
7959533 Nichols Jun 2011 B2
7963880 Smithson Jun 2011 B2
7967719 Smithson Jun 2011 B2
7976426 Smithson Jul 2011 B2
8066613 Smithson Nov 2011 B2
8066614 Miller Nov 2011 B2
8070635 Miller Dec 2011 B2
8087482 Miles Jan 2012 B2
8123653 Smithson Feb 2012 B2
8133149 Smithson Mar 2012 B2
8142323 Tsuchiya Mar 2012 B2
8167759 Pohl May 2012 B2
8171636 Smithson May 2012 B2
8197380 Heinzelmann Jun 2012 B2
8230961 Schneidewind Jul 2012 B2
8262536 Nichols Sep 2012 B2
8267829 Miller Sep 2012 B2
8313404 Carter Nov 2012 B2
8313405 Bazyn Nov 2012 B2
8317650 Nichols Nov 2012 B2
8317651 Lohr Nov 2012 B2
8321097 Vasiliotis Nov 2012 B2
8321103 Sakaue Nov 2012 B2
8342999 Miller Jan 2013 B2
8360917 Nichols Jan 2013 B2
8376889 Hoffman Feb 2013 B2
8376903 Pohl Feb 2013 B2
8382631 Hoffman Feb 2013 B2
8382637 Tange Feb 2013 B2
8393989 Pohl Mar 2013 B2
8398518 Nichols Mar 2013 B2
8469853 Miller Jun 2013 B2
8469856 Thomassy Jun 2013 B2
8480529 Pohl Jul 2013 B2
8496554 Pohl Jul 2013 B2
8506452 Pohl Aug 2013 B2
8512195 Lohr Aug 2013 B2
8517888 Brookins Aug 2013 B1
8535199 Lohr Sep 2013 B2
8550949 Miller Oct 2013 B2
8585528 Carter Nov 2013 B2
8585543 Davis Nov 2013 B1
8608609 Sherrill Dec 2013 B2
8622866 Bazyn Jan 2014 B2
8626409 Vasiliotis Jan 2014 B2
8628443 Miller Jan 2014 B2
8641572 Nichols Feb 2014 B2
8641577 Nichols Feb 2014 B2
8663050 Nichols Mar 2014 B2
8663052 Sich Mar 2014 B2
8678974 Lohr Mar 2014 B2
8682545 Jiang Mar 2014 B2
8688337 Takanami Apr 2014 B2
8708360 Miller Apr 2014 B2
8721485 Lohr May 2014 B2
8738255 Carter May 2014 B2
8776633 Armstrong Jul 2014 B2
8784248 Murakami Jul 2014 B2
8790214 Lohr Jul 2014 B2
8814739 Hamrin Aug 2014 B1
8818661 Keilers Aug 2014 B2
8827856 Younggren Sep 2014 B1
8827864 Durack Sep 2014 B2
8845485 Smithson Sep 2014 B2
8852050 Thomassy Oct 2014 B2
8870711 Pohl Oct 2014 B2
8888643 Lohr Nov 2014 B2
8900085 Pohl Dec 2014 B2
8920021 Mertenat Dec 2014 B2
8920285 Smithson Dec 2014 B2
8924111 Fuller Dec 2014 B2
8956262 Tomomatsu Feb 2015 B2
8961363 Shiina Feb 2015 B2
8968152 Beaudoin Mar 2015 B2
8992376 Ogawa Mar 2015 B2
8996263 Quinn, Jr. Mar 2015 B2
9017207 Pohl Apr 2015 B2
9022889 Miller May 2015 B2
9046158 Miller Jun 2015 B2
9052000 Cooper Jun 2015 B2
9074674 Nichols Jul 2015 B2
9086145 Pohl Jul 2015 B2
9121464 Nichols Sep 2015 B2
9182018 Bazyn Nov 2015 B2
9239099 Carter Jan 2016 B2
9249880 Vasiliotis Feb 2016 B2
9273760 Pohl Mar 2016 B2
9279482 Nichols Mar 2016 B2
9291251 Lohr Mar 2016 B2
9328807 Carter May 2016 B2
9341246 Miller May 2016 B2
9360089 Lohr Jun 2016 B2
9365203 Keilers Jun 2016 B2
9371894 Carter Jun 2016 B2
9388896 Hibino Jul 2016 B2
9506562 Miller Nov 2016 B2
9528561 Nichols Dec 2016 B2
9541179 Cooper Jan 2017 B2
9574642 Pohl Feb 2017 B2
9574643 Pohl Feb 2017 B2
9611921 Thomassy Apr 2017 B2
9618100 Lohr Apr 2017 B2
9656672 Schieffelin May 2017 B2
9676391 Carter Jun 2017 B2
9677650 Nichols Jun 2017 B2
9683638 Kolstrup Jun 2017 B2
9683640 Lohr Jun 2017 B2
9709138 Miller Jul 2017 B2
9726282 Pohl Aug 2017 B2
9732848 Miller Aug 2017 B2
9739375 Vasiliotis Aug 2017 B2
9833201 Niederberger Dec 2017 B2
9845133 Craven Dec 2017 B2
9850993 Bazyn Dec 2017 B2
9869388 Pohl Jan 2018 B2
9878717 Keilers Jan 2018 B2
9878719 Carter Jan 2018 B2
9903450 Thomassy Feb 2018 B2
9909657 Uchino Mar 2018 B2
9920823 Nichols Mar 2018 B2
9945456 Nichols Apr 2018 B2
9950608 Miller Apr 2018 B2
9963199 Hancock May 2018 B2
9975557 Park May 2018 B2
10023266 Contello Jul 2018 B2
10036453 Smithson Jul 2018 B2
10047861 Thomassy Aug 2018 B2
10056811 Pohl Aug 2018 B2
10066712 Lohr Sep 2018 B2
10066713 Nichols Sep 2018 B2
10088026 Versteyhe Oct 2018 B2
10100927 Quinn, Jr. Oct 2018 B2
10197147 Lohr Feb 2019 B2
10208840 Nichols Feb 2019 B2
10252881 Hiltunen Apr 2019 B2
10253859 Schoolcraft Apr 2019 B2
10253880 Pohl Apr 2019 B2
