This invention pertains to a revetment, which is made wholly or predominantly from concrete and which is useful to line a stream bed, and to an assembly of said revetments. Such a revetment can be also used to line an embankment or to line a driveway for emergency vehicles.
As exemplified in older patents including U.S. Pat. No. 2,876,628 and in newer patents including U.S. Pat. No. 5,108,222, U.S. Pat. No. 5,632,571, and U.S. Pat. No. 5,779,391, assemblies of predominantly concrete revetments are employed to line embankments, stream beds, and driveways for emergency vehicles. A reinforced plastic revetment of related interest is disclosed in U.S. Pat. No. 929,728.
As exemplified in U.S. Pat. No. 2,876,628 and in U.S. Pat. No. 5,779,391, cables are employed to connect the respective revetments of such an assembly to one another, whereby the assembly is articulated. As exemplified in U.S. Pat. No. 5,108,222 and in U.S. Pat. No. 5,632,571, a polymeric grid is employed to connect the respective revetments of such an assembly to one another, whereby the assembly is articulated.
As exemplified in older patents including U.S. Pat. No. 1,164,707 and French Patent No. 1,265,140 and in newer patents including U.S. Pat. No. 3,903,702, U.S. Pat. No. 4,661,012, U.S. Pat. No. 5,484,230, U.S. Pat. No. 5,779,391, U.S. Pat. No. 5,906,456, and U.S. Pat. No. 6,071,041, it is known for such a revetment to have marginal projections, which interfit with marginal recesses in adjacent, similar revetments. A revetment of related interest is disclosed in U.S. Pat. No. 5,224,792. As disclosed therein, the revetment has projecting spacers that abut or interlock with projecting spacers on an adjacent, similar revetment.
According to a first aspect of this invention, a revetment is provided, which is made wholly or predominantly from concrete, which is useful to line a stream bed, and which has an upper surface, a lower surface, upstream and downstream edges, and, for each upstream edge, an upstream bevel, which intersects the upper surface and which intersects said upstream edge. Preferably, the revetment has two downstream edges, two upstream edges, and two upstream bevels.
According to a second aspect of this invention, a revetment is provided, as described above, which has an array of holes extending between the upper and lower surfaces. Each hole has a lateral wall having a portion flaring outwardly in a downstream direction from a circular mouth at the lower surface to an elongate mouth at the upper surface.
According to a third aspect of this invention, a revetment is provided, as described above, in which each upstream or downstream edge is stepped so as to define an upper or lower flange.
The first, second, and third aspects of this invention can be advantageously combinedEach of the downstream edges is stepped so as to define an upper flange and each of the upstream edges is stepped so as to define a lower flange Each of the upstream bevels intersects the upper surface and intersects a respective one of the upstream edges. Each hole has a circular mouth at the lower wall and has a lateral wall flaring outwardly in a downstream direction to an elongate mouth at the upper wall.
In an assembly of revetments, which may be connected to one another, as by cables, each of at least some of the upper flanges, if provided, overlies one of the lower flanges, if provided.
Herein, except as the context may require otherwise, any reference to a stream bed is intended to encompass the bed of a natural stream, the bed of another natural waterway, such as a creek, river, or swale, or the bed of a manmade stream, such as a canal, culvert, channel, or ditch, whether the bed tends to be normally dry or tends to be normally filled with flowing water.
Herein, all directional terms including “upper”, “lower”, “upstream”, and “downstream” are referred to a revetment placed in its intended orientation, in a stream bed, or oriented similarly.
As illustrated in
As illustrated in
Preferably, as illustrated in
Alternatively, the upper and lower surfaces, are hexagonal and may conform to regular hexagons with apex angles of 45°, as illustrated in
According to the first aspect of this invention, each revetment 10 has two upstream bevels 60, each of which intersects the upper surface 20 of said revetment 10 and each of which intersects a respective one of the upstream edges 50 of said revetment 10. The upstream bevels 60 direct flowing water, which arrives at said revetment 10, over said revetment 10, rather than against the upstream edges 40 of said revetment 10. If a revetment does not have any upstream bevels, and if flowing water arriving at the revetment were to bear against the upstream edges of the revetment, such water bearing thereagainst could tend to tip the revetment.
