Revolving firearm

Information

  • Patent Grant
  • 6481137
  • Patent Number
    6,481,137
  • Date Filed
    Monday, April 2, 2001
    23 years ago
  • Date Issued
    Tuesday, November 19, 2002
    22 years ago
Abstract
In a revolving firearm having a barrel and a rotating cartridge cylinder actuated by an axially slidable pump-action type foregrip, indexing means are provided for converting the back and forth movement of the foregrip into a stepwise rotational movement of the cartridge cylinder for bringing one chamber of the cartridge cylinder after another in axial alignment with the barrel.
Description




BACKGROUND OF THE INVENTION




The present invention relates to revolving firearms and particularly resides in an indexing mechanism for the stepwise rotation of the cartridge cylinder of a revolving firearm.




Present methods for the rotation of the cylinders of revolving firearms include a trigger activated mechanism, which is however suitable only for small caliber firearms. Also spring-motor-driven cylinders are known. They have the disadvantage that the spring motor needs to be wound up from time to time so that the firearm is not always ready for operation.




SUMMARY OF THE INVENTION




In a revolving firearm having a barrel and a rotating cartridge cylinder actuated by an axially slidable pump-action type foregrip, indexing means are provided for converting the back and forth movement of the foregrip into a stepwise rotational movement of the cartridge cylinder for bringing one chamber of the cartridge cylinder after another in axial alignment with the barrel. This unique mechanism allows the user to rotate the cartridge cylinder in a manner similar to conventional pump action shotguns.




The present invention is an improvement over existing arrangements; it is especially intended for use in connection with large-caliber firearms, i.e. −12 GA up to 40 mm. It can however also be used in smaller caliber firearms, especially for providing a unique pump action revolving firearm.




The invention will be described below in greater detail with reference to a particular embodiment of the invention which is schematically represented in the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a side view of the firearm with a cartridge cylinder according to the invention,





FIG. 2A

shows specifically an indexing mechanism for rotating the cartridge cylinder of the firearm with a pump action motion,





FIG. 2B

shows a part of the indexing mechanism which includes a tube with grooves provided for the rotation of the rotating cylinder, and





FIG. 2C

another embodiment for the indexing mechanism.





FIG. 3

shows another embodiment of the firearm according to the invention,





FIG. 4

shows, in detail, the indexing mechanism for the embodiment shown in

FIG. 3

,





FIGS. 5



a


and


5




b


show embodiments with locking arrangements for locking the cartridge cylinder when one of its chambers is in axial alignment with the barrel of the firearm.











DESCRIPTION OF PREFERRED EMBODIMENTS




The firearm consists of a front frame part


1




a


and a rear frame part


1




b


which can be locked together by a latching mechanism


9


. A cylinder


2


having chambers for holding cartridges is rotatably supported on the front frame part


1




a


. The cylinder


2


can be designed for various calibers of cartridges or rounds of ammunition and for receiving various numbers of cartridges or rounds. A barrel


3


is supported on the front frame part


1




a


and a trigger mechanism, which is not shown in detail, is disposed in the rear frame part


1




b


. A stock


5


is also fitted to the rear frame part


1




b.






The firearm includes an indexing mechanism for rotating the cylinder in a simple and safe manner from one chamber to the next. The design is such that the cartridge chambers of the cylinder


2


are aligned with the barrel


3


and while a cartridge chamber is aligned with the barrel, the cylinder


2


is securely held in such an aligned position for the firing of a cartridge.




The indexing mechanism consists of a rotating tube


4


, which is fixed to the cylinder


2


for rotation therewith and includes an arrangement of grooves


10


. The grooves


10


are machined into the surface of the rotatable tube


4


at an angle with respect to the longitudinal axis of the tube


4


. Circumferentially adjacent grooves


10


extend at opposite angles and are joined at their longitudinal ends and form pairs. The grooves extend together in a zick-zack pattern around the rotatable tube


4


as shown in FIG.