10253881 Hamrin Apr 2019 B2
10260607 Carter Apr 2019 B2
10323732 Nichols Jun 2019 B2
10400872 Lohr Sep 2019 B2
10428915 Thomassy Oct 2019 B2
10428939 Miller Oct 2019 B2
10458526 Nichols Oct 2019 B2
10634224 Lohr Apr 2020 B2
10703372 Carter Jul 2020 B2
10704657 Thomassy Jul 2020 B2
10704687 Vasiliotis Jul 2020 B2
10711869 Miller Jul 2020 B2
10800421 Cho Oct 2020 B2
10920882 Thomassy Feb 2021 B2
11174922 Nichols Nov 2021 B2
20010008192 Morisawa Jul 2001 A1
20010023217 Miyagawa Sep 2001 A1
20010041644 Yasuoka Nov 2001 A1
20010044358 Taniguchi Nov 2001 A1
20010044361 Taniguchi Nov 2001 A1
20010046920 Sugihara Nov 2001 A1
20020017819 Chen Feb 2002 A1
20020019285 Henzler Feb 2002 A1
20020025875 Tsujioka Feb 2002 A1
20020028722 Sakai Mar 2002 A1
20020037786 Hirano Mar 2002 A1
20020045511 Geiberger Apr 2002 A1
20020049113 Watanabe Apr 2002 A1
20020117860 Man Aug 2002 A1
20020128107 Wakayama Sep 2002 A1
20020151401 Lemanski Oct 2002 A1
20020161503 Joe Oct 2002 A1
20020169051 Oshidari Nov 2002 A1
20020179348 Tamai Dec 2002 A1
20020189524 Chen Dec 2002 A1
20030015358 Abe Jan 2003 A1
20030015874 Abe Jan 2003 A1
20030022753 Mizuno Jan 2003 A1
20030036456 Skrabs Feb 2003 A1
20030096674 Uno May 2003 A1
20030132051 Nishii Jul 2003 A1
20030135316 Kawamura Jul 2003 A1
20030144105 O'Hora Jul 2003 A1
20030151300 Goss Aug 2003 A1
20030160420 Fukuda Aug 2003 A1
20030181286 Miller Sep 2003 A1
20030216216 Inoue Nov 2003 A1
20030221892 Matsumoto Dec 2003 A1
20040038772 McIndoe Feb 2004 A1
20040051375 Uno Mar 2004 A1
20040058772 Inoue Mar 2004 A1
20040067816 Taketsuna Apr 2004 A1
20040082421 Wafzig Apr 2004 A1
20040087412 Mori May 2004 A1
20040092359 Imanishi May 2004 A1
20040119345 Takano Jun 2004 A1
20040171452 Miller Sep 2004 A1
20040171457 Fuller Sep 2004 A1
20040204283 Inoue Oct 2004 A1
20040224808 Miller Nov 2004 A1
20040231331 Iwanami Nov 2004 A1
20040254047 Frank Dec 2004 A1
20050037876 Unno Feb 2005 A1
20050037886 Lemanski Feb 2005 A1
20050064986 Ginglas Mar 2005 A1
20050073127 Miller Apr 2005 A1
20050079948 Miller Apr 2005 A1
20050085326 Miller Apr 2005 A1
20050085327 Miller Apr 2005 A1
20050085334 Miller Apr 2005 A1
20050085336 Miller Apr 2005 A1
20050085337 Miller Apr 2005 A1
20050085338 Miller Apr 2005 A1
20050085979 Carlson Apr 2005 A1
20050096176 Miller May 2005 A1
20050096179 Miller May 2005 A1
20050113202 Miller May 2005 A1
20050113210 Miller May 2005 A1
20050117983 Miller Jun 2005 A1
20050119086 Miller Jun 2005 A1
20050119087 Miller Jun 2005 A1
20050119090 Miller Jun 2005 A1
20050119093 Miller Jun 2005 A1
20050124453 Miller Jun 2005 A1
20050124456 Miller Jun 2005 A1
20050130784 Miller Jun 2005 A1
20050137046 Miller Jun 2005 A1
20050137051 Miller Jun 2005 A1
20050137052 Miller Jun 2005 A1
20050148422 Miller Jul 2005 A1
20050148423 Miller Jul 2005 A1
20050153808 Miller Jul 2005 A1
20050153809 Miller Jul 2005 A1
20050153810 Miller Jul 2005 A1
20050159265 Miller Jul 2005 A1
20050159266 Miller Jul 2005 A1
20050159267 Miller Jul 2005 A1
20050164819 Miller Jul 2005 A1
20050170927 Miller Aug 2005 A1
20050176544 Miller Aug 2005 A1
20050176545 Miller Aug 2005 A1
20050178893 Miller Aug 2005 A1
20050181905 Ali Aug 2005 A1
20050184580 Kuan Aug 2005 A1
20050197231 Miller Sep 2005 A1
20050209041 Miller Sep 2005 A1
20050227809 Bitzer Oct 2005 A1
20050229731 Parks Oct 2005 A1
20050233846 Green Oct 2005 A1
20050255957 Miller Nov 2005 A1
20060000684 Agner Jan 2006 A1
20060006008 Brunemann Jan 2006 A1
20060052204 Eckert Mar 2006 A1
20060054422 Dimsey Mar 2006 A1
20060084549 Smithson Apr 2006 A1
20060108956 Clark May 2006 A1
20060111212 Xiaolan May 2006 A9
20060154775 Ali Jul 2006 A1
20060172829 Ishio Aug 2006 A1
20060180363 Uchisasai Aug 2006 A1
20060223667 Nakazeki Oct 2006 A1
20060234822 Morscheck Oct 2006 A1
20060234826 Moehlmann Oct 2006 A1
