The present invention relates to industrial process control or monitoring systems. More specifically, the present invention relates to field devices in such systems which are capable of Radio Frequency (RF) communication.
In industrial settings, control systems are used to monitor and control inventories of industrial and chemical processes, and the like. Typically, the control system performs these functions using field devices distributed at key locations in the industrial process and coupled to the control circuitry in the control room by a process control loop. The term “field device” refers to any device that performs a function in a distributed control or process monitoring system, including all devices currently known, or yet to be known, used in the measurement, control and monitoring of industrial processes.
Some field devices include a transducer. A transducer is understood to mean either a device that generates an output signal based on a physical input or that generates a physical output based on an input signal. Typically, a transducer transforms an input into an output having a different form. Types of transducers include various analytical equipment, pressure sensors, thermistors, thermocouples, strain gauges, flow transmitters, positioners, actuators, solenoids, indicator lights, and others.
Typically, each field device also includes communication circuitry that is used for communicating with a process control room, or other circuitry, over a process control loop. In some installations, the process control loop is also used to deliver a regulated current and/or voltage to the field device for powering the field device. The process control loop also carries data, either in an analog or digital format.
Traditionally, analog field devices have been connected to the control room by two-wire process control current loops, with each device connected to the control room by a single two-wire control loop. Typically, a voltage differential is maintained between the two-wires within a range of voltages from 12-45 volts for analog mode and 9-50 volts for digital mode. Some analog field devices transmit a signal to the control room by modulating the current running through the current loop to a current proportional to the sensed process variable. Other analog field devices can perform an action under the control of the control room by controlling the magnitude of the current through the loop. In addition to, or in the alternative, the process control loop can carry digital signals used for communication with field devices.
In some installations, wireless technologies have begun to be used to communicate with field devices. For example, completely wireless installations are used in which the field device uses a battery, solar cell, or other technique to obtain power without any sort of wired connection. However, the majority of field devices are hardwired to a process control room and do not use wireless communication techniques.
Industrial process plants often contain hundreds or even thousands of field devices. Many of these field devices contain sophisticated electronics and are able to provide more data than the traditional analog 4-20 mA measurements. For a number of reasons, cost among them, many plants do not take advantage of the extra data that may be provided by such field devices. This has created a need for a wireless adapter for such field devices that can attach to the field devices and transmit data back to a control system or other monitoring or diagnostic system or application via a wireless network.
In some configurations, an RF adapter can be connected in series with the process control loop. In such a configuration, a loop current of the process control loop flows through circuitry of the wireless adapter. Should the circuitry of the wireless adapter fail, an open circuit may cause the loop current to not have a current path and any field devices coupled to the two-wire process control loop will no longer be able to communicate using the process control loop.
A wireless adapter for use with a two-wire process control loop is configured to couple to a process field device in an industrial process control system. The wireless adapter is coupled to the two-wire process control loop and provides wireless communication to the process field device. The adapter includes first and second loop terminals configured to couple in series with the two-wire process control loop. Wireless communication circuitry is coupled to the first and second loop terminals and is adapted to provide wireless communication to the process field device. Loop current bypass circuitry is electrically connected between the first and second loop terminals and is configured to provide a loop current path therebetween in response to an open circuit in wireless communication circuitry.
The present invention provides a wireless adapter for use with a field device in an industrial process control or monitoring system. The wireless adapter couples to the field device and provides the field device with wireless communication abilities. The adapter also couples to a two-wire process control loop which is used to connect the remotely located field device to a local location such as a process control room or the like. The adapter includes loop current bypass circuitry configured to provide a current path for a loop current of the two-wire process control loop in response to an open circuit condition in a current path of the wireless communication circuitry. This allows the two-wire process control loop to continue to function in the event of a failure of the wireless communication in circuitry in the wireless adapter.