2


B. The number of pairs of grooves


10


corresponds to the number of cartridge openings in the cylinder


2


. The grooves are also somewhat inclined with respect to the axis of the rotatable tube


4


such that the end of one groove is at a radially somewhat higher level than the beginning of the next. In this way the spring-loaded pin drops into the next groove when the end of one groove is reached by axial movement of the foregrip


5


.




A foregrip


5


is supported below the barrel


3


so as to be slidable along the barrel


3


. The foregrip


5


includes a bore through which the rotatable tube


4


extends into foregrip


5


. The foregrip


5


is axially movable and is engaged by the barrel


3


to prevent its rotation. A spring-loaded actuating pin


11


is fitted into the foregrip


5


and extends into the angled grooves


10


. A front bracket


6


is mounted to the barrel


3


and supports a front tube


16


, which extends into the foregrip


5


. The front tube


16


has one end mounted to the front bracket


6


by a pin


15


. The other end of the front tube


16


is received in the rotatable tube


4


for rotatably engaging the rotatable tube


4


.




A cocking rod


18


extends through the rotatable tube


4


and into the front tube


16


and is fixed, by way of a pin


17


, to a slide bearing member


12


which is mounted to the foregrip


5


and slidably supported on the front tube


16


. The front tube


16


has a slot


14


, through which the pin


17


extends and is connected to the cocking rod


18


for moving the cocking rod


18


back and forth together with the foregrip


5


.




To rotate the cylinder from one cartridge chamber to the next, the operator has to push or pump the foregrip


5


back and forth one time. This “pumping” is similar to the operation of conventional pump action shotguns.




Upon pulling or pumping the foregrip back, the spring-loaded pin


11


sliding in the groove


10


causes the rotatable tube


4


to rotate halfway to the next alignment position. Pushing the foregrip then again forward completes the rotation step and brings the next cylinder chamber in alignment with the barrel


3


. While moving the forgrip back the cocking rod


18


is also pushed back and in turn “cocks” the hammer arrangement in the trigger mechanism


7


. Upon subsequent forward movement of the foregrip


5


, the cocking rod


18


is also moved forward leaving however the hammer cocked and ready for firing. The cylinder


2


is held in alignment position with the barrel


3


by the spring loaded pin


11


. There may be an indent in the groove


10


receiving the pin


11


for holding the foregrip


5


in its foreward end position.




The invention is not limited to the embodiments as described in detail. For example the grooves may be in a different shape to provide a means for converting the linear back and forth movement into stepwise rotational movement of the cylinder


2


. The groves may be arranged for example as shown in

FIG. 2C

, wherein a groove section


10


′ starts axially but curves toward the next groove section at the opposite axial end of the groove section


10


′. In this case, the groove depth may be constant over the full length of the groove section


10


′. An indent


10


″ may be provided at the jointure of two groove sections. The indent may have a reduced inclination area


10


′″ in the direction toward the next groove section to ease the movement of the pin


11


into the next groove section.




In another embodiment of the invention as shown in

FIG. 3

, wherein a revolver type gun is shown, which comprises a front frame part


21




a


and a rear frame part


21




b


, a cylinder


22


for holding cartridges is rotatably supported on the front frame part


21




a


. The chambers of the cylinder


22


can be designed for various sizes of cartridges and for holding various numbers of cartridges.




A barrel


23


is fixed to the front frame part


21




a


. A trigger mechanisms


24


is fitted into the rear frame part


21




b


. The rear frame part


21




b


is also provided with a stock


25


for holding the gun and operating the trigger mechanism.




For rotating the cylinder


22


to bring the various cylinder chambers holding the cartridges into alignment with the barrel, that is to move the cylinder from one chamber to the next, an indexing mechanism is provided. The indexing mechanism brings the cartridge chambers of the cylinder


22


into alignment with the barrel


23


and holds the cylinder


22


securely in such alignment position for the firing of the cartridge.