20060276299 Imanishi Dec 2006 A1
20070004552 Matsudaira Jan 2007 A1
20070004554 Hans Jan 2007 A1
20070004556 Rohs Jan 2007 A1
20070041823 Miller Feb 2007 A1
20070049450 Miller Mar 2007 A1
20070082770 Nihei Apr 2007 A1
20070099753 Matsui May 2007 A1
20070142161 Miller Jun 2007 A1
20070149342 Guenter Jun 2007 A1
20070155552 De Cloe Jul 2007 A1
20070155567 Miller Jul 2007 A1
20070155580 Nichols Jul 2007 A1
20070167274 Petrzik Jul 2007 A1
20070167275 Miller Jul 2007 A1
20070167276 Miller Jul 2007 A1
20070167277 Miller Jul 2007 A1
20070167278 Miller Jul 2007 A1
20070167279 Miller Jul 2007 A1
20070167280 Miller Jul 2007 A1
20070179013 Miller Aug 2007 A1
20070193391 Armstrong Aug 2007 A1
20070197337 Miller Aug 2007 A1
20070219048 Yamaguchi Sep 2007 A1
20070219696 Miller Sep 2007 A1
20070228687 Parker Oct 2007 A1
20070232423 Katou Oct 2007 A1
20070245846 Armstrong Oct 2007 A1
20070270265 Miller Nov 2007 A1
20070270266 Miller Nov 2007 A1
20070270267 Miller Nov 2007 A1
20070270268 Miller Nov 2007 A1
20070270269 Miller Nov 2007 A1
20070270270 Miller Nov 2007 A1
20070270271 Miller Nov 2007 A1
20070270272 Miller Nov 2007 A1
20070270278 Miller Nov 2007 A1
20070275809 Miller Nov 2007 A1
20070281819 Miller Dec 2007 A1
20070287578 Miller Dec 2007 A1
20070287579 Miller Dec 2007 A1
20070287580 Miller Dec 2007 A1
20080004008 Nicol Jan 2008 A1
20080009389 Jacobs Jan 2008 A1
20080032852 Smithson Feb 2008 A1
20080032853 Smithson Feb 2008 A1
20080032854 Smithson Feb 2008 A1
20080034585 Smithson Feb 2008 A1
20080034586 Smithson Feb 2008 A1
20080039269 Smithson Feb 2008 A1
20080039270 Smithson Feb 2008 A1
20080039271 Smithson Feb 2008 A1
20080039272 Smithson Feb 2008 A1
20080039273 Smithson Feb 2008 A1
20080039274 Smithson Feb 2008 A1
20080039275 Smithson Feb 2008 A1
20080039276 Smithson Feb 2008 A1
20080039277 Smithson Feb 2008 A1
20080040008 Smithson Feb 2008 A1
20080070729 Miller Mar 2008 A1
20080071436 Dube Mar 2008 A1
20080073136 Miller Mar 2008 A1
20080073137 Miller Mar 2008 A1
20080073467 Miller Mar 2008 A1
20080079236 Miller Apr 2008 A1
20080081715 Miller Apr 2008 A1
20080081728 Faulring Apr 2008 A1
20080085795 Miller Apr 2008 A1
20080085796 Miller Apr 2008 A1
20080085797 Miller Apr 2008 A1
20080085798 Miller Apr 2008 A1
20080121486 Miller May 2008 A1
20080121487 Miller May 2008 A1
20080125281 Miller May 2008 A1
20080125282 Miller May 2008 A1
20080132373 Miller Jun 2008 A1
20080132377 Miller Jun 2008 A1
20080139363 Williams Jun 2008 A1
20080141809 Miller Jun 2008 A1
20080141810 Miller Jun 2008 A1
20080146403 Miller Jun 2008 A1
20080146404 Miller Jun 2008 A1
20080149407 Shibata Jun 2008 A1
20080161151 Miller Jul 2008 A1
20080183358 Thomson Jul 2008 A1
20080188345 Miller Aug 2008 A1
20080200300 Smithson Aug 2008 A1
20080228362 Muller Sep 2008 A1
20080236319 Nichols Oct 2008 A1
20080248917 Nichols Oct 2008 A1
20080261771 Nichols Oct 2008 A1
20080284170 Cory Nov 2008 A1
20080305920 Nishii Dec 2008 A1
20090011907 Radow Jan 2009 A1
20090023545 Beaudoin Jan 2009 A1
20090055061 Zhu Feb 2009 A1
20090062062 Choi Mar 2009 A1
20090082169 Kolstrup Mar 2009 A1
20090107454 Hiyoshi Apr 2009 A1
20090132135 Quinn, Jr. May 2009 A1
20090164076 Vasiliotis Jun 2009 A1
20090189397 Miller Jul 2009 A1
20090221391 Bazyn Sep 2009 A1
20090251013 Vollmer Oct 2009 A1
20090280949 Lohr Nov 2009 A1
20090312145 Pohl Dec 2009 A1
20090318261 Tabata Dec 2009 A1
20100056322 Thomassy Mar 2010 A1
20100093479 Carter Apr 2010 A1
20100093480 Pohl Apr 2010 A1
20100093485 Pohl Apr 2010 A1
20100120577 Gu May 2010 A1
20100131164 Carter May 2010 A1
20100145573 Vasilescu Jun 2010 A1
20100181130 Chou Jul 2010 A1
20100198453 Dorogusker Aug 2010 A1
20100228405 Morgal Sep 2010 A1
20100264620 Miles Oct 2010 A1
20100267510 Nichols Oct 2010 A1
20100313614 Rzepecki Dec 2010 A1
20110034284 Pohl Feb 2011 A1