In
The wireless adapter 30 can communicate to other devices or components as desired and can be in communication with a remote monitoring or diagnostic system or application. The communication can be in accordance with any appropriate protocol. One example protocol such as wireless HART® includes the formation of a mesh network in which data is passed between wireless devices in order to expand and improve the reliability of the communication system
During operation, the adapter 30 operates using current from the 4-20 mA current flowing through the process control loop 22. In
As illustrated in
In the configuration of
The current through bypass transistor 252 is used to charge the capacitor 220. The voltage across the capacitor 220 is set using a voltage clamp 270. For example, the voltage clamp can be set to 2.2 volts. Another DC to DC converter 272 is configured as a step up converter and provides a regulated voltage output of 3 volts to a low dropout (LDO) regulator 274. The output of low dropout (LDO) regulator 274 is set to 2.8 volts and used to provide regulated power to radio module 244.
The microprocessor 240 is connected to a analog to digital converter 280 which is used to monitor the voltage of capacitor 220. Microprocessor 240 is also connected to a reset circuit 282. Microprocessor 240 provides data to the radio module 244 through a level shifting circuit 284.
It is preferable that the circuitry is able to support the maximum amount of wireless communication activity while dropping a minimum amount of voltage in the loop 22. Therefore, the adapter 30 is preferably configured to use power from the loop 22 in a very efficient manner. In one specific configuration, this can be achieved by using a low power microcontroller 240, for example, Atmel ATmega1281 and by using low power analog circuit components. These components can be powered by a low supply voltage to also minimize the total circuit power consumption. Further, the microcontroller 240 can be configured to enter a “sleep” mode if desired when certain functions are not needed, for example communication functions. A separate modem can also be utilized if desired.
It is also preferable to provide the radio module 244 with a large amount of power. This allows more frequent communication and increased reliability. The additional power can be used to publish information from the transmitter 12, allow the adapter 30 to be used as a router for other process transmitters, for example in a mesh network and allow higher transmit power to be used. This can result in a more reliable mesh network, as the path from another wireless device through the adapter 30 to a host may be more reliable than the path which is directly from the device to the host.
In the embodiment of
DC to DC converter 248 is configured as a low power “step up” switching regulator that operates with an input voltage of 1 volt. Regulator 248 increases the 1 volt input voltage to a sufficiently high voltage to power the remaining circuitry. In the example of
HART® analog circuit block 242 can comprise, for example, a carrier detect circuit, a receive circuit and a transmit circuit. Preferably, these circuits are configured to have low power requirements while maintaining acceptable communications integrity. The memory in microprocessor 240 can be used to store programming code and temporary variables. Timers which are internal to microprocessor 240 can optionally be used to provide a “software” modem functionality. The memory of the microprocessor 240 may include internal flash memory, RAM as well as EEPROM or other non volatile memory. The microcontroller 240 can be configured to monitor the voltage access capacitor 220 using analog to digital converter 280 which provides a digital output to microcontroller 240 representative of the capacitive voltage. If desired, the microcontroller 240 can be used to determine whether the capacitor has a sufficient voltage to support radio transmission. Reset circuit 282 can be used to ensure that microcontroller 240 does not operate when the voltage is insufficient. For example, the reset circuit 282 can be configured to reset, or turn on, the microcontroller 240 when the supply voltage from LDO regulator 260 reaches a sufficient voltage level. The circuitry can also be used to reset the microcontroller 240 if a power “glitch” occurs.
Radio module 244 operates on a stable voltage of 2.8 volts provided by LDO regulator 274. As discussed above, if the capacitor 220 is charged to 2.2 volts, the DC to DC converter regulator 272 steps up the voltage to 3 volts. During use, the voltage on the capacitor will decrease and the step up converter is needed. The LDO regulator 274 is used to provide a stable 2.8 volts to the radio module 244. Preferably, regulator 272 is configured to operate off a minimum voltage of about 1 volt up to a maximum voltage of about 2.2 volts. In some configurations, microcontroller 240 is configured to turn off circuitry of radio module 244 if the voltage on the capacitor 220 is less than 1 volt.
Microcontroller 240 can be configured to transmit information wirelessly using the radio module 244 by communicating over digital communication lines between the radio module 244 and the microcontroller 240. As the microcontroller operates from a two volt power supply while the radio operates from a 2.8 power supply, the digital communication lines between the two components must be level shifted using level shifting circuitry 284. For example, this can be performed using very low power level translator circuits such as Texas Instruments SN74LVC2T45DCU.
