This disclosure generally relates to an energy absorbing assembly and more particularly, to a reversibly expandable energy absorbing assembly for impact management utilizing actively controlled and engineered materials such as magnetorheological fluids and elastomers as well as electrorheological fluids and elastomers.
It is known in the prior art to provide various types of personal protection by the use of energy-absorbing devices, such as in helmets, vehicles, and the like. These products are generally designed to absorb a significant percentage of the energy from an impact. Within the vehicle, for example, various types of occupant protection devices may be employed for impact with structural body components such as door pillars, frames, headrails and the like. These components are typically made of steel tubing or steel channels that are welded together to form the structural cage or unitized body for the vehicle and may themselves absorb energy as the result of an impact. In addition, energy absorbers may also be placed over the door pillars, frames, headrails, and other parts of the vehicle to further protect the vehicle occupants during an impact event. Prior art approaches generally have used irreversibly crushable materials, such as metal, plastics or foams, irreversible air inflation devices, e.g. air bags and inflatable side curtains, rigid translation devices, e.g., extendable/retractable knee bolsters, and devices that can change the stroking forces, e.g., magnetorheological material based dampers.
Disclosed herein are reversibly expandable energy absorbing assemblies, interior vehicle surface compositions, and methods for operating the same. In one embodiment, the energy absorbing assembly comprises a rigid support structure comprising a fluid reservoir; a flexible covering engaged with the rigid support structure to define an expandable interior region; a plurality of elastic tubular structures disposed in the expandable interior region, wherein each one of the elastic tubular structures comprises an elongated hollow interior region, an open end in fluid communication with the fluid reservoir, and a closed end in contact with the flexible covering; a coil in electrical communication with a power supply, wherein the coil is wound about each one of the plurality of tubular structures; a magnetorheological fluid disposed in the fluid reservoir and the hollow interior region of the tubular structures, wherein the magnetorheological fluid is adapted to provide a change in fluid viscosity shear stress in response to a magnetic field provided by the coil; and means for selectively increasing a pressure within the fluid reservoir.
In another embodiment, the energy absorbing assembly comprises a rigid support structure comprising a fluid reservoir; a flexible covering engaged with the rigid support structure to define an expandable interior region; a plurality of elastic tubular or rectangular cross section structures disposed in the expandable interior region, wherein each one of the elastic tubular or rectangular cross section structures comprises an elongated hollow interior region, an open end in fluid communication with the fluid reservoir, and a closed end in contact with the flexible covering; a coaxial pair of electrodes in electrical communication with a power supply, wherein the coaxial pair of electrodes are in operative communication with each one of the plurality of tubular structures; an electrorheological fluid disposed in the fluid reservoir and the hollow interior region of the tubular structures, wherein the electrorheological fluid is adapted to provide a change in fluid shear stress in response to an applied electric field generated by the coaxial or parallel pair of electrodes; and means for selectively increasing a pressure within the fluid reservoir.
In yet another embodiment, the energy absorbing assembly comprises a flexible covering engaged with a rigid support structure to define an expandable interior region; a plurality of flexible cylindrical structures disposed in the expandable interior region, wherein each one of the flexible cylindrical structures comprises a magnetorheological elastomer; a coil in electrical communication with a power supply, wherein the coil is wound about each one of the plurality of flexible cylindrical structures; and means for selectively compressing the assembly into a stowed configuration and releasing the compressive means to provide a deployed configuration.
In still another embodiment, the energy absorbing assembly comprises a flexible covering engaged with a rigid support structure to define an expandable interior region; a plurality of flexible cylindrical or rectangular cross section structures disposed in the expandable interior region, wherein each one of the flexible cylindrical or rectangular cross section structures comprises an electrorheological elastomer; a coaxial or parallel pair of conductors in electrical communication with a power supply, wherein the conductors are in communication with each one of the plurality of flexible cylindrical structures; and means for selectively compressing the assembly into a stowed configuration and releasing the compressive means to provide a deployed configuration.