20110088503 Armstrong Apr 2011 A1
20110105274 Lohr May 2011 A1
20110127096 Schneidewind Jun 2011 A1
20110172050 Nichols Jul 2011 A1
20110178684 Umemoto Jul 2011 A1
20110184614 Keilers Jul 2011 A1
20110190093 Bishop Aug 2011 A1
20110218072 Lohr Sep 2011 A1
20110230297 Shiina Sep 2011 A1
20110237385 Andre Parise Sep 2011 A1
20110254673 Jean Oct 2011 A1
20110291507 Post Dec 2011 A1
20110319222 Ogawa Dec 2011 A1
20120029744 Yun Feb 2012 A1
20120035011 Menachem Feb 2012 A1
20120035015 Ogawa Feb 2012 A1
20120035016 Miller Feb 2012 A1
20120043841 Miller Feb 2012 A1
20120115667 Lohr May 2012 A1
20120130603 Simpson May 2012 A1
20120158229 Schaefer Jun 2012 A1
20120238386 Pohl Sep 2012 A1
20120239235 Voigtlaender Sep 2012 A1
20120258839 Smithson Oct 2012 A1
20120309579 Miller Dec 2012 A1
20130035200 Noji Feb 2013 A1
20130053211 Fukuda Feb 2013 A1
20130072340 Bazyn Mar 2013 A1
20130079191 Lohr Mar 2013 A1
20130080006 Vasiliotis Mar 2013 A1
20130095977 Smithson Apr 2013 A1
20130102434 Nichols Apr 2013 A1
20130106258 Miller May 2013 A1
20130139531 Pohl Jun 2013 A1
20130146406 Nichols Jun 2013 A1
20130152715 Pohl Jun 2013 A1
20130190123 Pohl Jul 2013 A1
20130190125 Nichols Jul 2013 A1
20130288844 Thomassy Oct 2013 A1
20130288848 Carter Oct 2013 A1
20130310214 Pohl Nov 2013 A1
20130324344 Pohl Dec 2013 A1
20130331218 Lohr Dec 2013 A1
20130337971 Kolstrup Dec 2013 A1
20140011619 Pohl Jan 2014 A1
20140011628 Lohr Jan 2014 A1
20140038771 Miller Feb 2014 A1
20140073470 Carter Mar 2014 A1
20140094339 Ogawa Apr 2014 A1
20140121922 Vasiliotis May 2014 A1
20140128195 Miller May 2014 A1
20140141919 Bazyn May 2014 A1
20140144260 Nichols May 2014 A1
20140148303 Nichols May 2014 A1
20140155220 Messier Jun 2014 A1
20140179479 Nichols Jun 2014 A1
20140206499 Lohr Jul 2014 A1
20140228163 Aratsu Aug 2014 A1
20140248988 Lohr Sep 2014 A1
20140257650 Carter Sep 2014 A1
20140274536 Versteyhe Sep 2014 A1
20140323260 Miller Oct 2014 A1
20140329637 Thomassy Nov 2014 A1
20140335991 Lohr Nov 2014 A1
20140365059 Keilers Dec 2014 A1
20150018154 Thomassy Jan 2015 A1
20150038285 Aratsu Feb 2015 A1
20150039195 Pohl Feb 2015 A1
20150051801 Quinn, Jr. Feb 2015 A1
20150072827 Lohr Mar 2015 A1
20150080165 Pohl Mar 2015 A1
20150219194 Winter Aug 2015 A1
20150226323 Pohl Aug 2015 A1
20150233473 Miller Aug 2015 A1
20150260284 Miller Sep 2015 A1
20150337928 Smithson Nov 2015 A1
20150345599 Ogawa Dec 2015 A1
20150360747 Baumgaertner Dec 2015 A1
20150369348 Nichols Dec 2015 A1
20150377305 Nichols Dec 2015 A1
20160003349 Kimura Jan 2016 A1
20160031526 Watarai Feb 2016 A1
20160039496 Hancock Feb 2016 A1
20160040763 Nichols Feb 2016 A1
20160061301 Bazyn Mar 2016 A1
20160075175 Biderman Mar 2016 A1
20160131231 Carter May 2016 A1
20160146342 Vasiliotis May 2016 A1
20160178037 Pohl Jun 2016 A1
20160186847 Nichols Jun 2016 A1
20160195177 Versteyhe Jul 2016 A1
20160201772 Lohr Jul 2016 A1
20160244063 Carter Aug 2016 A1
20160273627 Miller Sep 2016 A1
20160281825 Lohr Sep 2016 A1
20160290451 Lohr Oct 2016 A1
20160298740 Carter Oct 2016 A1
20160347411 Yamamoto Dec 2016 A1
20160362108 Keilers Dec 2016 A1
20160377153 Ajumobi Dec 2016 A1
20170072782 Miller Mar 2017 A1
20170082049 David Mar 2017 A1
20170102053 Nichols Apr 2017 A1
20170103053 Guerra Apr 2017 A1
20170106866 Schieffelin Apr 2017 A1
20170159812 Pohl Jun 2017 A1
20170163138 Pohl Jun 2017 A1
20170204948 Thomassy Jul 2017 A1
20170204969 Thomassy Jul 2017 A1
20170211696 Nassouri Jul 2017 A1
20170211698 Lohr Jul 2017 A1
20170225742 Hancock Aug 2017 A1
20170268638 Nichols Sep 2017 A1
20170274903 Carter Sep 2017 A1
20170276217 Nichols Sep 2017 A1
20170284519 Kolstrup Oct 2017 A1
20170284520 Lohr Oct 2017 A1
20170314655 Miller Nov 2017 A1
20170328470 Pohl Nov 2017 A1
20170335961 Hamrin Nov 2017 A1
20170343105 Vasiliotis Nov 2017 A1