In one configuration, the voltage drop across the loop terminals which couple to loop 22 can be adjusted by adjusting VREF coupled to the inverting input of OPamp 254 of the shunt circuitry 250. In such a configuration, additional power may be made available to the radio by increasing the loop voltage drop under appropriate conditions. Similarly, if the impact on the process control loop of the circuitry of adapter 30 needs to be reduced, the voltage drop can be decreased. However, this will provide less power to the radio module and other circuitry of adapter 30 and may degrade performance.
Also shown in
In
In
Thus, in the configuration of
The term “field device” as used herein can be any device which is used in a process controller monitoring system and does not necessarily require placement in the “field.” The device can be located anywhere in the process control system including in a control room or control circuitry. The terminals used to connect to the process control loop refer to any electrical connection and may not comprise physical or discrete terminals. Any appropriate radio frequency communication circuitry can be used as desired as can any appropriate communication protocol, frequency or communication technique. The power supply circuitry is configured as desired and is not limited to the configurations set forth herein. In some embodiments, the field device includes an address which can be included in any RF transmissions such that the device can be identified. Similarly, such an address can be used to determine if a received signal is intended for that particular device. However, in other embodiments, no address is utilized and data is simply transmitted from the wireless communication circuitry without any addressing information. In such a configuration, if receipt of data is desired, any received data may not include addressing information. In some embodiments, this may be acceptable. In others, other addressing techniques or identification techniques can be used such as assigning a particular frequency or communication protocol to a particular device, assigning a particular time slot or period to a particular device or other techniques. Any appropriate communication protocol and/or networking technique can be employed including token-based techniques in which a token is handed off between devices to thereby allow transmission or reception for the particular device.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. As used herein, Radio Frequency (RF) can comprise electromagnetic transmissions of any frequency and is not limited to a particular group of frequencies, range of frequencies or any other limitation. Any communication protocol can be used, as desired, including IEEE 802.11b, 802.15.4, or other protocols, including proprietary communication protocols. In the discussion above, the wireless adapter provides a digital signal communication connection for coupling to the two wire process control loop and, in some embodiments, communicating in accordance with the HART® communication protocol. The adapter can be configured to mount externally to a process control transmitter, for example, through a threaded coupling to NPT fittings in the transmitter housing.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