In another embodiment, the energy absorbing assembly comprises a flexible covering engaged with a rigid support structure to define an expandable interior region; a plurality of flexible cylindrical structures disposed in the expandable interior region, wherein each one of the flexible cylindrical structures comprises a magnetorheological elastomer or an elastic tube, jellyroll, or multiple coaxial geometry filled with an magnetorheological fluid; at least one permanent magnet placed between the bottom of the rigid support structure and the flexible cylindrical structure; a coil wound around the at least one permanent magnet in electrical communication with a power supply, wherein the coil is adapted to generate a second magnetic field opposing a first magnetic field of the permanent magnet; and means for selectively compressing the assembly into a stowed configuration and releasing the compressive means to provide a deployed configuration.
A method of operating an energy absorbing assembly comprises attaching the energy absorbing assembly to a rigid support structure including a fluid reservoir, wherein the energy absorbing assembly comprises a flexible covering engaged with the rigid support structure to define an expandable interior region; a plurality of elastic tubular structures disposed in the expandable interior region, wherein each one of the elastic tubular structures comprises an elongated hollow interior region, an open end in fluid communication with the fluid reservoir, and a closed end in contact with the flexible covering; a coil in electrical communication with a power supply, wherein the coil is wound about each one of the plurality of tubular structures; an actively controlled and engineered fluid disposed in the fluid reservoir and the hollow interior region of the tubular structures; and means for selectively increasing a pressure within the fluid reservoir; increasing a pressure within the fluid reservoir and expanding the expandable interior region; and applying a current to the coils and simultaneously increasing a shear stress of the actively controlled and engineered fluid and a yield stress of the plurality of tubular structures.
In another embodiment, the method of operating an energy absorbing assembly comprises attaching the energy absorbing assembly to a rigid support structure in a stowed position, wherein the energy absorbing assembly comprises a flexible covering engaged with the rigid support structure to define an expandable interior region; a plurality of flexible cylindrical structures disposed in the expandable interior region, wherein each one of the flexible cylindrical structures comprises a magnetorheological elastomer; a coil in electrical communication with a power supply, wherein the coil is wound about each one of the plurality of flexible cylindrical structures; and means for selectively compressing the assembly into a stowed configuration and releasing the compressive means to provide a deployed configuration; deploying the energy absorbing assembly by releasing the compressive means and expanding the expandable interior region; and applying a current to the coils and simultaneously increasing a flexural modulus property and a yield stress of the plurality of flexible cylindrical structures.
In another embodiment, a method of operating an energy absorbing assembly, comprises attaching the energy absorbing assembly to a rigid support structure in a stowed position, wherein the energy absorbing assembly comprises a flexible covering engaged with the rigid support structure to define an expandable interior region; a plurality of flexible cylindrical structures disposed in the expandable interior region, wherein each one of the flexible cylindrical structures comprises a electrorheological elastomer; a coaxial or parallel pair of conductors in electrical communication with a power supply, wherein the conductors are in electrical communication with each one of the plurality of flexible cylindrical structures; and means for selectively compressing the assembly into a stowed configuration and releasing the compressive means to provide a deployed configuration; deploying the energy absorbing assembly by-releasing the compressive means and expanding the expandable interior region; and applying power to the conductors and simultaneously increasing a flexural modulus property and a yield stress of the plurality of flexible cylindrical structures.
The above described and other features are exemplified by the following figures and detailed description.
Referring now to the figures, which are exemplary embodiments and wherein like elements are numbered alike:
a, b) is a plan view of a tubular structure for use in the energy absorbing assembly;
Disclosed herein are reversibly expandable energy absorbing assemblies for use in vehicle interior impact management that can be rapidly deployed to an expanded configuration so as to absorb kinetic energy associated with impact of an object against an interior surface. Advantageously, the energy absorbing assemblies are reversibly expandable and utilize actively controlled and engineered materials that maintain and increase the yield stress of an expanded configuration in the interior vehicle so as to provide absorption of impact energy. After deployment or an impact event, the energy absorbing assembly can recover its pre-deployed configuration by discontinuing an activation signal to the actively controlled and engineered materials. Discontinuing the activation signal decreases the shear stress or flexural modulus of the materials (depending on the particular embodiment), thereby permitting elastic relaxation of the energy absorbing assemblies to occur so as to restore the original pre-deployed shape. For some embodiments, suitable actively controlled and engineered materials include electrorheological and/or magnetorheological fluids and yield stress of the deployed device occurs by variably controlling the shear stress of the fluid. In alternative embodiments, suitable actively controlled and engineered materials include electrorheological and/or magnetorheological elastomers and yield stress of the device occurs by variably controlling the flexural modulus properties of the elastomers.