20170364995 Yan Dec 2017 A1
20180036593 Ridgel Feb 2018 A1
20180066754 Miller Mar 2018 A1
20180106359 Kawakami Apr 2018 A1
20180119786 Mepham May 2018 A1
20180134750 Alkan May 2018 A1
20180148055 Carter May 2018 A1
20180148056 Keilers May 2018 A1
20180195586 Thomassy Jul 2018 A1
20180202527 Nichols Jul 2018 A1
20180221714 Anderson Aug 2018 A1
20180236867 Miller Aug 2018 A1
20180251190 Hancock Sep 2018 A1
20180306283 Engesather Oct 2018 A1
20180327060 De Jager Nov 2018 A1
20180347693 Thomassy Dec 2018 A1
20180372192 Lohr Dec 2018 A1
20190049004 Quinn, Jr. Feb 2019 A1
20190102858 Pivnick Apr 2019 A1
20190195321 Smithson Jun 2019 A1
20190277399 Guerin Sep 2019 A1
20190323582 Horak Oct 2019 A1
20200018384 Nichols Jan 2020 A1
Foreign Referenced Citations (354)
Number Date Country
118064 Dec 1926 CH
1047556 Dec 1990 CN
1054340 Sep 1991 CN
2245830 Jan 1997 CN
1157379 Aug 1997 CN
1167221 Dec 1997 CN
1178573 Apr 1998 CN
1178751 Apr 1998 CN
1204991 Jan 1999 CN
2320843 May 1999 CN
1281540 Jan 2001 CN
1283258 Feb 2001 CN
1297404 May 2001 CN
1300355 Jun 2001 CN
1412033 Apr 2003 CN
1434229 Aug 2003 CN
1474917 Feb 2004 CN
1483235 Mar 2004 CN
1555466 Dec 2004 CN
1568407 Jan 2005 CN
1654858 Aug 2005 CN
2714896 Aug 2005 CN
1736791 Feb 2006 CN
1791731 Jun 2006 CN
1847702 Oct 2006 CN
1860315 Nov 2006 CN
1896562 Jan 2007 CN
1940348 Apr 2007 CN
101016076 Aug 2007 CN
101166922 Apr 2008 CN
101312867 Nov 2008 CN
201777370 Mar 2011 CN
102165219 Aug 2011 CN
102287530 Dec 2011 CN
102947626 Feb 2013 CN
203358799 Dec 2013 CN
103857576 Jun 2014 CN
104648595 May 2015 CN
104854380 Aug 2015 CN
108501935 Sep 2018 CN
498701 May 1930 DE
866748 Feb 1953 DE
1165372 Mar 1964 DE
1171692 Jun 1964 DE
2021027 Dec 1970 DE
2136243 Feb 1972 DE
2310880 Sep 1974 DE
2436496 Feb 1975 DE
3940919 Jun 1991 DE
4120540 Nov 1992 DE
19851738 May 2000 DE
10155372 May 2003 DE
10261372 Jul 2003 DE
102009016869 Oct 2010 DE
102011016672 Oct 2012 DE
102012107360 Feb 2013 DE
102012107927 Feb 2013 DE
102012210842 Jan 2014 DE
102012212526 Jan 2014 DE
102012023551 Jun 2014 DE
102012222087 Jun 2014 DE
102013201101 Jul 2014 DE
102014007271 Dec 2014 DE
102013214169 Jan 2015 DE
102019121883 Sep 2020 DE
0432742 Jun 1991 EP
0528381 Feb 1993 EP
0528382 Feb 1993 EP
0635639 Jan 1995 EP
0638741 Feb 1995 EP
0831249 Mar 1998 EP
0832816 Apr 1998 EP
0877341 Nov 1998 EP
0976956 Feb 2000 EP
1010612 Jun 2000 EP
1136724 Sep 2001 EP
1188602 Mar 2002 EP
1251294 Oct 2002 EP
1362783 Nov 2003 EP
1366978 Dec 2003 EP
1433641 Jun 2004 EP
1452441 Sep 2004 EP
1518785 Mar 2005 EP
1624230 Feb 2006 EP
1811202 Jul 2007 EP
1850038 Oct 2007 EP
2261108 Dec 2010 EP
2338782 Jun 2011 EP
2464560 Jun 2012 EP
2602672 Jun 2013 EP
2620672 Jul 2013 EP
2357128 Aug 2014 EP
2893219 Jul 2015 EP
2927534 Oct 2015 EP
620375 Apr 1927 FR
2460427 Jan 1981 FR
2590638 May 1987 FR
2909938 Jun 2008 FR
2996276 Apr 2014 FR
3073479 May 2019 FR
391448 Apr 1933 GB
592320 Sep 1947 GB
772749 Apr 1957 GB
858710 Jan 1961 GB
906002 Sep 1962 GB
919430 Feb 1963 GB
1132473 Nov 1968 GB
1165545 Oct 1969 GB
1376057 Dec 1974 GB
2031822 Apr 1980 GB
2035481 Jun 1980 GB
2035482 Jun 1980 GB
2080452 Feb 1982 GB
38025315 Nov 1963 JP
413126 Feb 1966 JP
0422844 Feb 1967 JP
441098 Jan 1969 JP
46029087 Aug 1971 JP
47448 Jan 1972 JP
47962 Jan 1972 JP
47207 Jun 1972 JP
4720535 Jun 1972 JP
47001621 Aug 1972 JP
4700962 Nov 1972 JP
4729762 Nov 1972 JP
4854371 Jul 1973 JP
4912742 Mar 1974 JP
49013823 Apr 1974 JP
49041536 Nov 1974 JP
50114581 Sep 1975 JP
5125903 Aug 1976 JP
51150380 Dec 1976 JP
5235481 Mar 1977 JP
53048166 Jan 1978 JP
5350395 Apr 1978 JP
55135259 Oct 1980 JP
5624251 Mar 1981 JP
56047231 Apr 1981 JP
56101448 Aug 1981 JP
56127852 Oct 1981 JP
58065361 Apr 1983 JP
59069565 Apr 1984 JP
59144826 Aug 1984 JP
59190557 Oct 1984 JP
6073958 May 1985 JP