The present application is based on and claims the benefit of U.S. provisional patent application Ser. No. 61/073,093, filed Jun. 17, 2008, the content of which is hereby incorporated by reference in its entirety. The present application also notes the following related patent applications: U.S. application Ser. No. 12/125,187, filed May 22, 2008; U.S. Ser. No. 60/997,760, filed Oct. 5, 2007; U.S. Ser. No. 11/842,356, filed Aug. 21, 2007; and U.S. Ser. No. 10/878,235, filed Jun. 28, 2004, now U.S. Pat. No. 7,262,693, the contents of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2533339 | Willenborg | Dec 1950 | A |
2883489 | Eadie, Jr. et al. | Apr 1959 | A |
3012432 | Moore et al. | Dec 1961 | A |
3218863 | Calvert | Nov 1965 | A |
3232712 | Stearns | Feb 1966 | A |
3249833 | Vosteen | May 1966 | A |
3374112 | Danon | Mar 1968 | A |
3557621 | Ferran | Jan 1971 | A |
3612851 | Fowler | Oct 1971 | A |
3697835 | Satori | Oct 1972 | A |
D225743 | Seltzer | Jan 1973 | S |
3742450 | Weller | Jun 1973 | A |
3808480 | Johnston | Apr 1974 | A |
3924219 | Braun | Dec 1975 | A |
4008619 | Alcaide et al. | Feb 1977 | A |
4063349 | Passler et al. | Dec 1977 | A |
4158217 | Bell | Jun 1979 | A |
4168518 | Lee | Sep 1979 | A |
4177496 | Bell et al. | Dec 1979 | A |
4227419 | Park | Oct 1980 | A |
4287553 | Braunlich | Sep 1981 | A |
4322775 | Delatorre | Mar 1982 | A |
4336567 | Anastasia | Jun 1982 | A |
4358814 | Lee et al. | Nov 1982 | A |
4370890 | Frick | Feb 1983 | A |
4383801 | Pryor | May 1983 | A |
4389895 | Rud, Jr. | Jun 1983 | A |
4422125 | Antonazzi et al. | Dec 1983 | A |
4422335 | Ohnesorge et al. | Dec 1983 | A |
4434451 | Delatorre | Feb 1984 | A |
4455874 | Paros | Jun 1984 | A |
4458537 | Bell et al. | Jul 1984 | A |
4475047 | Ebert | Oct 1984 | A |
4476853 | Arbogast | Oct 1984 | A |
4490773 | Moffatt | Dec 1984 | A |
4510400 | Kiteley | Apr 1985 | A |
4542436 | Carusillo | Sep 1985 | A |
4562742 | Bell | Jan 1986 | A |
4570217 | Allen et al. | Feb 1986 | A |
4590466 | Wiklund et al. | May 1986 | A |
4670733 | Bell | Jun 1987 | A |
4701938 | Bell | Oct 1987 | A |
4704607 | Teather et al. | Nov 1987 | A |
4749993 | Szabo et al. | Jun 1988 | A |
4785669 | Benson et al. | Nov 1988 | A |
4860232 | Lee et al. | Aug 1989 | A |
4875369 | Delatorre | Oct 1989 | A |
4878012 | Schulte et al. | Oct 1989 | A |
4926674 | Fossum et al. | May 1990 | A |
4951174 | Grantham et al. | Aug 1990 | A |
4977480 | Nishihara | Dec 1990 | A |
4982412 | Gross | Jan 1991 | A |
5009311 | Schenk | Apr 1991 | A |
5014176 | Kelleher et al. | May 1991 | A |
5023746 | Epstein | Jun 1991 | A |
5025202 | Ishii et al. | Jun 1991 | A |
5045963 | Hansen et al. | Sep 1991 | A |
5060295 | Borras et al. | Oct 1991 | A |
5094109 | Dean et al. | Mar 1992 | A |
D331370 | Williams | Dec 1992 | S |
5168419 | Delatorre | Dec 1992 | A |
5194819 | Briefer | Mar 1993 | A |
5230250 | Delatorre | Jul 1993 | A |
5233875 | Obermeier et al. | Aug 1993 | A |
D345107 | Williams | Mar 1994 | S |
5329818 | Frick et al. | Jul 1994 | A |
5492016 | Pinto et al. | Feb 1996 | A |