As shown in
For magnetorheological materials, a conductive coil 22 is wound about each one of the tubular structures and is in electrical communication with a power supply (not shown) for energizing the coil. The pitch of the coils 22 will generally depend upon the diameter of the tubular structures, the magnetorheological fluid or elastomer composition, and the applied current provided by the power supply. The magnetorheological material is adapted to provide a change in fluid viscosity shear (fluid) stress or flexural modulus (elastomer) in response to an applied magnetic field provided by energizing the coil.
With regard to the use of electrorheological materials, a coaxial or parallel pair of electrodes 25, 27 are disposed in electrical communication with the power supply, wherein the coaxial or parallel pair of electrodes are in electrical communication with each one of the plurality of tubular structures. Alternatively a capacitor can be employed. An exemplary energy absorbing assembly 10 is shown in
The rigid support structure 14 includes a fluid reservoir 24 adapted for housing the actively controlled and engineered fluids. In the case of elastomers, the fluid does not have to be the actively controlled and engineered fluid. For example, if the tubular structures are formed of magnetorheological or electrorheological elastomers, the fluid can be a gas or a liquid. Likewise, a bladder disposed in the fluid reservoir or the like can be employed to selectively pressurize the tubular structures. In this embodiment, the fluid reservoir may include the actively controlled and engineered fluid, if desired.
Each one of the elastic tubular structures 20 has an axially flexible, hollow, and elongated structure with opposing ends. One of the opposing ends is in open fluid communication with the fluid reservoir and the other end is closed ended and is preferably in contact with the flexible covering. Although the plurality of tubular structures 20 are shown perpendicularly oriented with respect to the rigid structure 14, the elastic tubular structures can be oriented at other angles for outwardly expanding the flexible covering 12 in the manner desired for the particular application. Alternatively, the elastic tubular structures 20 further comprise internal structures such as, for example, additional concentric tubes that form one or coaxial type geometries as shown in
A means 26 for selectively increasing a pressure within the fluid reservoir 24 is coupled to the rigid structure 14. Suitable means 26 for selectively increasing the pressure within the fluid reservoir 24 includes, but is not intended to be limited to, pneumatic motion, hydraulic piston motion, thermal expansion, release of a stored pressure source, and the like. The fluid reservoir 24 and the tubular structures 20 are filled with the desired actively controlled and engineered fluid.
During operation, the pressure within the fluid reservoir 24 is increased such that each one of the elastic tubular structures 20 elongates, thereby exerting a force against the flexible covering 12 and causing the flexible covering to expand (see
Optionally, in place of the coil 22 discussed above for use with MR materials, at least one permanent magnet is disposed between the rigid support structure 14 and the tubular structures 20. A coil (not shown) is wound about the at least one permanent magnet in electrical communication with the power supply. The coil may then be selectively activated to generate a magnetic field opposing the field of the permanent magnet. In this manner, a power off hold configuration can be maintained in the stowed and the deployed configurations. Moreover, in the stowed position, elastic energy can advantageously be stored in the tubular structure 20 and selectively used to assist during expansion, e.g., increase in fluid pressure.
In another optional embodiment, at least one permanent magnet is retractably positioned from the energy absorbing assembly. Retraction of the at least one permanent magnet can be by any means, including but not limited to a piston, solenoid, and the like. In still another embodiment, a magnetic shield is movably positioned between the applied magnetic field and the magnetorheological fluid or elastomer to selectively open or close the magnetic field.
Electrorheological (ER) and magnetorheological (MR) fluids are defined herein as a class of liquids having an apparent viscosity that can change reversibly when subjected to an electric field. ER fluids are most commonly colloidal suspensions of fine particles in non-conducting fluids. Under an applied electric field, electrorheological fluids and form fibrous structures that are parallel to the applied electric field and can increase in shear stress by a factor of up to 105. The change in viscosity is generally proportional to the applied potential. In particular, under the application of a field of the order of 1–2 kV/mm an ER fluid can exhibit a solid-like behavior, such as the ability to transmit shear stress. This transformation from liquid-like to solid-like behavior can be very fast, of the order of 1 to 10 milliseconds and is reversible when the electric field is removed.