60247011 Dec 1985 JP
61031754 Feb 1986 JP
61053423 Mar 1986 JP
61173722 Oct 1986 JP
61270552 Nov 1986 JP
62075170 Apr 1987 JP
63125854 May 1988 JP
63219953 Sep 1988 JP
63160465 Oct 1988 JP
01210653 Aug 1989 JP
01039865 Nov 1989 JP
01286750 Nov 1989 JP
01308142 Dec 1989 JP
02130224 May 1990 JP
02157483 Jun 1990 JP
02271142 Jun 1990 JP
02182593 Jul 1990 JP
03149442 Jun 1991 JP
03223555 Oct 1991 JP
422843 Jan 1992 JP
470207 Mar 1992 JP
470962 Mar 1992 JP
479762 Mar 1992 JP
04166619 Jun 1992 JP
04272553 Sep 1992 JP
04327055 Nov 1992 JP
04351361 Dec 1992 JP
05087154 Apr 1993 JP
0650358 Feb 1994 JP
06050169 Feb 1994 JP
07042799 Feb 1995 JP
07133857 May 1995 JP
07139600 May 1995 JP
07259950 Oct 1995 JP
08135748 May 1996 JP
08170706 Jul 1996 JP
08247245 Sep 1996 JP
08270772 Oct 1996 JP
09024743 Jan 1997 JP
09089064 Mar 1997 JP
1078094 Mar 1998 JP
10061739 Mar 1998 JP
10089435 Apr 1998 JP
10115355 May 1998 JP
10115356 May 1998 JP
10194186 Jul 1998 JP
10225053 Aug 1998 JP
10511621 Nov 1998 JP
H10307964 Nov 1998 JP
11063130 Mar 1999 JP
11091411 Apr 1999 JP
11210850 Aug 1999 JP
11227669 Aug 1999 JP
11240481 Sep 1999 JP
11257479 Sep 1999 JP
11317653 Nov 1999 JP
2000006877 Jan 2000 JP
2000046135 Feb 2000 JP
2000177673 Jun 2000 JP
2001027298 Jan 2001 JP
2001071986 Mar 2001 JP
2001107827 Apr 2001 JP
2001165296 Jun 2001 JP
2001234999 Aug 2001 JP
2001328466 Nov 2001 JP
2001521109 Nov 2001 JP
2002147558 May 2002 JP
61144466 Sep 2002 JP
2002250421 Sep 2002 JP
2002291272 Oct 2002 JP
2002307956 Oct 2002 JP
2002533626 Oct 2002 JP
2002372114 Dec 2002 JP
2003028257 Jan 2003 JP
2003056662 Feb 2003 JP
2003507261 Feb 2003 JP
2003161357 Jun 2003 JP
2003194206 Jul 2003 JP
2003194207 Jul 2003 JP
2003524119 Aug 2003 JP
2003320987 Nov 2003 JP
2003336732 Nov 2003 JP
2004011834 Jan 2004 JP
2004038722 Feb 2004 JP
2004162652 Jun 2004 JP
2004189222 Jul 2004 JP
2004232776 Aug 2004 JP
2004526917 Sep 2004 JP
2004301251 Oct 2004 JP
2005003063 Jan 2005 JP
2005096537 Apr 2005 JP
2005188694 Jul 2005 JP
2005240928 Sep 2005 JP
2005312121 Nov 2005 JP
2006015025 Jan 2006 JP
2006283900 Oct 2006 JP
2006300241 Nov 2006 JP
2007085404 Apr 2007 JP
2007321931 Dec 2007 JP
2007535715 Dec 2007 JP
2008002687 Jan 2008 JP
2008014412 Jan 2008 JP
2008133896 Jun 2008 JP
4351361 Oct 2009 JP
2010069005 Apr 2010 JP
2010532454 Oct 2010 JP
2011178341 Sep 2011 JP
2012501418 Jan 2012 JP
2012506001 Mar 2012 JP
4913823 Apr 2012 JP
4941536 May 2012 JP
2012107725 Jun 2012 JP
2012121338 Jun 2012 JP
2012122568 Jun 2012 JP
2012211610 Nov 2012 JP
2012225390 Nov 2012 JP
2013521452 Jun 2013 JP
2013147245 Aug 2013 JP
5348166 Nov 2013 JP
5647231 Dec 2014 JP
5668205 Feb 2015 JP
2015505022 Feb 2015 JP
2015075148 Apr 2015 JP
2015227690 Dec 2015 JP
2015227691 Dec 2015 JP
5865361 Feb 2016 JP
5969565 Aug 2016 JP
6131754 May 2017 JP
6153423 Jun 2017 JP
6275170 Feb 2018 JP
2018025315 Feb 2018 JP
20020054126 Jul 2002 KR
20020071699 Sep 2002 KR
20080079274 Aug 2008 KR
20080081030 Sep 2008 KR
20130018976 Feb 2013 KR
101339282 Jan 2014 KR
98467 Jul 1961 NL
74007 Jan 1984 TW
175100 Dec 1991 TW
218909 Jan 1994 TW
227206 Jul 1994 TW
275872 May 1996 TW
294598 Jan 1997 TW
360184 Jun 1999 TW
366396 Aug 1999 TW
401496 Aug 2000 TW
510867 Nov 2002 TW
512211 Dec 2002 TW
582363 Apr 2004 TW
590955 Jun 2004 TW
225129 Dec 2004 TW
225912 Jan 2005 TW
235214 Jul 2005 TW
200637745 Nov 2006 TW
200741116 Nov 2007 TW
200821218 May 2008 TW
201339049 Oct 2013 TW
9908024 Feb 1999 WO
9920918 Apr 1999 WO
2000061388 Oct 2000 WO
0138758 May 2001 WO
2001073319 Oct 2001 WO
2002088573 Nov 2002 WO
2003086849 Oct 2003 WO
2003100294 Dec 2003 WO
2004079223 Sep 2004 WO
2005019669 Mar 2005 WO
2005083305 Sep 2005 WO
2005108825 Nov 2005 WO
2005111472 Nov 2005 WO
2006014617 Feb 2006 WO
2006047887 May 2006 WO
2006091503 Aug 2006 WO
2007061993 May 2007 WO