5495769 | Broden et al. | Mar 1996 | A |
5506757 | Brorby | Apr 1996 | A |
5542300 | Lee | Aug 1996 | A |
5546804 | Johnson et al. | Aug 1996 | A |
5554809 | Tobita et al. | Sep 1996 | A |
5606513 | Louwagie et al. | Feb 1997 | A |
5610552 | Schlesinger et al. | Mar 1997 | A |
5637802 | Frick et al. | Jun 1997 | A |
5642301 | Warrior et al. | Jun 1997 | A |
5656782 | Powell, II et al. | Aug 1997 | A |
5665899 | Willcox | Sep 1997 | A |
5672832 | Cucci et al. | Sep 1997 | A |
5682476 | Tapperson et al. | Oct 1997 | A |
5705978 | Frick et al. | Jan 1998 | A |
5710552 | McCoy et al. | Jan 1998 | A |
5757608 | Bernot et al. | May 1998 | A |
5787120 | Louagie et al. | Jul 1998 | A |
5793963 | Tapperson et al. | Aug 1998 | A |
5851083 | Palan | Dec 1998 | A |
5870695 | Brown et al. | Feb 1999 | A |
5872494 | Palan et al. | Feb 1999 | A |
5899962 | Louwagie et al. | May 1999 | A |
5911162 | Denner | Jun 1999 | A |
5954526 | Smith | Sep 1999 | A |
5978658 | Shoji | Nov 1999 | A |
5992240 | Tsuruoka et al. | Nov 1999 | A |
6038927 | Karas | Mar 2000 | A |
6062095 | Mulrooney et al. | May 2000 | A |
6079276 | Frick et al. | Jun 2000 | A |
6127739 | Appa | Oct 2000 | A |
6150798 | Ferry et al. | Nov 2000 | A |
D439177 | Fandrey et al. | Mar 2001 | S |
D439178 | Fandrey et al. | Mar 2001 | S |
D439179 | Fandrey et al. | Mar 2001 | S |
D439180 | Fandrey et al. | Mar 2001 | S |
D439181 | Fandrey et al. | Mar 2001 | S |
D441672 | Fandrey et al. | May 2001 | S |
6236096 | Chang et al. | May 2001 | B1 |
6236334 | Tapperson et al. | May 2001 | B1 |
6282247 | Shen | Aug 2001 | B1 |
6295875 | Frick et al. | Oct 2001 | B1 |
6338283 | Blazquez Navarro | Jan 2002 | B1 |
6360277 | Ruckley et al. | Mar 2002 | B1 |
6366436 | Maier et al. | Apr 2002 | B1 |
6385972 | Fellows | May 2002 | B1 |
6405139 | Kicinski et al. | Jun 2002 | B1 |
6429786 | Bansemir et al. | Aug 2002 | B1 |
6441747 | Khair et al. | Aug 2002 | B1 |
6457367 | Behm et al. | Oct 2002 | B1 |
6484107 | Roper et al. | Nov 2002 | B1 |
6487912 | Behm et al. | Dec 2002 | B1 |
6504489 | Westfield et al. | Jan 2003 | B1 |
6508131 | Frick | Jan 2003 | B2 |
6510740 | Behm et al. | Jan 2003 | B1 |
6511337 | Fandrey et al. | Jan 2003 | B1 |
D471829 | Dennis et al. | Mar 2003 | S |
D472831 | Dennis et al. | Apr 2003 | S |
6546805 | Fandrey et al. | Apr 2003 | B2 |
6553076 | Huang | Apr 2003 | B1 |
6568279 | Behm et al. | May 2003 | B2 |
6571132 | Davis et al. | May 2003 | B1 |
6574515 | Kirkpatrick et al. | Jun 2003 | B1 |
6593857 | Roper et al. | Jul 2003 | B1 |
6609427 | Westfield et al. | Aug 2003 | B1 |
6662662 | Nord et al. | Dec 2003 | B1 |
6680690 | Nilsson et al. | Jan 2004 | B1 |
6711446 | Kirkpatrick et al. | Mar 2004 | B2 |
6747573 | Gerlach et al. | Jun 2004 | B1 |
6765968 | Nelson et al. | Jul 2004 | B1 |
6771560 | Lyon et al. | Aug 2004 | B2 |
6774814 | Hilleary | Aug 2004 | B2 |
6778100 | Schempf | Aug 2004 | B2 |
6792259 | Parise | Sep 2004 | B1 |
6823072 | Hoover | Nov 2004 | B1 |
6839546 | Hedtke | Jan 2005 | B2 |
6839790 | Barros De Almeida et al. | Jan 2005 | B2 |
6891838 | Petite et al. | May 2005 | B1 |
6898980 | Behm et al. | May 2005 | B2 |
6904295 | Yang | Jun 2005 | B2 |