ER fluids are made by suspending particles in a liquid whose dielectric constant or conductivity is mismatched in order to create dipole particle interactions in the presence of an alternating current (ac) or direct current (dc) electric field. By filling the tubular structures 20 with the electrorheological fluid, the yield stress can be altered to provide increased absorption of kinetic energy from an impacting object. Any suitable electrorheological fluid can be employed. For example it is possible to use, for example, a fluid in which hydrous or semiconductive powders whose desired particle diameter and the like have been selected are contained in an oil or the like with an appropriate powder concentration. In this case, as dispersive powders, it is possible to use, for instance, polymethacrylate lithium, silica, polyacenquinone, carbonacenous powders, or the like.
MR fluids are generally suspensions of micrometer-sized, magnetically polarizable particles in oil or other liquids. When a MR fluid is exposed to a magnetic field, the normally randomly oriented particles form chains of particles in the direction of the magnetic field lines. The particle chains increase the apparent shear stress (flow resistance) of the fluid. The stiffness of the structure is accomplished by changing the shear and compression/tension moduli of the MR fluid by varying the strength of the applied magnetic field. The MR fluids typically develop structure when exposed to a magnetic field in as little as a few milliseconds. Discontinuing the exposure of the MR fluid to the magnetic field reverses the process and the fluid returns to a lower shear stress state.
Suitable MR fluid materials include, but are not intended to be limited to, ferromagnetic or paramagnetic particles dispersed in a carrier fluid. Suitable magnetic particles include but are not intended to be limited to, soft or hard magnets; hematite; magnetite; magnetic material based on iron, nickel, and cobalt, alloys of the foregoing such as those including aluminum, silicon, cobalt, nickel, vanadium, molybdenum, chromium, tungsten, manganese and/or copper; iron oxides, including Fe2O3 and Fe3O4; iron nitride; iron carbide; carbonyl iron; nickel and alloys of nickel; cobalt and alloys of cobalt; chromium dioxide; stainless steel; silicon steel; and the like, or combinations comprising at least one of the foregoing. Examples of suitable particles include straight iron powders, reduced iron powders, iron oxide powder/straight iron powder mixtures and iron oxide powder/reduced iron powder mixtures. A preferred magnetic-responsive particulate is carbonyl iron, preferably, reduced carbonyl iron.
The particle size should be selected so that the particles exhibit multi-domain characteristics when subjected to a magnetic field. Diameter sizes for the particles can be less than or equal to about 1,000 micrometers, with less than or equal to about 500 micrometers preferred, and less than or equal to about 100 micrometers more preferred. Also preferred is a particle diameter of greater than or equal to about 0.1 micrometer, with, greater than or equal to about 0.5 more preferred, and greater than or equal to about 10 micrometers especially preferred. The particles are preferably present in an amount between about 5.0 to about 50 percent by volume of the total MR fluid composition.
Suitable carrier fluids include organic liquids, especially non-polar organic liquids. Examples include, but are not limited to, silicone oils; mineral oils; paraffin oils; silicone copolymers; white oils; hydraulic oils; transformer oils; halogenated organic liquids, such as chlorinated hydrocarbons, halogenated paraffins, perfluorinated polyethers and fluorinated hydrocarbons; diesters; polyoxyalkylenes; fluorinated silicones; cyanoalkyl siloxanes; glycols; synthetic hydrocarbon oils, including both unsaturated and saturated; and combinations comprising at least one of the foregoing fluids.
The viscosity of the carrier component can be less than or equal to about 100,000 centipoise, with less than or equal to about 10,000 centipoise preferred, and less than or equal to about 1,000 centipoise more preferred. Also preferred is a viscosity of greater than or equal to about 1 centipoise, with greater than or equal to about 250 centipoise preferred, and greater than or equal to about 500 centipoise especially preferred.
Aqueous carrier fluids may also be used, especially those comprising hydrophilic mineral clays such as bentonite or hectorite. The aqueous carrier fluid may comprise water or water comprising a small amount of polar, water-miscible organic solvents such as methanol, ethanol, propanol, dimethyl sulfoxide, dimethyl formamide, ethylene carbonate, propylene carbonate, acetone, tetrahydrofuran, diethyl ether, ethylene glycol, propylene glycol, and the like. The amount of polar organic solvents is less than or equal to about 5.0% by volume of the total MR fluid, and preferably less than or equal to about 3.0%. Also, the amount of polar organic solvents is preferably greater than or equal to about 0.1%, and more preferably greater than or equal to about 1.0% by volume of the total MR fluid. The pH of the aqueous carrier fluid is preferably less than or equal to about 13, and preferably less than or equal to about 9.0. Also, the pH of the aqueous carrier fluid is greater than or equal to about 5.0, and preferably greater than or equal to about 8.0.