2007070167 Jun 2007 WO
2007077502 Jul 2007 WO
2008002457 Jan 2008 WO
2008057507 May 2008 WO
2008078047 Jul 2008 WO
2008095116 Aug 2008 WO
2008100792 Aug 2008 WO
2008101070 Aug 2008 WO
2008131353 Oct 2008 WO
2008154437 Dec 2008 WO
2009006481 Jan 2009 WO
2009148461 Dec 2009 WO
2009157920 Dec 2009 WO
2010017242 Feb 2010 WO
2010024809 Mar 2010 WO
2010044778 Apr 2010 WO
2010073036 Jul 2010 WO
2010094515 Aug 2010 WO
2010135407 Nov 2010 WO
2011064572 Jun 2011 WO
2011101991 Aug 2011 WO
2011109444 Sep 2011 WO
2011121743 Oct 2011 WO
2011124415 Oct 2011 WO
2011138175 Nov 2011 WO
2012030213 Mar 2012 WO
2013042226 Mar 2013 WO
2013112408 Aug 2013 WO
2014186732 Nov 2014 WO
2016022553 Feb 2016 WO
2016062461 Apr 2016 WO
2016079620 May 2016 WO
2017056541 Apr 2017 WO
2017186911 Nov 2017 WO
Non-Patent Literature Citations (83)
Entry
Chinese Office Action dated Aug. 26, 2013 for Chinese Patent Application No. 201110120716.1.
Chinese Office Action dated Dec. 24, 2012 for Chinese Patent Application No. 201110120717.6.
Chinese Office Action dated Jan. 22, 2010 for Chinese Patent Application No. 200680052833.6.
Chinese Office Action dated May 28, 2013 for Chinese Patent Application No. 201110120717.6.
Examination Report dated Dec. 17, 2020 in Indian Patent Application No. 201837029026, 7 pages.
Examination report dated Jul. 11, 2018 in Indian Patent Application No. 2060/KOLNP/2010.
Examination Report dated Mar. 2, 2017 in Indian Patent Application No. 2772/KOLNP/2008.
Examination Report dated Sep. 25, 2013 for European Patent Application No. 06816430.0.
First Office Action dated Sep. 2, 2015 in Chinese Patent Application No. 201410145485.3.
International Search Report and Written Opinion dated Apr. 16, 2008, for PCT Application No. PCT/US2007/023315.
International Search Report and Written Opinion dated Dec. 20, 2006 from International Patent Application No. PCT/US2006/033104, filed on Aug. 23, 2006.
International Search Report and Written Opinion dated Feb. 2, 2010 from International Patent Application No. PCT/US2008/068929, filed on Jan. 7, 2008.
International Search Report and Written Opinion dated Jan. 25, 2010 from International Patent Application No. PCT/US2009/052761, filed on Aug. 4, 2009.
International Search Report and Written Opinion dated Jul. 21, 2017 in PCT/US2017/032023.
International Search Report and Written Opinion dated Jul. 27, 2009 from International Patent Application No. PCT/US2008/079879, filed on Oct. 14, 2008.
International Search Report and Written Opinion dated Jun. 27, 2017 in PCT/US2016/063880.
International Search Report and Written Opinion dated May 16, 2007 from International Patent Application No. PCT/IB2006/054911, dated Dec. 18, 2006.
International Search Report and Written Opinion dated May 19, 2009 from International Patent Application No. PCT/US2008/083660, filed on Nov. 14, 2008.
International Search Report and Written Opinion dated May 8, 2020 in PCT/US2020/019446.
International Search Report and Written Opinion dated Nov. 13, 2009 from International Patent Application No. PCT/US2008/053951, filed on Feb. 14, 2008.
International Search Report dated May 16, 2007, for PCT Application No. PCT/IB2006/054911.
International Search Report dated Nov. 21, 2002, for PCT Application No. PCT/US02/13399, filed on Apr. 25, 2002.
International Search Report for International Application No. PCT/US04/15652 dated Aug. 26, 2005.
International Search Report for International Application No. PCT/US05/25539 dated Jun. 8, 2006.
International Search Report for International Application No. PCT/US07/14510 dated Sep. 23, 2008.
International Search Report for International Application No. PCT/US2006/041389 dated Sep. 24, 2007.
International Search Report for International Application No. PCT/US2006/044983 dated Jun. 13, 2008.