6907383 | Eryurek et al. | Jun 2005 | B2 |
6910332 | Fellows | Jun 2005 | B2 |
6961665 | Slezak | Nov 2005 | B2 |
0289276 | Karschnia et al. | Dec 2005 | A1 |
6995685 | Randall | Feb 2006 | B2 |
7010294 | Pyotsia et al. | Mar 2006 | B1 |
7058542 | Hauhia et al. | Jun 2006 | B2 |
7088285 | Smith | Aug 2006 | B2 |
7109883 | Trimble et al. | Sep 2006 | B2 |
7233745 | Loechner | Jun 2007 | B2 |
7262693 | Karschnia et al. | Aug 2007 | B2 |
7271679 | Lundberg et al. | Sep 2007 | B2 |
7301454 | Seyfang et al. | Nov 2007 | B2 |
7329959 | Kim et al. | Feb 2008 | B2 |
7560907 | Nelson | Jul 2009 | B2 |
20010025349 | Sharood et al. | Sep 2001 | A1 |
20020011115 | Frick | Jan 2002 | A1 |
20020029130 | Eryurek et al. | Mar 2002 | A1 |
20020065631 | Loechner | May 2002 | A1 |
20020082799 | Pramanik | Jun 2002 | A1 |
20020095520 | Wettstein et al. | Jul 2002 | A1 |
20020097031 | Cook et al. | Jul 2002 | A1 |
20020105968 | Pruzan et al. | Aug 2002 | A1 |
20020163323 | Kasai et al. | Nov 2002 | A1 |
20030043052 | Tapperson et al. | Mar 2003 | A1 |
20030079553 | Cain et al. | May 2003 | A1 |
20030083038 | Poon et al. | May 2003 | A1 |
20030143958 | Elias et al. | Jul 2003 | A1 |
20030171827 | Keyes et al. | Sep 2003 | A1 |
20030204371 | Sciamanna | Oct 2003 | A1 |
20040086021 | Litwin | May 2004 | A1 |
20040124854 | Slezak | Jul 2004 | A1 |
20040142733 | Parise | Jul 2004 | A1 |
20040183550 | Fehrenbach et al. | Sep 2004 | A1 |
20040184517 | Westfield et al. | Sep 2004 | A1 |
20040199681 | Hedtke | Oct 2004 | A1 |
20040203434 | Karschnia et al. | Oct 2004 | A1 |
20040211456 | Brown et al. | Oct 2004 | A1 |
20040214543 | Osone et al. | Oct 2004 | A1 |
20040218326 | Duren et al. | Nov 2004 | A1 |
20040242169 | Albsmeier et al. | Dec 2004 | A1 |
20040259533 | Nixon et al. | Dec 2004 | A1 |
20050017602 | Arms et al. | Jan 2005 | A1 |
20050023858 | Bingle et al. | Feb 2005 | A1 |
20050029236 | Gambino et al. | Feb 2005 | A1 |
20050040570 | Asselborn | Feb 2005 | A1 |
20050046595 | Blyth | Mar 2005 | A1 |
20050056106 | Nelson et al. | Mar 2005 | A1 |
20050072239 | Longsdorf et al. | Apr 2005 | A1 |
20050109395 | Seberger | May 2005 | A1 |
20050115601 | Olsen et al. | Jun 2005 | A1 |
20050118468 | Adams et al. | Jun 2005 | A1 |
20050130605 | Karschnia et al. | Jun 2005 | A1 |
20050164684 | Chen et al. | Jul 2005 | A1 |
20050201349 | Budampati | Sep 2005 | A1 |
20050222698 | Eryurek et al. | Oct 2005 | A1 |
20050228509 | James | Oct 2005 | A1 |
20050245291 | Brown et al. | Nov 2005 | A1 |
20050276233 | Shepard et al. | Dec 2005 | A1 |
20050281215 | Budampati et al. | Dec 2005 | A1 |
20050289276 | Karschnia et al. | Dec 2005 | A1 |
20060002368 | Budampati et al. | Jan 2006 | A1 |
20060028327 | Amis | Feb 2006 | A1 |
20060036404 | Wiklund et al. | Feb 2006 | A1 |
20060063522 | McFarland | Mar 2006 | A1 |
20060092039 | Saito et al. | May 2006 | A1 |
20060131428 | Wang et al. | Jun 2006 | A1 |
20060148410 | Nelson et al. | Jul 2006 | A1 |
20060181406 | Petite et al. | Aug 2006 | A1 |
20060194547 | Davis | Aug 2006 | A1 |
20060227729 | Budampati et al. | Oct 2006 | A1 |
20060274644 | Budampati et al. | Dec 2006 | A1 |
20060274671 | Budampati et al. | Dec 2006 | A1 |