The indexing mechanism comprises a cylinder spindle


26


, which is fixed to the cylinder


22


for rotation therewith and which includes a ratchet tooth mechanism


27


with a number of axially projecting teeth


27




b


(

FIG. 4

) machined into one end. The number of teeth


27




b


corresponds to the number of cylinder chambers that is to the number of cartridges the cylinder


22


can hold. An indexing spindle


28


is rotatably supported by a front support structure


32


supported below the barrel


23


in axial alignment with the cylinder spindle


26


. The indexing spindle


28


is provided at its axial end adjacent the cylinder spindle


26


with axial teeth


27




a


corresponding to the teeth


27




b


in the cylinder spindle


26


. The teeth


27




a


and


27




b


are held in engagement with each other so as to form the ratchet mechanism


27


.




As shown in greater detail in

FIG. 4

, an angled slot


29


is machined into the indexing spindle


28


. The angle and length of the slot is in direct relation to the number of cartridges the cylinder


22


can hold.




A foregrip


30


is longitudinally movably supported below the cylinder barrel


23


. The foregrip


30


has a bore through which the indexing spindle


28


extends so that it is movable along the indexing spindle


28


. Rotation of the foregrip


30


is prevented by engagement with the barrel


23


. An actuation pin


31


is fitted into the foregrip


30


and extends into the angled slot


29


. A compression spring


33


is provided in the front end of the indexing spindle


28


for biasing the indexing spindle


28


toward the cylinder spindle


26


for resiliently holding the teeth


27




a


and


27




b


of the ratchet mechanism


27


in engagement. A detent mechanism


34


is provided in the frame part


21




a


including a spring-loaded pin for retaining the cylinder


22


in each position in which one of its cartridge chambers is in alignment with the barrel


23


.




Operation




To rotate the cylinder


22


from one cartridge chamber to the next the operator pushes, or pumps, the horizontal foregrip back and forth one time. When the foregrip


30


is pulled back, the spring-loaded indexing spindle


28


rotates and its teeth


27


“ride” over the respective teeth


27




b


of the then stationary cylinder spindle


26


. The compression spring


33


pushes the indexing spindle


28


toward the cylinder spindle


26


for engagement of the teeth


27




a


with a new set of teeth


27




b.






Upon pushing the foregrip


30


now forward the two spindles


28


and


26


, which are now engaged with each other, rotate the cylinder to bring the next cylinder chamber into alignment with the barrel


33


that is into firing position. The cylinder


22


is held in firing position by holding the foregrip


30


in the forward position and also by the detent structure


34


, which forms a cylinder stop. The spring-loaded detent structure


34


releases the cylinder


22


only when the foregrip


30


is forcefully pushed forward to rotate the cylinder spindle


28


.




The pump action as described above shows the foregrip


5


or respectively


30


for each embodiment in the forward end position when the cylinder chamber is aligned with the barrel and in the firing position. However, it is also possible to make the arrangement so that the foregrip is in the rear end position when the cylinder cambers and the barrel are aligned for firing. This requires only that the slot sections in the rotatable tube


4


are arranged correspondingly. The cocking of the trigger mechanism may then be accomplished during forward movement of the foregrip


30


. Some operators may prefer such an arrangement.




The invention is not limited to the arrangement shown in

FIGS. 1-4

. Instead of using a detent mechanism with a spring-loaded engagement pin


34


as indicated in

FIG. 3

, for example. A locking structure may be used, which firmly locks the cylinder


22


when a cartridge chamber


19


of the cylinder


22


is in alignment with the barrel


23


.




In such an arrangement as shown in

FIGS. 5A and 5B

, the cylinder includes an indexing plate


40


provided with indexing holes


41


arranged in one side of the indexing plate


40


in a circle in annularly spaced relationship. A locking pin


42


is slideably supported on the front frame part


21




a


and biased by a spring


43


toward the indexing plate


40


so that it enters an indexing hole


41


for locking the cylinder when a cartridge chamber


19


is in axial alignment with the barrel


23


.