International Search Report for International Application No. PCT/US2008/053347 dated Jul. 18, 2008.
International Search Report for International application No. PCT/US2005/035164 dated Jun. 27, 2007.
International Search Report for International Application No. PCT/US2006/039166 dated Feb. 27, 2007.
International Search Report for International application No. PCT/US2009/035540 dated Aug. 6, 2009.
Invitation to Pay Additional Fees dated May 3, 2017 in PCT/US2016/063880.
Notice of Office Action dated Jun. 22, 2016 in Taiwan Patent Application No. 103129866.
Notification of Reasons for Rejection dated Oct. 6, 2020 in Japanese Patent Application No. 2018-536480, 21 pages.
Notification of Reexamination dated Aug. 29, 2013 for Chinese Patent Application No. 200680052833.6.
Notification of the First Office Action dated Jun. 26, 2019 in Chinese Patent Application No. 201680080281.3.
Notification of the Second Office Action dated Mar. 16, 2020 in Chinese Patent Application No. 201680080281.3, 15 pages.
Office Action dated Apr. 2, 2014 in U.S. Appl. No. 13/288,711.
Office Action dated Aug. 13, 2013 for Canadian Patent Application No. 2632751.
Office Action dated Aug. 20, 2010 for Chinese Patent Application No. 200680052482.9.
Office Action dated Aug. 23, 2006 from Japanese Patent Application No. 2000-517205.
Office Action dated Aug. 29, 2013 in U.S. Appl. No. 13/288,711.
Office Action dated Aug. 3, 2015 in U.S. Appl. No. 14/541,875.
Office Action dated Dec. 12, 2011 for U.S. Appl. No. 12/271,611.
Office Action dated Dec. 12, 2016 in U.S. Appl. No. 13/938,056.
Office Action dated Dec. 29, 2017 in U.S. Appl. No. 14/839,567.
Office Action dated Dec. 4, 2012 for Korean Patent Application No. 10-2008-7016716.
Office Action dated Feb. 17, 2010 from Japanese Patent Application No. 2009-294086.
Office Action dated Feb. 24, 2010 from Japanese Patent Application No. 2006-508892.
Office Action dated Jan. 18, 2017 in U.S. Appl. No. 14/529,773.
Office Action dated Jan. 20, 2012 for U.S. Appl. No. 12/137,456.
Office Action dated Jan. 20, 2015 in U.S. Appl. No. 13/682,176.
Office Action dated Jul. 16, 2012 for U.S. Appl. No. 12/271,611.
Office Action dated Jul. 18, 2016 in U.S. Appl. No. 13/938,056.
Office Action dated Jul. 25, 2012 for European Patent Application No. 06816430.0.
Office Action dated Jul. 5, 2017 in U.S. Appl. No. 14/529,773.
Office Action dated Jul. 6, 2016 in U.S. Appl. No. 14/529,773.
Office Action dated Jun. 19, 2014 in U.S. Appl. No. 13/682,176.
Office Action dated Jun. 28, 2011 from Japanese Patent Application No. 2009-518168.
Office Action dated Jun. 8, 2018 in U.S. Appl. No. 14/839,567.
Office Action dated Mar. 14, 2012 for U.S. Appl. No. 12/137,480.
Office Action dated Mar. 18, 2010 from U.S. Appl. No. 12/137,464.
Office Action dated Mar. 5, 2015 in U.S. Appl. No. 14/541,875.
Office Action dated May 17, 2002 for Chinese Patent Application No. 98812170.0.
Office Action dated May 17, 2012 for U.S. Appl. No. 12/159,688.
Office Action dated May 29, 2013 for Chinese Patent Application No. 200880116244.9.
Office Action dated Nov. 14, 2012 for U.S. Appl. No. 12/159,688.
Office Action dated Nov. 14, 2017 in U.S. Appl. No. 15/172,031, 5 pages.
Office Action dated Nov. 3, 2017 in U.S. Appl. No. 14/996,743, 10 pages.
Office Action dated Oct. 19, 2012 for Canadian Patent Application No. 2632751.
Office Action dated Sep. 14, 2010 for Japanese Patent Application No. 2007-278224.
Office Action dated Sep. 15, 2010 for U.S. Appl. No. 11/543,311.
Office Action dated Sep. 24, 2012 for Chinese Patent Application No. 200880116244.9.
Office Action dated Sep. 24, 2012 for Taiwanese Patent Application No. 095137289.
Office Action dated Sep. 28, 2005 for Japanese Patent Application No. 2001-540276.
Partial International Search Report for International Application No. PCT/US2008/052685 dated Sep. 2, 2008.
Preliminary Notice of First Office Action dated Jan. 14, 2014 for Taiwanese Patent Application No. 095137289.
Preliminary Notice of First Office Action dated Jun. 20, 2014 in Taiwanese Patent Application No. 97144386.
Rejection Decision dated May 29, 2015 in Taiwanese Patent Application No. 97144386.
Second Office Action dated Feb. 24, 2016 in Chinese Patent Application No. 201410145485.3.
Supplementary European Search Report dated Apr. 1, 2009, for European Application No. 04715691.4, filed Feb. 7, 2004.
Taiwan Search Report and Preliminary Notice of First Office Action dated Oct. 30, 2008 for Taiwanese Patent Application No. 094134761.
Thomassy, Fernand A., “An Engineering Approach to Simulating Traction EHL”, CVT-Hybrid International Conference Mecc/Maastricht/The Netherlands, Nov. 17-19, 2010, p. 97.
Related Publications (1)
Number Date Country
20220074470 A1 Mar 2022 US
Provisional Applications (1)
Number Date Country
62810832 Feb 2019 US
Continuations (1)
Number Date Country
Parent 16799025 Feb 2020 US
Child 17527775 US