20060287001 | Budampati et al. | Dec 2006 | A1 |
20060290328 | Orth | Dec 2006 | A1 |
20070030816 | Kolavennu | Feb 2007 | A1 |
20070030832 | Gonia et al. | Feb 2007 | A1 |
20070054630 | Scheible et al. | Mar 2007 | A1 |
20070055463 | Florenz et al. | Mar 2007 | A1 |
20070229255 | Loechner | Oct 2007 | A1 |
20070233283 | Chen | Oct 2007 | A1 |
20070237137 | McLaughlin | Oct 2007 | A1 |
20070275755 | Chae et al. | Nov 2007 | A1 |
20070279009 | Kobayashi | Dec 2007 | A1 |
20070280144 | Hodson et al. | Dec 2007 | A1 |
20070280178 | Hodson et al. | Dec 2007 | A1 |
20070280286 | Hodson et al. | Dec 2007 | A1 |
20070280287 | Samundrala et al. | Dec 2007 | A1 |
20070282463 | Hodson et al. | Dec 2007 | A1 |
20070285224 | Karschnia et al. | Dec 2007 | A1 |
20070288204 | Gienke et al. | Dec 2007 | A1 |
20080010600 | Katano | Jan 2008 | A1 |
20080280568 | Kielb et al. | Nov 2008 | A1 |
20080310195 | Seberger et al. | Dec 2008 | A1 |
20090015216 | Seberger et al. | Jan 2009 | A1 |
20090081957 | Sinreich | Mar 2009 | A1 |
20090146502 | Sinreich | Jun 2009 | A1 |
20090253388 | Kielb et al. | Oct 2009 | A1 |
20090309558 | Kielb | Dec 2009 | A1 |
20090311971 | Kielb et al. | Dec 2009 | A1 |
20090311975 | Vanderaa et al. | Dec 2009 | A1 |
20090311976 | Vanderaa et al. | Dec 2009 | A1 |
20100000316 | Fehrenbach et al. | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
672 368 | Nov 1989 | CH |
06 199284 | Jul 1994 | CN |
1 429 354 | Jul 2003 | CN |
1 442 822 | Sep 2003 | CN |
100386602 | May 2008 | CN |
2710211 | Sep 1978 | DE |
3340834 | May 1985 | DE |
37 11 754 | Oct 1988 | DE |
38 42 379 | Jun 1990 | DE |
196 22 295 | May 1996 | DE |
201 07 112 | Jul 2001 | DE |
101 04 582 | Oct 2001 | DE |
100 41 160 | Mar 2002 | DE |
102 21 931 | May 2002 | DE |
10 2004 020 393 | Nov 2005 | DE |
0 518 916 | Feb 1991 | EP |
0 524 550 | Jan 1993 | EP |
0 895 209 | Feb 1999 | EP |
0 945 714 | Sep 1999 | EP |
1 202 145 | May 2002 | EP |
1 192 614 | Jan 2003 | EP |
1 293 853 | Mar 2003 | EP |
1 879 294 | Jan 2008 | EP |
118699 | Feb 2008 | FI |
1 397 435 | Jun 1975 | GB |
2 300 265 | Oct 1996 | GB |
2 403 043 | Jun 2004 | GB |
02067794 | Jul 1990 | JP |
2000-304148 | Nov 2000 | JP |
2003-070079 | Nov 2000 | JP |
2003042881 | Feb 2003 | JP |
2003051894 | Feb 2003 | JP |
2003134261 | May 2003 | JP |
2004021877 | Jan 2004 | JP |
2004-146254 | May 2004 | JP |
2004-317593 | Nov 2004 | JP |
2005-207648 | Aug 2005 | JP |
2 131 934 | Jun 1999 | RU |
2342639 | Aug 2003 | RU |
WO 9113417 | Sep 1991 | WO |
WO 9507522 | Mar 1995 | WO |
WO 9612993 | May 1996 | WO |
WO 9953286 | Oct 1999 | WO |
WO 0148723 | Jul 2001 | WO |
WO 0176148 | Oct 2001 | WO |
WO 0205241 | Jan 2002 | WO |
WO 03023536 | Mar 2003 | WO |
WO 03089881 | Oct 2003 | WO |
WO 2004023423 | Mar 2004 | WO |
WO 2004082051 | Sep 2004 | WO |
WO 2004094892 | Nov 2004 | WO |
WO 2005060482 | Jul 2005 | WO |
WO 2005086331 | Sep 2005 | WO |
WO 2007002769 | Jan 2007 | WO |
WO 2009003146 | Dec 2008 | WO |
WO 2009003148 | Dec 2008 | WO |
WO 2009063056 | May 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20090311971 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
61073093 | Jun 2008 | US |