A double-armed lever


44


is pivotally mounted on the front part of the frame


21


with one arm


45


in engagement with the locking pin


42


and the other arm


46


being disposed in the path of movement of an operating rod


47


, which is mounted on the foregrip


30


. Preferably, the operating rod


47


is axially movably supported and is biased by a spring


48


toward the lever arm


46


for operating the lever


44


.




In this arrangement, the cylinder chamber


19


is in alignment with the barrel


23


when the foregrip


30


is in its front end position. In this position, the spring-loaded locking pin


42


is fully inserted into the hole


41


in the cylinder indexing plate


40


so that the cylinder is locked in position.




When the foregrip


30


is moved backward, the spring-loaded operating pin


47


pushes the lever arm


46


of the lever


44


backwardly. The opposite arm


45


of the lever


44


lifts the locking pin


42


out of the hole


41


thereby releasing the cylinder


22


. As a result, the cylinder


22


is free to rotate when the foregrip


30


is again pushed forward. When the foregrip


30


is moved forward, the lever arm


46


is disengaged and the locking pin is again spring-biased toward the indexing plate


40


. When the foregrip reaches its front end position, the cylinder's next chamber


19


is in alignment with the barrel


23


and the next hole


41


is in alignment with the locking pin


42


. The locking pin


42


enters the next hole


41


and locks the cylinder


22


in position.




The indexing plate


40


is preferably provided, ahead of the hole


41


, with an angled groove, which guides and eases the pin into the hole


41


. In this way, the surface area along which the pin


42


slides into the hole


41


is slightly recessed where it joins the hole


41


so that the opposite wall portion of the hole


41


forms a stop by which the pin


41


is engaged to stop the stepwise movement of the cylinder


22


.




A slightly different arrangement may be provided for an arrangement in which the cylinder chambers are in alignment with the barrel when the foregrip is in the rear position as shown in FIG.


5


B.




In this case, the locking pin


42


′ is spring-biased in the opposite direction so that it is normally disengaged from the hole


41


. The operating pin


47


′ is arranged in axial alignment with the locking pin


42


′ so that it directly engages the locking pin when the foregrip


30


′ is moved to its rear end position. The locking pin


42


′ is moved into the hole


41


by the operating rod


47


′ against the force of the spring


43


′ of the locking pin


42


′ for locking the cylinder


22


.