Natural or synthetic bentonite or hectorite may be used. The amount of bentonite or hectorite in the MR fluid is less than or equal to about 10 percent by weight of the total MR fluid, preferably less than or equal to about 8.0 percent by weight, and more preferably less than or equal to about 6.0 percent by weight. Preferably, the bentonite or hectorite is present in greater than or equal to about 0.1 percent by weight, more preferably greater than or equal to about 1.0 percent by weight, and especially preferred greater than or equal to about 2.0 percent by weight of the total MR fluid.
Optional components in the MR fluid include clays, organoclays, carboxylate soaps, dispersants, corrosion inhibitors, lubricants, extreme pressure anti-wear additives, antioxidants, thixotropic agents and conventional suspension agents. Carboxylate soaps include ferrous oleate, ferrous naphthenate, ferrous stearate, aluminum di- and tri-stearate, lithium stearate, calcium stearate, zinc stearate and sodium stearate, and surfactants such as sulfonates, phosphate esters, stearic acid, glycerol monooleate, sorbitan sesquioleate, laurates, fatty acids, fatty alcohols, fluoroaliphatic polymeric esters, and titanate, aluminate and zirconate coupling agents and the like. Polyalkylene diols, such as polyethylene glycol, and partially esterified polyols can also be included.
In an alternative embodiment, the energy absorbing assembly comprises electrorheological elastomers or magnetorheological elastomers. Suitable actively controlled and engineered elastomer materials include, but are not intended to be limited to, an elastic polymer matrix comprising a suspension of ferromagnetic or paramagnetic particles, wherein the particles are described above. Suitable polymer matrices include, but are not intended to be limited to, poly-alpha-olefins, natural rubber, silicone, polybutadiene, polyethylene, polyisoprene, and the like.
During operation, the assembly 50 is stowed in a reduced volume state, which may require means 56 for mechanically pressing and restraining the assembly by any suitable means or by applying a constant vacuum pressure. For deployment, the mechanical restraint or vacuum pressure is released to permit flexible cylindrical structures 54 to expand to its unstressed configuration, which is a shape that is substantially straight and free of curvatures. In doing so, the flexible cylindrical structures 54 exert a force on the flexible covering 12 causing it to expand. A current is then applied to the coils to increase the yield stress of the flexible cylindrical structures 54. In this manner, absorption of impact energy can be variably controlled by the varying of the applied potential to the coils. To restow the structure, the current is discontinued and the assembly 50 recompressed either mechanically or by vacuum pressure and subsequently restrained. As such, the flexible cylindrical structures are preferably designed to permit compression during non-use and provide sufficient expansion when the means for compression is removed.
The energy absorbing assemblies 10, 50 described above preferably include a sensor 32 and a controller 34 in operative communication with the means for increasing the pressure as in assembly 10 or the means 56 for compressing and restraining the assembly to provide a stowed configuration as in assembly 50.
The sensor 32 is preferably configured to provide pre-impact information to the controller 34, which then actuates the energy absorbing assembly 10 or 50 under pre-programmed conditions defined by an algorithm or the like. Note that the shear stress/stiffness of the MR or ER fluids/elastomers is adjustable (i.e., tunable) based on the strength of the field that is applied. Thus, based on the input from sensors 32, the controller 34 can cause the appropriate magnitude of field to be applied for the particular impending impact scenario. For example, the stiffness could be reduced by 50% for the case of impact of a child's head as compared to that of an adult, thereby exposing both to the same level of deceleration. In this manner, the assemblies 10 or 50 can be used to anticipate an event such as an impact with an object and provide absorption of the kinetic energy associated with an occupant within the vehicle as a result of the impact. In the event a subsequent impact is not realized, the energy absorbing assembly 10 or 50 reverts back to its original shape in the manner previously discussed for each embodiment. The illustrated energy absorbing assemblies 10, 50 are exemplary only and are not intended to be limited to any particular shape, size, configuration, or the like.