Each revetment 10 has an array of similar holes 70 extending between its upper face 20 and its lower face 30 and allowing vegetation to grow upwardly from the stream bed, through the arrayed holes 70, whereby to help to secure said revetment 10 within the stream bed. Heretofore, it has been known for a concrete revetment to have an array of holes, through which vegetation can grow.
According to the second aspect of this invention, each hole 70 of each revetment 10 has a circular mouth 72 at the lower surface 30 of said revetment 10 and a lateral wall 74 flaring outwardly to an elongate, ovoid mouth 76 at the upper surface 20 of said revetment 10. The flaring walls 74 of the holes 70 direct flowing water, which reaches those walls 74, over the revetments 10. If the lateral walls of the holes in a revetment were cylindrical between the upper and lower surfaces of the revetment, and if flowing water arriving at the revetment were to bear against the cylindrical walls, such water bearing against could tend to tip the revetment.
As illustrated in
According to the third aspect of this invention, each downstream edge 40 of each revetment 10 is stepped so as to define an upper flange 42 and each upstream edge 30 of each revetment 10 is stepped so as to define a lower flange 52. In the assembly, as illustrated in FIG. 2 and in
When the upper and lower surfaces are triangular, as illustrated in
Each revetment 10 is provided with longitudinal and transverse passages 12 to receive cables 14, which are used in some but not all installations to connect the revetments 10 to one another in the assembly, in a known manner. At their opposite ends 16, the cables 14 carry speed nuts or other suitable fitments 18, which have portions that are larger than the passages 12 so as to prevent the cables 14 from being pulled inadvertently through the passages 12. The cables 14 also help to prevent tipping of the revetments 10. The cables 14 may be thus used in comparatively shorter lengths to connect two revetments 10 to each other in a pair and in comparatively longer lengths to connect a larger number of revetments 10 to one another in a series. Although polymeric cables are preferred, e.g., polyester cables, metal cables may be alternatively used. Although cables having circular cross-sections are preferred, cables of other cross-sections, such as flat straps, may be alternatively used.
Although designed primarily to line stream beds, in which flowing water tends to cause erosion, revetments embodying this invention can be also used to line embankments or to lie driveways for emergency vehicles and may have other practical uses.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/167,030, which was filed on Jun. 11, 2002 now U.S. Pat. No. 6,688,810.
Number | Name | Date | Kind |
---|---|---|---|
763171 | Fichefet | Jun 1904 | A |
929728 | Taylor | Aug 1909 | A |
953051 | Muralt | Mar 1910 | A |
991041 | Toennes | May 1911 | A |
1164707 | Edinger | Dec 1915 | A |
1164708 | Edinger | Dec 1915 | A |
1352429 | Clarke | Sep 1920 | A |
2008370 | Schwalbe | Jul 1935 | A |
2826906 | Rice | Mar 1958 | A |
2876628 | Dixon, Jr. | Mar 1959 | A |
3030093 | Reintjes | Apr 1962 | A |
3096621 | Danel | Jul 1963 | A |
3903702 | Appleton | Sep 1975 | A |
4474504 | Whitman et al. | Oct 1984 | A |
4661012 | McCloskey | Apr 1987 | A |
4819372 | Schurholz | Apr 1989 | A |
5020938 | Scales | Jun 1991 | A |
5108222 | Jansson et al. | Apr 1992 | A |
5224792 | Hagenah | Jul 1993 | A |
5484230 | Rudloff | Jan 1996 | A |
5632571 | Mattox | May 1997 | A |
5779391 | Knight | Jul 1998 | A |
5906456 | Knight | May 1999 | A |
6071041 | Knight | Jun 2000 | A |
Number | Date | Country |
---|---|---|
958086 | Mar 1950 | FR |
1265140 | May 1961 | FR |
61-137911 | Jun 1986 | JP |
Number | Date | Country | |
---|---|---|---|
20040013467 A1 | Jan 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10167030 | Jun 2002 | US |
Child | 10286651 | US |