Claims
  • 1. A revolving firearm having an indexing mechanism with a revolving cylinder and a pump action foregrip for advancing the revolving cylinder, said firearm including:a front frame part and a rear frame part, a stock fitted on said rear frame part, a trigger mechanism mounted on said rear frame part, said revolving cylinder having chambers for holding cartridges and being rotatably supported on said front frame part, a barrel mounted on said front frame part, said pump action foregrip being supported on said front frame part so as to be axially slidable back and forth along said barrel, a spindle extending from said revolving cylinder into said foregrip, and an indexing mechanism for converting the back and forth movement of said foregrip into stepwise rotational movement of said cylinder for moving one of said cylinder chamber after the other in alignment with said barrel, said indexing means including cooperating slot and pin arrangements disposed in said spindle and said foregrip respectively, said pin extending into said slot for rotating said spindle when said foregrip is moved axially back and forth along said spindle.
  • 2. A revolving firearm according to claim 1, wherein said spindle is provided with a number of angled grooves which are disposed circumferentially adjacent one another and extend at opposite angles and are joined at longitudinal ends thereof and said pin is mounted in said foregrip and extends into said grooves providing for a stepwise rotation of said spindle and, together therewith, of said cylinder upon back and forth movement of said foregrip.
  • 3. A revolving firearm according to claim 2, wherein said pin is resiliently supported and said grooves are radially inclined with respect to the axis of said rotatable spindle such that the end of each groove is at a radially higher level then the beginning of the next groove whereby said spring loaded pin drops into the next groove when the end of the one groove is reached by axial movement of said foregrip.
  • 4. A revolving firearm according to claim 2, wherein each groove section extends essentially axially at its beginning and curves toward the next groove section at the opposite axial end thereof.
  • 5. A revolving firearm according to claim 2, wherein said spindle includes an axial bore and a cocking rod extends through said axial bore and is connected at one end to said foregrip and at its other end to a trigger mechanism for cocking the trigger mechanism by axial movement of said foregrip.
  • 6. A revolving firearm according to claim 1, wherein said spindle includes a groove which is angled with respect to the longitudinal extension of said spindle and said fore-grip includes a pin extending into said angled groove so that said spindle rotates back and forth when said foregrip is moved axially back and forth and said spindle comprises two sections joined by a ratchet mechanism for converting the back and forth rotational movement of one section of said spindle into a stepwise rotation of the other section of said spindle, said other section being connected to said cylinder for the stepwise rotation of said cylinder.
  • 7. A revolving firearm according to claim 6, wherein a detent structure is provided including a spring-loaded pin engaging said cylinder in angular positions of said cylinder in which a chamber of said cylinder is in alignment with said barrel.
  • 8. A revolving firearm according to claim 1, wherein said cylinder includes an indexing plate with indexing holes arranged in a circle in annularly spaced relationship and a locking mechanism is provided which includes a locking pin received in one of said holes when one of said cylinder chambers is in alignment with said barrel for locking said cylinder in such alignment position.
  • 9. A revolving firearm according to claim 8, wherein said locking mechanism includes a locking pin which is biased by a spring toward said indexing plate for entering one of said holes when in axial alignment with said locking pin for locking said cylinder and means are provided for removing said locking pin from said hole for releasing said cylinder when said foregrip is moved to its forward end position.
  • 10. A revolving firearm according to claim 9, wherein said means for removing said locking pin from said hole includes a spring-loaded operating pin slideably mounted in said foregrip and a double arm pivot lever having one arm disposed in the path of movement of said operating pin and the other arm in engagement with said locking pin for moving said locking pin out of said hole when said one arm is engaged by said operating pin.
  • 11. A revolving firearm according to claim 8, wherein said locking mechanism includes a locking pin which is biased by a spring away from said indexing plate for moving said locking pin out of said holes when said foregrip is in its forward end position and said foregrip includes engagement means biasing said pin toward said indexing plate and into a hole thereof when said foregrip is moved to its rearward end position for locking said cylinder when said foregrip is in its rearward end position.
  • 12. A revolving firearm according to claim 11, wherein said engagement means includes a spring-loaded operating pin slideably mounted in said foregrip in axial alignment with said locking pin for biasing said locking pin toward said indexing plate and into a hole thereof for locking said cylinder when said foregrip is moved to its rearward end position.
Parent Case Info

This Application claims benefit of Provisional Application Ser. No. 60/257,615 filed Dec. 26, 2000, and claims benefit of Ser. No. 60/274,149 filed Mar. 9, 2001.

US Referenced Citations (13)
Number Name Date Kind
618369 Wilson Jan 1899 A
2798329 Radatz Jul 1957 A
2835171 Lyon May 1958 A
2930041 Massacrier Mar 1960 A
3145495 Katz et al. Aug 1964 A
3369314 Ramsay Feb 1968 A
4156981 Lusk Jun 1979 A
4547988 Nilsson Oct 1985 A
4856410 Anderson Aug 1989 A
4897949 Whiteing Feb 1990 A
5027542 Simonetti Jul 1991 A
5119575 Gajdica Jun 1992 A
5561258 Bentley et al. Oct 1996 A
Provisional Applications (2)
Number Date Country
60/257615 Dec 2000 US
60/274149 Mar 2001 US