Suitable magnetic field strengths for tubular structures 20 comprised of MR or ER fluids and/or elastomers generally range from about 0 to about 1 Tesla (T). Moreover, yield stress of the tubular structures 20, 54 can be variably controlled as may be desired depending on the severity of the impact.
For impact energy management, it is preferred that the total expansion times be relatively rapid. Preferably, the energy absorbing assembly is configured to be fully expanded within about 50 milliseconds (msec) or less. Preferably, the energy absorbing assembly provides a volume expansion greater than 50 percent, with a volume expansion greater than 100 percent more preferred, and a volume expansion of about 200 to about 400 percent even more preferred.
The flexible covering 12 is preferably fabricated from a material that is elastic (flexible) to the limits of the assembly expansion so that it can return to its original geometry. As such, suitable materials include elastomers such as styrene butadiene rubber, polyurethanes, polyisoprene, neoprene, chlorosulfonated polystyrenes, various elastic fabrics, and the like. Optionally, the flexible covering 12 can be fabricated with a relatively inflexible, non-elastic upper surface attached to elastic sidewalls to permit an effective amount of outward expansion. Still further, in those embodiments in which the interior region need not be pressurized to effect deployment, no sidewalls are needed and tethers or a tether like structure may be used to secure the covering to the rigid support structure and define the expandable interior region therebetween. Other materials suitable for use as a flexible cover 12 will be apparent to those skilled in the art in view of this disclosure. Preferably, the material chosen for the flexible cover accommodates reversible strains of at least about 400 percent, with strains of about 200 to about 400 percent more preferred. The flexible covering 12 can be decoratively patterned or, optionally, an outer decorative covering (not shown) can be provided in sliding engagement over the flexible covering 12, e.g., a stretchable fabric or the like.
The energy absorbing assemblies 10, 50 can be used to replace conventional padded interior surfaces shown in
While the disclosure has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the disclosure without departing from the essential scope thereof. Therefore, it is intended that the disclosure not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this disclosure, but that the disclosure will include all embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1331359 | Parrott et al. | Feb 1920 | A |
1936389 | Hallquist | Nov 1933 | A |
3588158 | Ford et al. | Jun 1971 | A |
4441751 | Wesley | Apr 1984 | A |
4890877 | Ashtiani-Zarandi et al. | Jan 1990 | A |
5098124 | Breed et al. | Mar 1992 | A |
5141279 | Weller | Aug 1992 | A |
5222264 | Morry | Jun 1993 | A |
5382051 | Glance | Jan 1995 | A |
5390974 | Theodorakakos | Feb 1995 | A |
5452957 | Duggan | Sep 1995 | A |
5454589 | Bosio et al. | Oct 1995 | A |
5458366 | Hock et al. | Oct 1995 | A |
5544913 | Yamanishi et al. | Aug 1996 | A |
5564535 | Kanianthra | Oct 1996 | A |
5746442 | Hoyaukin | May 1998 | A |
5794975 | Nohr et al. | Aug 1998 | A |
5839756 | Schenck et al. | Nov 1998 | A |
6012764 | Seksaria et al. | Jan 2000 | A |
6120862 | Aouad et al. | Sep 2000 | A |
6148970 | Akad | Nov 2000 | A |
6318755 | Nusser et al. | Nov 2001 | B1 |
6334639 | Vives et al. | Jan 2002 | B1 |
6536818 | Moss | Mar 2003 | B1 |
6547280 | Ashmead | Apr 2003 | B1 |
6550850 | Laborie et al. | Apr 2003 | B1 |
6910714 | Browne et al. | Jun 2005 | B1 |
20010028173 | Demarquilly et al. | Oct 2001 | A1 |
20010045762 | von Holst et al. | Nov 2001 | A1 |
20020017805 | Carroll, III et al. | Feb 2002 | A1 |
20020171067 | Jolly et al. | Nov 2002 | A1 |
20030001372 | Browne et al. | Jan 2003 | A1 |
20030075953 | Hirota et al. | Apr 2003 | A1 |
20040126565 | Naganathan et al. | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
WO 03101722 | Dec 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20060032715 A1 | Feb 2006 | US |